/** * @file lldeadmantimer_test.cpp * @brief Tests for the LLDeadmanTimer class. * * $LicenseInfo:firstyear=2013&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2013, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #include "linden_common.h" #include "../lldeadmantimer.h" #include "../llsd.h" #include "../test/lltut.h" // Convert between floating point time deltas and U64 time deltas. // Reflects an implementation detail inside lldeadmantimer.cpp static LLDeadmanTimer::time_type float_time_to_u64(F64 delta) { return LLDeadmanTimer::time_type(delta * gClockFrequency); } static F64 u64_time_to_float(LLDeadmanTimer::time_type delta) { return delta * gClockFrequencyInv; } namespace tut { struct deadmantimer_test { deadmantimer_test() { // LLTimer internals updating update_clock_frequencies(); } }; typedef test_group deadmantimer_group_t; typedef deadmantimer_group_t::object deadmantimer_object_t; tut::deadmantimer_group_t deadmantimer_instance("LLDeadmanTimer"); // Basic construction test and isExpired() call template<> template<> void deadmantimer_object_t::test<1>() { F64 started(42.0), stopped(97.0); U64 count(U64L(8)); LLDeadmanTimer timer(10.0); ensure_equals("isExpired() returns false after ctor()", timer.isExpired(0, started, stopped, count), false); ensure_approximately_equals("t1 - isExpired() does not modify started", started, F64(42.0), 2); ensure_approximately_equals("t1 - isExpired() does not modify stopped", stopped, F64(97.0), 2); ensure_equals("t1 - isExpired() does not modify count", count, U64L(8)); } // Construct with zero horizon - not useful generally but will be useful in testing template<> template<> void deadmantimer_object_t::test<2>() { F64 started(42.0), stopped(97.0); U64 count(U64L(8)); LLDeadmanTimer timer(0.0); // Zero is pre-expired ensure_equals("isExpired() still returns false with 0.0 time ctor()", timer.isExpired(0, started, stopped, count), false); } // "pre-expired" timer - starting a timer with a 0.0 horizon will result in // expiration on first test. template<> template<> void deadmantimer_object_t::test<3>() { F64 started(42.0), stopped(97.0); U64 count(U64L(8)); LLDeadmanTimer timer(0.0); timer.start(0); ensure_equals("isExpired() returns true with 0.0 horizon time", timer.isExpired(0, started, stopped, count), true); ensure_approximately_equals("expired timer with no bell ringing has stopped == started", started, stopped, 8); } // "pre-expired" timer - bell rings are ignored as we're already expired. template<> template<> void deadmantimer_object_t::test<4>() { F64 started(42.0), stopped(97.0); U64 count(U64L(8)); LLDeadmanTimer timer(0.0); timer.start(0); timer.ringBell(LLDeadmanTimer::getNow() + float_time_to_u64(1000.0), 1); ensure_equals("isExpired() returns true with 0.0 horizon time after bell ring", timer.isExpired(0, started, stopped, count), true); ensure_approximately_equals("ringBell has no impact on expired timer leaving stopped == started", started, stopped, 8); } // start(0) test - unexpired timer reports unexpired template<> template<> void deadmantimer_object_t::test<5>() { F64 started(42.0), stopped(97.0); U64 count(U64L(8)); LLDeadmanTimer timer(10.0); timer.start(0); ensure_equals("isExpired() returns false after starting with 10.0 horizon time", timer.isExpired(0, started, stopped, count), false); ensure_approximately_equals("t5 - isExpired() does not modify started", started, F64(42.0), 2); ensure_approximately_equals("t5 - isExpired() does not modify stopped", stopped, F64(97.0), 2); ensure_equals("t5 - isExpired() does not modify count", count, U64L(8)); } // start() test - start in the past but not beyond 1 horizon