/** * @file lua_function.cpp * @author Nat Goodspeed * @date 2024-02-05 * @brief Implementation for lua_function. * * $LicenseInfo:firstyear=2024&license=viewerlgpl$ * Copyright (c) 2024, Linden Research, Inc. * $/LicenseInfo$ */ // Precompiled header #include "linden_common.h" // associated header #include "lua_function.h" // STL headers // std headers #include #include #include #include // std::quoted #include #include // std::unique_ptr #include // external library headers // other Linden headers #include "hexdump.h" #include "lleventcoro.h" #include "llsd.h" #include "llsdutil.h" #include "lualistener.h" #include "stringize.h" /***************************************************************************** * luau namespace *****************************************************************************/ namespace { // can't specify free function free() as a unique_ptr deleter struct freer { void operator()(void* ptr){ free(ptr); } }; } // anonymous namespace int lluau::dostring(lua_State* L, const std::string& desc, const std::string& text) { auto r = loadstring(L, desc, text); if (r != LUA_OK) return r; // It's important to pass LUA_MULTRET as the expected number of return // values: if we pass any fixed number, we discard any returned values // beyond that number. return lua_pcall(L, 0, LUA_MULTRET, 0); } int lluau::loadstring(lua_State *L, const std::string &desc, const std::string &text) { size_t bytecodeSize = 0; // The char* returned by luau_compile() must be freed by calling free(). // Use unique_ptr so the memory will be freed even if luau_load() throws. std::unique_ptr bytecode{ luau_compile(text.data(), text.length(), nullptr, &bytecodeSize)}; return luau_load(L, desc.data(), bytecode.get(), bytecodeSize, 0); } /***************************************************************************** * Lua <=> C++ conversions *****************************************************************************/ std::string lua_tostdstring(lua_State* L, int index) { size_t len; const char* strval{ lua_tolstring(L, index, &len) }; return { strval, len }; } void lua_pushstdstring(lua_State* L, const std::string& str) { luaL_checkstack(L, 1, nullptr); lua_pushlstring(L, str.c_str(), str.length()); } // By analogy with existing lua_tomumble() functions, return an LLSD object // corresponding to the Lua object at stack index 'index' in state L. // This function assumes that a Lua caller is fully aware that they're trying // to call a viewer function. In other words, the caller must specifically // construct Lua data convertible to LLSD. // // For proper error handling, we REQUIRE that the Lua runtime be compiled as // C++ so errors are raised as C++ exceptions rather than as longjmp() calls: // http://www.lua.org/manual/5.4/manual.html#4.4 // "Internally, Lua uses the C longjmp facility to handle errors. (Lua will // use exceptions if you compile it as C++; search for LUAI_THROW in the // source code for details.)" // Some blocks within this function construct temporary C++ objects in the // expectation that these objects will be properly destroyed even if code // reached by that block raises a Lua error. LLSD lua_tollsd(lua_State* L, int index) { switch (lua_type(L, index)) { case LUA_TNONE: // Should LUA_TNONE be an error instead of returning isUndefined()? case LUA_TNIL: return {}; case LUA_TBOOLEAN: return bool(lua_toboolean(L, index)); case LUA_TNUMBER: { // Vanilla Lua supports lua_tointegerx(), which tells the caller // whether the number at the specified stack index is or is not an // integer. Apparently the function exists but does not work right in // Luau: it reports even non-integer numbers as integers. // Instead, check if integer truncation leaves the number intact. lua_Number numval{ lua_tonumber(L, index) }; lua_Integer intval{ narrow(numval) }; if (lua_Number(intval) == numval) { return LLSD::Integer(intval); } else { return numval; } } case LUA_TSTRING: return lua_tostdstring(L, index); case LUA_TUSERDATA: { LLSD::Binary binary(lua_rawlen(L, index)); std::memcpy(binary.data(), lua_touserdata(L, index), binary.size()); return binary; } case LUA_TTABLE: { // A Lua table correctly constructed to convert to LLSD will have // either consecutive integer keys starting at 1, which we represent // as an LLSD array (with Lua key 1 at C++ index 0), or will have // all string keys. // // In the belief that Lua table traversal skips "holes," that is, it // doesn't report any key/value pair whose value is nil, we allow a // table with integer keys >= 1 but with "holes." This produces an // LLSD array with isUndefined() entries at unspecified keys. There // would be no other way for a Lua caller to construct an // isUndefined() LLSD array entry. However, to guard against crazy int // keys, we forbid gaps larger than a certain size: crazy int keys // could result in a crazy large contiguous LLSD array. // // Possible looseness could include: // - A mix of integer and string keys could produce an LLSD map in // which the integer keys are converted to string. (Key conversion // must be performed in C++, not Lua, to avoid confusing // lua_next().) // - However, since in Lua t[0] and t["0"] are distinct table entries, // do not consider converting numeric string keys to int to return // an LLSD array. // But until we get more experience with actual Lua scripts in // practice, let's say that any deviation is a Lua coding error. // An important property of the strict definition above is that most // conforming data blobs can make a round trip across the language // boundary and still compare equal. A non-conforming data blob would // lose that property. // Known exceptions to round trip identity: // - Empty LLSD map and empty LLSD array convert to empty Lua table. // But empty Lua table converts to isUndefined() LLSD object. // - LLSD::Real with integer value returns as LLSD::Integer. // - LLSD::UUID, LLSD::Date and LLSD::URI all convert to Lua string, // and so return as LLSD::String. // - Lua does not store any table key whose value is nil. An LLSD // array with isUndefined() entries produces a Lua table with // "holes" in the int key sequence; this converts back to an LLSD // array containing corresponding isUndefined() entries -- except // when one or more of the final entries isUndefined(). These are // simply dropped, producing a shorter LLSD array than the original. // - For the same reason, any keys in an LLSD map whose value // isUndefined() are simply discarded in the converted Lua table. // This converts back to an LLSD map lacking those keys. // - If it's important to preserve the original length of an LLSD // array whose final entries are undefined, or the full set of keys // for an LLSD map some of whose values are undefined, store an // LLSD::emptyArray() or emptyMap() instead. These will be // represented in Lua as empty table, which should convert back to // undefined LLSD. Naturally, though, those won't survive a second // round trip. // This is the most important of the luaL_checkstack() calls because a // deeply nested Lua structure will enter this case at each level, and // we'll need another 2 stack slots to traverse each nested table. luaL_checkstack(L, 2, nullptr); // BEFORE we push nil to initialize the lua_next() traversal, convert // 'index' to absolute! Our caller might have passed a relative index; // we do, below: lua_tollsd(L, -1). If 'index' is -1, then when we // push nil, what we find at index -1 is nil, not the table! index = lua_absindex(L, index); lua_pushnil(L); // first key if (! lua_next(L, index)) { // it's a table, but the table is empty -- no idea if it should be // modeled as empty array or empty map -- return isUndefined(), // which can be consumed as either return {}; } // key is at stack index -2, value at index -1 // from here until lua_next() returns 0, have to lua_pop(2) if we // return early LuaPopper popper(L, 2); // Remember the type of the first key auto firstkeytype{ lua_type(L, -2) }; switch (firstkeytype) { case LUA_TNUMBER: { // First Lua key is a number: try to convert table to LLSD array. // This is tricky because we don't know in advance the size of the // array. The Lua reference manual says that lua_rawlen() is the // same as the length operator '#'; but the length operator states // that it might stop at any "hole" in the subject table. // Moreover, the Lua next() function (and presumably lua_next()) // traverses a table in unspecified order, even for numeric keys // (emphasized in the doc). // Make a preliminary pass over the whole table to validate and to // collect keys. std::vector keys; // Try to determine the length of the table. If the length // operator is truthful, avoid allocations while we grow the keys // vector. Even if it's not, we can still grow the vector, albeit // a little less efficiently. keys.reserve(lua_objlen(L, index)); do { auto arraykeytype{ lua_type(L, -2) }; switch (arraykeytype) { case LUA_TNUMBER: { int isint; lua_Integer intkey{ lua_tointegerx(L, -2, &isint) }; if (! isint) { // key isn't an integer - this doesn't fit our LLSD // array constraints return lluau::error(L, "Expected integer array key, got %f instead", lua_tonumber(L, -2)); } if (intkey < 1) { return lluau::error(L, "array key %d out of bounds", int(intkey)); } keys.push_back(LLSD::Integer(intkey)); break; } case LUA_TSTRING: // break out strings specially to report the value return lluau::error(L, "Cannot convert string array key '%s' to LLSD", lua_tostring(L, -2)); default: return lluau::error(L, "Cannot convert %s array key to LLSD", lua_typename(L, arraykeytype)); } // remove value, keep key for next iteration lua_pop(L, 1); } while (lua_next(L, index) != 0); popper.disarm(); // Table keys are all integers: are they reasonable integers? // Arbitrary max: may bite us, but more likely to protect us size_t array_max{ 10000 }; if (keys.size() > array_max) { return lluau::error(L, "Conversion from Lua to LLSD array limited to %d entries", int(array_max)); } // We know the smallest key is >= 1. Check the largest. We also // know the vector is NOT empty, else we wouldn't have gotten here. std::sort(keys.begin(), keys.end()); LLSD::Integer highkey = *keys.rbegin(); if ((highkey - LLSD::Integer(keys.size())) > 100) { // Looks like we've gone beyond intentional array gaps into // crazy key territory. return lluau::error(L, "Gaps in Lua table too large for conversion to LLSD array"); } // right away expand the result array to the size we'll need LLSD result{ LLSD::emptyArray() }; result[highkey - 1] = LLSD(); // Traverse the table again, and this time populate result array. lua_pushnil(L); // first key while (lua_next(L, index)) { // key at stack index -2, value at index -1 // We've already validated lua_tointegerx() for each key. auto key{ lua_tointeger(L, -2) }; // Don't forget to subtract 1 from Lua key for LLSD subscript! result[LLSD::Integer(key) - 1] = lua_tollsd(L, -1); // remove value, keep key for next iteration lua_pop(L, 1); } return result; } case LUA_TSTRING: { // First Lua key is a string: try to convert table to LLSD map LLSD result{ LLSD::emptyMap() }; do { auto mapkeytype{ lua_type(L, -2) }; if (mapkeytype != LUA_TSTRING) { return lluau::error(L, "Cannot convert %s map key to LLSD", lua_typename(L, mapkeytype)); } auto key{ lua_tostdstring(L, -2) }; result[key] = lua_tollsd(L, -1); // remove value, keep key for next iteration lua_pop(L, 1); } while (lua_next(L, index) != 0); popper.disarm(); return result; } default: // First Lua key isn't number or string: sorry return lluau::error(L, "Cannot convert %s table key to LLSD", lua_typename(L, firstkeytype)); } } default: // Other Lua entities (e.g. function, C function, light userdata, // thread, userdata) are not convertible to LLSD, indicating a coding // error in the caller. return lluau::error(L, "Cannot convert type %s to LLSD", luaL_typename(L, index)); } } // By analogy with existing lua_pushmumble() functions, push onto state L's // stack a Lua object corresponding to the passed LLSD object. void lua_pushllsd(lua_State* L, const LLSD& data) { // might need 2 slots for array or map luaL_checkstack(L, 2, nullptr); switch (data.type()) { case LLSD::TypeUndefined: lua_pushnil(L); break; case LLSD::TypeBoolean: lua_pushboolean(L, data.asBoolean()); break; case LLSD::TypeInteger: lua_pushinteger(L, data.asInteger()); break; case LLSD::TypeReal: lua_pushnumber(L, data.asReal()); break; case LLSD::TypeBinary: { auto binary{ data.asBinary() }; std::memcpy(lua_newuserdata(L, binary.size()), binary.data(), binary.size()); break; } case LLSD::TypeMap: { // push a new table with space for our non-array keys lua_createtable(L, 0, data.size()); for (const auto& pair: llsd::inMap(data)) { // push value -- so now table is at -2, value at -1 lua_pushllsd(L, pair.second); // pop value, assign to table[key] lua_setfield(L, -2, pair.first.c_str()); } break; } case LLSD::TypeArray: { // push a new table with space for array entries lua_createtable(L, data.size(), 0); lua_Integer