template<> template<> void deadmantimer_object_t::test<6>() { F64 started(42.0), stopped(97.0); U64 count(U64L(8)); LLDeadmanTimer timer(10.0); // Would like to do subtraction on current time but can't because // the implementation on Windows is zero-based. We wrap around // the backside resulting in a large U64 number. LLDeadmanTimer::time_type the_past(LLDeadmanTimer::getNow()); LLDeadmanTimer::time_type now(the_past + float_time_to_u64(5.0)); timer.start(the_past); ensure_equals("isExpired() returns false with 10.0 horizon time starting 5.0 in past", timer.isExpired(now, started, stopped, count), false); ensure_approximately_equals("t6 - isExpired() does not modify started", started, F64(42.0), 2); ensure_approximately_equals("t6 - isExpired() does not modify stopped", stopped, F64(97.0), 2); ensure_equals("t6 - isExpired() does not modify count", count, U64L(8)); } // start() test - start in the past but well beyond 1 horizon template<> template<> void deadmantimer_object_t::test<7>() { F64 started(42.0), stopped(97.0); U64 count(U64L(8)); LLDeadmanTimer timer(10.0); // Would like to do subtraction on current time but can't because // the implementation on Windows is zero-based. We wrap around // the backside resulting in a large U64 number. LLDeadmanTimer::time_type the_past(LLDeadmanTimer::getNow()); LLDeadmanTimer::time_type now(the_past + float_time_to_u64(20.0)); timer.start(the_past); ensure_equals("isExpired() returns true with 10.0 horizon time starting 20.0 in past", timer.isExpired(now,started, stopped, count), true); ensure_approximately_equals("starting before horizon still gives equal started / stopped", started, stopped, 8); } // isExpired() test - results are read-once. Probes after first true are false. template<> template<> void deadmantimer_object_t::test<8>() { F64 started(42.0), stopped(97.0); U64 count(U64L(8)); LLDeadmanTimer timer(10.0); // Would like to do subtraction on current time but can't because // the implementation on Windows is zero-based. We wrap around // the backside resulting in a large U64 number. LLDeadmanTimer::time_type the_past(LLDeadmanTimer::getNow()); LLDeadmanTimer::time_type now(the_past + float_time_to_u64(20.0)); timer.start(the_past); ensure_equals("t8 - isExpired() returns true with 10.0 horizon time starting 20.0 in past", timer.isExpired(now, started, stopped, count), true); started = 42.0; stopped = 97.0; count = U64L(8); ensure_equals("t8 - second isExpired() returns false after true", timer.isExpired(now, started, stopped, count), false); ensure_approximately_equals("t8 - 2nd isExpired() does not modify started", started, F64(42.0), 2); ensure_approximately_equals("t8 - 2nd isExpired() does not modify stopped", stopped, F64(97.0), 2); ensure_equals("t8 - 2nd isExpired() does not modify count", count, U64L(8)); } // ringBell() test - see that we can keep a timer from expiring template<> template<> void deadmantimer_object_t::test<9>() { F64 started(42.0), stopped(97.0); U64 count(U64L(8)); LLDeadmanTimer timer(5.0); LLDeadmanTimer::time_type now(LLDeadmanTimer::getNow()); F64 real_start(u64_time_to_float(now)); timer.start(0); now += float_time_to_u64(1.0); timer.ringBell(now, 1); now += float_time_to_u64(1.0); timer.ringBell(now, 1); now += float_time_to_u64(1.0); timer.ringBell(now, 1); now += float_time_to_u64(1.0); timer.ringBell(now, 1); now += float_time_to_u64(1.0); timer.ringBell(now, 1); now += float_time_to_u64(1.0); timer.ringBell(now, 1); now += float_time_to_u64(1.0); timer.ringBell(now, 1); now += float_time_to_u64(1.0); timer.ringBell(now, 1); now += float_time_to_u64(1.0); timer.ringBell(now, 1); now += float_time_to_u64(1.0); timer.ringBell(now, 