key{ 0 }; for (const auto& item: llsd::inArray(data)) { // push new array value: table at -2, value at -1 lua_pushllsd(L, item); // pop value, assign table[key] = value lua_rawseti(L, -2, ++key); } break; } case LLSD::TypeString: case LLSD::TypeUUID: case LLSD::TypeDate: case LLSD::TypeURI: default: { lua_pushstdstring(L, data.asString()); break; } } } /***************************************************************************** * LuaState class *****************************************************************************/ LuaState::LuaState(script_finished_fn cb): mCallback(cb), mState(nullptr) { initLuaState(); } void LuaState::initLuaState() { if (mState) { lua_close(mState); } mState = luaL_newstate(); luaL_openlibs(mState); LuaFunction::init(mState); // Try to make print() write to our log. lua_register(mState, "print", LuaFunction::get("print_info")); // We don't want to have to prefix require(). lua_register(mState, "require", LuaFunction::get("require")); } LuaState::~LuaState() { // Did somebody call obtainListener() on this LuaState? // That is, is there a LuaListener key in its registry? auto listener{ getListener() }; if (listener) { // if we got a LuaListener instance, destroy it auto lptr{ listener.get() }; listener.reset(); delete lptr; } lua_close(mState); if (mCallback) { // mError potentially set by previous checkLua() call(s) mCallback(mError); } } bool LuaState::checkLua(const std::string& desc, int r) { if (r != LUA_OK) { mError = lua_tostring(mState, -1); lua_pop(mState, 1); LL_WARNS() << desc << ": " << mError << LL_ENDL; return false; } return true; } std::pair LuaState::expr(const std::string& desc, const std::string& text) { if (! checkLua(desc, lluau::dostring(mState, desc, text))) return { -1, mError }; // here we believe there was no error -- did the Lua fragment leave // anything on the stack? std::pair result{ lua_gettop(mState), {} }; if (result.first) { // aha, at least one entry on the stack! if (result.first == 1) { // Don't forget that lua_tollsd() can throw Lua errors. try { result.second = lua_tollsd(mState, 1); } catch (const std::exception& error) { // lua_tollsd() is designed to be called from a lua_function(), // that is, from a C++ function called by Lua. In case of error, // it throws a Lua error to be caught by the Lua runtime. expr() // is a peculiar use case in which our C++ code is calling // lua_tollsd() after return from the Lua runtime. We must catch // the exception thrown for a Lua error, else it will propagate // out to the main coroutine and terminate the viewer -- but since // we instead of the Lua runtime catch it, our lua_State retains // its internal error status. Any subsequent lua_pcall() calls // with this lua_State will report error regardless of whether the // chunk runs successfully. Get a new lua_State(). initLuaState(); return { -1, stringize(LLError::Log::classname(error), ": ", error.what()) }; } } else { // multiple entries on the stack try { for (int index = 1; index <= result.first; ++index) { result.second.append(lua_tollsd(mState, index)); } } catch (const std::exception& error) { // see above comments regarding lua_State's error status initLuaState(); return { -1, stringize(LLError::Log::classname(error), ": ", error.what()) }; } } } // pop everything lua_settop(mState, 0); // If we ran a script that loaded the fiber module, finish up with a call // to fiber.run(). That allows a script to kick off some number of fibers, // do some work on the main thread and then fall off the end of the script // without explicitly appending a call to fiber.run(). run() ensures the // rest of the fibers run to completion (or error). luaL_checkstack(mState, 4, nullptr); // Push _MODULES table on stack luaL_findtable(mState, LUA_REGISTRYINDEX, "_MODULES", 1); int index = lua_gettop(mState); bool found = false; // Did this chunk already require('fiber')? To find out, we must search // the _MODULES table, because our require() implementation uses the // pathname of the module file as the key. Push nil key to start. lua_pushnil(mState); while (lua_next(mState, index) != 0) { // key is at index -2, value at index -1 // "While traversing a table, do not call lua_tolstring directly on a // key, unless you know that the key is actually a string. Recall that // lua_tolstring changes the value at the given index; this confuses // the next call to lua_next." // https://www.lua.org/manual/5.1/manual.html#lua_next if (lua_type(mState, -2) == LUA_TSTRING && std::filesystem::path(lua_tostdstring(mState, -2)).stem() == "fiber") { found = true; break; } // pop value so key is at top for lua_next() lua_pop(mState, 1); } if (found) { // okay, index -1 is a table loaded from a file 'fiber.xxx' -- // does it have a function named 'run'? auto run_type{ lua_getfield(mState, -1, "run") }; if (run_type == LUA_TFUNCTION) { // there's a fiber.run() function sitting on the top of the stack // -- call it with no arguments, discarding anything it returns LL_DEBUGS("Lua") << "Calling fiber.run()" << LL_ENDL; if (! checkLua(desc, lua_pcall(mState, 0, 0, 0))) return { -1, mError }; } } // pop everything again lua_settop(mState, 0); return result; } LuaListener::ptr_t LuaState::getListener(lua_State* L) { // have to use one more stack slot luaL_checkstack(L, 1, nullptr); LuaListener::ptr_t listener; // Does this lua_State already have a LuaListener stored in the registry? auto keytype{ lua_getfield(L, LUA_REGISTRYINDEX, "event.listener") }; llassert(keytype == LUA_TNIL || keytype == LUA_TNUMBER); if (keytype == LUA_TNUMBER) { // We do already have a LuaListener. Retrieve it. int isint; listener = LuaListener::getInstance(lua_tointegerx(L, -1, &isint)); // Nobody should have destroyed this LuaListener instance! llassert(isint && listener); } // pop the int "event.listener" key lua_pop(L, 1); return listener; } LuaListener::ptr_t LuaState::obtainListener(lua_State* L) { auto listener{ getListener(L) }; if (! listener) { // have to use one more stack slot luaL_checkstack(L, 1, nullptr); // instantiate a new LuaListener, binding the L state -- but use a // no-op deleter: we do NOT want this ptr_t to manage the lifespan of // this new LuaListener! listener.reset(new LuaListener(L), [](LuaListener*){}); // set its key in the field where we'll look for it later lua_pushinteger(L, listener->getKey()); lua_setfield(L, LUA_REGISTRYINDEX, "event.listener"); } return listener; } /***************************************************************************** * LuaPopper class *****************************************************************************/ LuaPopper::~LuaPopper() { if (mCount) { lua_pop(mState, mCount); } } /***************************************************************************** * LuaFunction class *****************************************************************************/ LuaFunction::LuaFunction(const std::string_view& name, lua_CFunction function, const std::string_view& helptext) { const auto& [registry, lookup] = getState(); registry.emplace(name, Registry::mapped_type{ function, helptext }); lookup.emplace(function, name); } void LuaFunction::init(lua_State* L) { const auto& [registry, lookup] = getRState(); luaL_checkstack(L, 2, nullptr); // create LL table -- // it happens that we know exactly how many non-array members we want lua_createtable(L, 0, int(narrow(lookup.size()))); int idx = lua_gettop(L); for (const auto& [name, pair]: registry) { const auto& [funcptr, helptext] = pair; // store funcptr in LL table with saved name lua_pushcfunction(L, funcptr, name.c_str()); lua_setfield(L, idx, name.c_str()); } // store LL in new lua_State's globals lua_setglobal(L, "LL"); } lua_CFunction LuaFunction::get(const std::string& key) { // use find() instead of subscripting to avoid creating an entry for // unknown key const auto& [registry, lookup] = getState(); auto found{ registry.find(key) }; return (found == registry.end())? nullptr : found->second.first; } std::pair LuaFunction::getState() { // use function-local statics to ensure they're initialized static Registry registry; static Lookup lookup; return { registry, lookup }; } /***************************************************************************** * help() *****************************************************************************/ lua_function(help, "help(): list viewer's Lua functions\n" "help(function): show help string for specific function") { auto& luapump{ LLEventPumps::instance().obtain("lua output") }; const auto& [registry, lookup]{ LuaFunction::getRState() }; if (! lua_gettop(L)) { // no arguments passed: list all lua_functions for (const auto& [name, pair] : registry) { const