1); ensure_equals("t9 - 5.0 horizon timer has not timed out after 10 1-second bell rings", timer.isExpired(now, started, stopped, count), false); F64 last_good_ring(u64_time_to_float(now)); // Jump forward and expire now += float_time_to_u64(10.0); ensure_equals("t9 - 5.0 horizon timer expires on 10-second jump", timer.isExpired(now, started, stopped, count), true); ensure_approximately_equals("t9 - started matches start() time", started, real_start, 4); ensure_approximately_equals("t9 - stopped matches last ringBell() time", stopped, last_good_ring, 4); ensure_equals("t9 - 10 good ringBell()s", count, U64L(10)); ensure_equals("t9 - single read only", timer.isExpired(now, started, stopped, count), false); } // restart after expiration test - verify that restarts behave well template<> template<> void deadmantimer_object_t::test<10>() { F64 started(42.0), stopped(97.0); U64 count(U64L(8)); LLDeadmanTimer timer(5.0); LLDeadmanTimer::time_type now(LLDeadmanTimer::getNow()); F64 real_start(u64_time_to_float(now)); timer.start(0); now += float_time_to_u64(1.0); timer.ringBell(now, 1); now += float_time_to_u64(1.0); timer.ringBell(now, 1); now += float_time_to_u64(1.0); timer.ringBell(now, 1); now += float_time_to_u64(1.0); timer.ringBell(now, 1); now += float_time_to_u64(1.0); timer.ringBell(now, 1); now += float_time_to_u64(1.0); timer.ringBell(now, 1); now += float_time_to_u64(1.0); timer.ringBell(now, 1); now += float_time_to_u64(1.0); timer.ringBell(now, 1); now += float_time_to_u64(1.0); timer.ringBell(now, 1); now += float_time_to_u64(1.0); timer.ringBell(now, 1); ensure_equals("t10 - 5.0 horizon timer has not timed out after 10 1-second bell rings", timer.isExpired(now, started, stopped, count), false); F64 last_good_ring(u64_time_to_float(now)); // Jump forward and expire now += float_time_to_u64(10.0); ensure_equals("t10 - 5.0 horizon timer expires on 10-second jump", timer.isExpired(now, started, stopped, count), true); ensure_approximately_equals("t10 - started matches start() time", started, real_start, 4); ensure_approximately_equals("t10 - stopped matches last ringBell() time", stopped, last_good_ring, 4); ensure_equals("t10 - 10 good ringBell()s", count, U64L(10)); ensure_equals("t10 - single read only", timer.isExpired(now, started, stopped, count), false); // Jump forward and restart now += float_time_to_u64(1.0); real_start = u64_time_to_float(now); timer.start(now); // Run a modified bell ring sequence now += float_time_to_u64(1.0); timer.ringBell(now, 1); now += float_time_to_u64(1.0); timer.ringBell(now, 1); now += float_time_to_u64(1.0); timer.ringBell(now, 1); now += float_time_to_u64(1.0); timer.ringBell(now, 1); now += float_time_to_u64(1.0); timer.ringBell(now, 1); now += float_time_to_u64(1.0); timer.ringBell(now, 1); now += float_time_to_u64(1.0); timer.ringBell(now, 1); now += float_time_to_u64(1.0); timer.ringBell(now, 1); ensure_equals("t10 - 5.0 horizon timer has not timed out after 8 1-second bell rings", timer.isExpired(now, started, stopped, count), false); last_good_ring = u64_time_to_float(now); // Jump forward and expire now += float_time_to_u64(10.0); ensure_equals("t10 - 5.0 horizon timer expires on 8-second jump", timer.isExpired(now, started, stopped, count), true); ensure_approximately_equals("t10 - 2nd started matches start() time", started, real_start, 4); ensure_approximately_equals("t10 - 2nd stopped matches last ringBell() time", stopped, last_good_ring, 4); ensure_equals("t10 - 8 good ringBell()s", count, U64L(8)); ensure_equals("t10 - single read only - 2nd start", timer.isExpired(now, started, stopped, count), false); } } // end namespace tut