auto& [fptr, helptext] = pair; luapump.post(helptext); } } else { // arguments passed: list each of the specified lua_functions for (int idx = 1, top = lua_gettop(L); idx <= top; ++idx) { std::string arg{ stringize("") }; if (lua_type(L, idx) == LUA_TSTRING) { arg = lua_tostdstring(L, idx); } else if (lua_type(L, idx) == LUA_TFUNCTION) { // Caller passed the actual function instead of its string // name. A Lua function is an anonymous callable object; it // has a name only by assigment. You can't ask Lua for a // function's name, which is why our constructor maintains a // reverse Lookup map. auto function{ lua_tocfunction(L, idx) }; if (auto found = lookup.find(function); found != lookup.end()) { // okay, pass found name to lookup below arg = found->second; } } if (auto found = registry.find(arg); found != registry.end()) { luapump.post(found->second.second); } else { luapump.post(arg + ": NOT FOUND"); } } // pop all arguments lua_settop(L, 0); } return 0; // void return } /***************************************************************************** * leaphelp() *****************************************************************************/ lua_function( leaphelp, "leaphelp(): list viewer's LEAP APIs\n" "leaphelp(api): show help for specific api string name") { LLSD request; int top{ lua_gettop(L) }; if (top) { request = llsd::map("op", "getAPI", "api", lua_tostdstring(L, 1)); } else { request = llsd::map("op", "getAPIs"); } // pop all args lua_settop(L, 0); auto& outpump{ LLEventPumps::instance().obtain("lua output") }; auto listener{ LuaState::obtainListener(L) }; LLEventStream replyPump("leaphelp", true); // ask the LuaListener's LeapListener and suspend calling coroutine until reply auto reply{ llcoro::postAndSuspend(request, listener->getCommandName(), replyPump, "reply") }; reply.erase("reqid"); if (auto error = reply["error"]; error.isString()) { outpump.post(error.asString()); return 0; } if (top) { // caller wants a specific API outpump.post(stringize(reply["name"].asString(), ":\n", reply["desc"].asString())); for (const auto& opmap : llsd::inArray(reply["ops"])) { std::ostringstream reqstr; auto req{ opmap["required"] }; if (req.isArray()) { const char* sep = " (requires "; for (const auto& [reqkey, reqval] : llsd::inMap(req)) { reqstr << sep << reqkey; sep = ", "; } reqstr << ")"; } outpump.post(stringize("---- ", reply["key"].asString(), " == '", opmap["name"].asString(), "'", reqstr.str(), ":\n", opmap["desc"].asString())); } } else { // caller wants a list of APIs for (const auto& [name, data] : llsd::inMap(reply)) { outpump.post(stringize("==== ", name, ":\n", data["desc"].asString())); } } return 0; // void return } /***************************************************************************** * lua_what *****************************************************************************/ std::ostream& operator<<(std::ostream& out, const lua_what& self) { switch (lua_type(self.L, self.index)) { case LUA_TNONE: // distinguish acceptable but non-valid index out << "none"; break; case LUA_TNIL: out << "nil"; break; case LUA_TBOOLEAN: { auto oldflags { out.flags() }; out << std::boolalpha << lua_toboolean(self.L, self.index); out.flags(oldflags); break; } case LUA_TNUMBER: out << lua_tonumber(self.L, self.index); break; case LUA_TSTRING: out << std::quoted(lua_tostdstring(self.L, self.index)); break; case LUA_TUSERDATA: { const S32 maxlen = 20; S32 binlen{ lua_rawlen(self.L, self.index) }; LLSD::Binary binary(std::min(maxlen, binlen)); std::memcpy(binary.data(), lua_touserdata(self.L, self.index), binary.size()); out << LL::hexdump(binary); if (binlen > maxlen) { out << "...(" << (binlen - maxlen) << " more)"; } break; } case LUA_TLIGHTUSERDATA: out << lua_touserdata(self.L, self.index); break; default: // anything else, don't bother trying to report value, just type out << lua_typename(self.L, lua_type(self.L, self.index)); break; } return out; } /***************************************************************************** * lua_stack *****************************************************************************/ std::ostream& operator<<(std::ostream& out, const lua_stack& self) { out << "stack: ["; const char* sep = ""; for (int index = 1; index <= lua_gettop(self.L); ++index) { out << sep << lua_what(self.L, index); sep = ", "; } out << ']'; return out; }