/** * @file lluuid.cpp * * $LicenseInfo:firstyear=2000&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #include "linden_common.h" // We can't use WIN32_LEAN_AND_MEAN here, needs lots of includes. #if LL_WINDOWS #include "llwin32headers.h" // ugh, this is ugly. We need to straighten out our linking for this library #pragma comment(lib, "IPHLPAPI.lib") #include #endif #include "llapp.h" #include "lldefs.h" #include "llerror.h" #include "lluuid.h" #include "llerror.h" #include "llrand.h" #include "llstring.h" #include "lltimer.h" #include "llthread.h" #include "llmutex.h" #include "llmd5.h" #include "hbxxh.h" const LLUUID LLUUID::null; const LLTransactionID LLTransactionID::tnull; // static LLMutex* LLUUID::mMutex = NULL; /* NOT DONE YET!!! static char BASE85_TABLE[] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '!', '#', '$', '%', '&', '(', ')', '*', '+', '-', ';', '[', '=', '>', '?', '@', '^', '_', '`', '{', '|', '}', '~', '\0' }; void encode( char * fiveChars, unsigned int word ) throw( ) { for( int ix = 0; ix < 5; ++ix ) { fiveChars[4-ix] = encodeTable[ word % 85]; word /= 85; } } To decode: unsigned int decode( char const * fiveChars ) throw( bad_input_data ) { unsigned int ret = 0; for( int ix = 0; ix < 5; ++ix ) { char * s = strchr( encodeTable, fiveChars[ ix ] ); if( s == 0 ) LLTHROW(bad_input_data()); ret = ret * 85 + (s-encodeTable); } return ret; } void LLUUID::toBase85(char* out) { U32* me = (U32*)&(mData[0]); for(S32 i = 0; i < 4; ++i) { char* o = &out[i*i]; for(S32 j = 0; j < 5; ++j) { o[4-j] = BASE85_TABLE[ me[i] % 85]; word /= 85; } } } unsigned int decode( char const * fiveChars ) throw( bad_input_data ) { unsigned int ret = 0; for( S32 ix = 0; ix < 5; ++ix ) { char * s = strchr( encodeTable, fiveChars[ ix ] ); ret = ret * 85 + (s-encodeTable); } return ret; } */ #define LL_USE_JANKY_RANDOM_NUMBER_GENERATOR 0 #if LL_USE_JANKY_RANDOM_NUMBER_GENERATOR /** * @brief a global for */ static U64 sJankyRandomSeed(LLUUID::getRandomSeed()); /** * @brief generate a random U32. */ U32 janky_fast_random_bytes() { sJankyRandomSeed = U64L(1664525) * sJankyRandomSeed + U64L(1013904223); return (U32)sJankyRandomSeed; } /** * @brief generate a random U32 from [0, val) */ U32 janky_fast_random_byes_range(U32 val) { sJankyRandomSeed = U64L(1664525) * sJankyRandomSeed + U64L(1013904223); return (U32)(sJankyRandomSeed) % val; } /** * @brief generate a random U32 from [0, val) */ U32 janky_fast_random_seeded_bytes(U32 seed, U32 val) { seed = U64L(1664525) * (U64)(seed)+U64L(1013904223); return (U32)(seed) % val; } #endif // Common to all UUID implementations void LLUUID::toString(std::string& out) const { out = llformat( "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x", (U8)(mData[0]), (U8)(mData[1]), (U8)(mData[2]), (U8)(mData[3]), (U8)(mData[4]), (U8)(mData[5]), (U8)(mData[6]), (U8)(mData[7]), (U8)(mData[8]), (U8)(mData[9]), (U8)(mData[10]), (U8)(mData[11]), (U8)(mData[12]), (U8)(mData[13]), (U8)(mData[14]), (U8)(mData[15])); } // *TODO: deprecate void LLUUID::toString(char* out) const { std::string buffer; toString(buffer); strcpy(out, buffer.c_str()); /* Flawfinder: ignore */ } void LLUUID::toCompressedString(std::string& out) const { char bytes[UUID_BYTES + 1]; memcpy(bytes, mData, UUID_BYTES); /* Flawfinder: ignore */ bytes[UUID_BYTES] = '\0'; out.assign(bytes, UUID_BYTES); } // *TODO: deprecate void LLUUID::toCompressedString(char* out) const { memcpy(out, mData, UUID_BYTES); /* Flawfinder: ignore */ out[UUID_BYTES] = '\0'; } std::string LLUUID::getString() const { return asString(); } std::string LLUUID::asString() const { std::string str; toString(str); return str; } bool LLUUID::set(const char* in_string, bool emit) { return set(ll_safe_string(in_string), emit); } bool LLUUID::set(const std::string& in_string, bool emit) { bool broken_format = false; // empty strings should make NULL uuid if (in_string.empty()) { setNull(); return true; } if (in_string.length() != (UUID_STR_LENGTH - 1)) /* Flawfinder: ignore */ { // I'm a moron. First implementation didn't have the right UUID format. // Shouldn't see any of these any more if (in_string.length() == (UUID_STR_LENGTH - 2)) /* Flawfinder: ignore */ { if (emit) { LL_WARNS() << "Warning! Using broken UUID string format" << LL_ENDL; } broken_format = true; } else { // Bad UUID string. Spam as INFO, as most cases we don't care. if (emit) { //don't spam the logs because a resident can't spell. LL_WARNS() << "Bad UUID string: " << in_string << LL_ENDL; } setNull(); return false; } } U8 cur_pos = 0; S32 i; for (i = 0; i < UUID_BYTES; i++) { if ((i == 4) || (i == 6) || (i == 8) || (i == 10)) { cur_pos++; if (broken_format && (i == 10)) { // Missing - in the broken format cur_pos--; } } mData[i] = 0; if ((in_string[cur_pos] >= '0') && (in_string[cur_pos] <= '9')) { mData[i] += (U8)(in_string[cur_pos] - '0'); } else if ((in_string[cur_pos] >= 'a') && (in_string[cur_pos] <= 'f')) { mData[i] += (U8)(10 + in_string[cur_pos] - 'a'); } else if ((in_string[cur_pos] >= 'A') && (in_string[cur_pos] <= 'F')) { mData[i] += (U8)(10 + in_string[cur_pos] - 'A'); } else { if (emit) { LL_WARNS() << "Invalid UUID string character" << LL_ENDL; } setNull(); return false; } mData[i] = mData[i] << 4; cur_pos++; if ((in_string[cur_pos] >= '0') && (in_string[cur_pos] <= '9')) { mData[i] += (U8)(in_string[cur_pos] - '0'); } else if ((in_string[cur_pos] >= 'a') && (in_string[cur_pos] <= 'f')) { mData[i] += (U8)(10 + in_string[cur_pos] - 'a'); } else if ((in_string[cur_pos] >= 'A') && (in_string[cur_pos] <= 'F')) { mData[i] += (U8)(10 + in_string[cur_pos] - 'A'); } else { if (emit) { LL_WARNS() << "Invalid UUID string character" << LL_ENDL; } setNull(); return false; } cur_pos++; } return true; } bool LLUUID::validate(const std::string& in_string) { bool broken_format = false; if (in_string.length() != (UUID_STR_LENGTH - 1)) /* Flawfinder: ignore */ { // I'm a moron. First implementation didn't have the right UUID format. if (in_string.length() == (UUID_STR_LENGTH - 2)) /* Flawfinder: ignore */ { broken_format = true; } else { return false; } } U8 cur_pos = 0; for (U32 i = 0; i < 16; i++) { if ((i == 4) || (i == 6) || (i == 8) || (i == 10)) { cur_pos++; if (broken_format && (i == 10)) { // Missing - in the broken format cur_pos--; } } if ((in_string[cur_pos] >= '0') && (in_string[cur_pos] <= '9')) { } else if ((in_string[cur_pos] >= 'a') && (in_string[cur_pos] <= 'f')) { } else if ((in_string[cur_pos] >= 'A') && (in_string[cur_pos] <= 'F')) { } else { return false; } cur_pos++; if ((in_string[cur_pos] >= '0') && (in_string[cur_pos] <= '9')) { } else if ((in_string[cur_pos] >= 'a') && (in_string[cur_pos] <= 'f')) { } else if ((in_string[cur_pos] >= 'A') && (in_string[cur_pos] <= 'F')) { } else { return false; } cur_pos++; } return true; } const LLUUID& LLUUID::operator^=(const LLUUID& rhs) { U32* me = (U32*)&(mData[0]); const U32* other = (U32*)&(rhs.mData[0]); for (S32 i = 0; i < 4; ++i) { me[i] = me[i] ^ other[i]; } return *this; } LLUUID LLUUID::operator^(const LLUUID& rhs) const { LLUUID id(*this); id ^= rhs; return id; } // WARNING: this algorithm SHALL NOT be changed. It is also used by the server // and plays a role in some assets validation (e.g. clothing items). Changing // it would cause invalid assets. void LLUUID::combine(const LLUUID& other, LLUUID& result) const { LLMD5 md5_uuid; md5_uuid.update((unsigned char*)mData, 16); md5_uuid.update((unsigned char*)other.mData, 16); md5_uuid.finalize(); md5_uuid.raw_digest(result.mData); } LLUUID LLUUID::combine(const LLUUID& other) const { LLUUID combination; combine(other, combination); return combination; } std::ostream& operator<<(std::ostream& s, const LLUUID& uuid) { std::string uuid_str; uuid.toString(uuid_str); s << uuid_str; return s; } std::istream& operator>>(std::istream& s, LLUUID& uuid) { U32 i; char uuid_str[UUID_STR_LENGTH]; /* Flawfinder: ignore */ for (i = 0; i < UUID_STR_LENGTH - 1; i++) { s >> uuid_str[i]; } uuid_str[i] = '\0'; uuid.set(std::string(uuid_str)); return s; } static void get_random_bytes(void* buf, int nbytes) { int i; char* cp = (char*)buf; // *NOTE: If we are not using the janky generator ll_rand() // generates at least 3 good bytes of data since it is 0 to // RAND_MAX. This could be made more efficient by copying all the // bytes. for (i = 0; i < nbytes; i++) #if LL_USE_JANKY_RANDOM_NUMBER_GENERATOR * cp++ = janky_fast_random_bytes() & 0xFF; #else * cp++ = ll_rand() & 0xFF; #endif return; } #if LL_WINDOWS typedef struct _ASTAT_ { ADAPTER_STATUS adapt; NAME_BUFFER NameBuff[30]; }ASTAT, * PASTAT; // static S32 LLUUID::getNodeID(unsigned char* node_id) { ASTAT Adapter; NCB Ncb; UCHAR uRetCode; LANA_ENUM lenum; int i; int retval = 0; memset(&Ncb, 0, sizeof(Ncb)); Ncb.ncb_command = NCBENUM; Ncb.ncb_buffer = (UCHAR*)&lenum; Ncb.ncb_length = sizeof(lenum); uRetCode = Netbios(&Ncb); for (i = 0; i < lenum.length; i++) { memset(&Ncb, 0, sizeof(Ncb)); Ncb.ncb_command = NCBRESET; Ncb.ncb_lana_num = lenum.lana[i]; uRetCode = Netbios(&Ncb); memset(&Ncb, 0, sizeof(Ncb)); Ncb.ncb_command = NCBASTAT; Ncb.ncb_lana_num = lenum.lana[i]; strcpy((char*)Ncb.ncb_callname, "* "); /* Flawfinder: ignore */ Ncb.ncb_buffer = (unsigned char*)&Adapter; Ncb.ncb_length = sizeof(Adapter); uRetCode = Netbios(&Ncb); if (uRetCode == 0) { memcpy(node_id, Adapter.adapt.adapter_address, 6); /* Flawfinder: ignore */ retval = 1; } } return retval; } #elif LL_DARWIN // macOS version of the UUID generation code... /* * Get an ethernet hardware address, if we can find it... */ #include #include #include #include #include #include #include #include #include #include // static S32 LLUUID::getNodeID(unsigned char* node_id) { int i; unsigned char* a = NULL; struct ifaddrs* ifap, * ifa; int rv; S32 result = 0; if ((rv = getifaddrs(&ifap)) == -1) { return -1; } if (ifap == NULL) { return -1; } for (ifa = ifap; ifa != NULL; ifa = ifa->ifa_next) { // printf("Interface %s, address family %d, ", ifa->ifa_name, ifa->ifa_addr->sa_family); for (i = 0; i < ifa->ifa_addr->sa_len; i++) { // printf("%02X ", (unsigned char)ifa->ifa_addr->sa_data[i]); } // printf("\n"); if (ifa->ifa_addr->sa_family == AF_LINK) { // This is a link-level address struct sockaddr_dl* lla = (struct sockaddr_dl*)ifa->ifa_addr; // printf("\tLink level address, type %02X\n", lla->sdl_type); if (lla->sdl_type == IFT_ETHER) { // Use the first ethernet MAC in the list. // For some reason, the macro LLADDR() defined in net/if_dl.h doesn't expand correctly. This is what it would do. a = (unsigned char*)&((lla)->sdl_data); a += (lla)->sdl_nlen; if (!a[0] && !a[1] && !a[2] && !a[3] && !a[4] && !a[5]) { continue; } if (node_id) { memcpy(node_id, a, 6); result = 1; } // We found one. break; } } } freeifaddrs(ifap); return result; } #else // Linux version of the UUID generation code... /* * Get the ethernet hardware address, if we can find it... */ #include #include #include #include #include #include #include #include #include #include #define HAVE_NETINET_IN_H #ifdef HAVE_NETINET_IN_H #include #if !LL_DARWIN #include #endif #endif // static S32 LLUUID::getNodeID(unsigned char* node_id) { int sd; struct ifreq ifr, * ifrp; struct ifconf ifc; char buf[1024]; int n, i; unsigned char* a; /* * BSD 4.4 defines the size of an ifreq to be * max(sizeof(ifreq), sizeof(ifreq.ifr_name)+ifreq.ifr_addr.sa_len * However, under earlier systems, sa_len isn't present, so the size is * just sizeof(struct ifreq) */ #ifdef HAVE_SA_LEN #ifndef max #define max(a,b) ((a) > (b) ? (a) : (b)) #endif #define ifreq_size(i) max(sizeof(struct ifreq),\ sizeof((i).ifr_name)+(i).ifr_addr.sa_len) #else #define ifreq_size(i) sizeof(struct ifreq) #endif /* HAVE_SA_LEN*/ sd = socket(AF_INET, SOCK_DGRAM, IPPROTO_IP); if (sd < 0) { return -1; } memset(buf, 0, sizeof(buf)); ifc.ifc_len = sizeof(buf); ifc.ifc_buf = buf; if (ioctl(sd, SIOCGIFCONF, (char*)&ifc) < 0) { close(sd); return -1; } n = ifc.ifc_len; for (i = 0; i < n; i += ifreq_size(*ifr)) { ifrp = (struct ifreq*)((char*)ifc.ifc_buf + i); strncpy(ifr.ifr_name, ifrp->ifr_name, IFNAMSIZ); /* Flawfinder: ignore */ #ifdef SIOCGIFHWADDR if (ioctl(sd, SIOCGIFHWADDR, &ifr) < 0) continue; a = (unsigned char*)&ifr.ifr_hwaddr.sa_data; #else #ifdef SIOCGENADDR if (ioctl(sd, SIOCGENADDR, &ifr) < 0) continue; a = (unsigned char*)ifr.ifr_enaddr; #else /* * XXX we don't have a way of getting the hardware * address */ close(sd); return 0; #endif /* SIOCGENADDR */ #endif /* SIOCGIFHWADDR */ if (!a[0] && !a[1] && !a[2] && !a[3] && !a[4] && !a[5]) continue; if (node_id) { memcpy(node_id, a, 6); /* Flawfinder: ignore */ close(sd); return 1; } } close(sd); return 0; } #endif S32 LLUUID::cmpTime(uuid_time_t* t1, uuid_time_t* t2) { // Compare two time values. if (t1->high < t2->high) return -1; if (t1->high > t2->high) return 1; if (t1->low < t2->low) return -1; if (t1->low > t2->low) return 1; return 0; } void LLUUID::getSystemTime(uuid_time_t* timestamp) { // Get system time with 100ns precision. Time is since Oct 15, 1582. #if LL_WINDOWS ULARGE_INTEGER time; GetSystemTimeAsFileTime((FILETIME*)&time); // NT keeps time in FILETIME format which is 100ns ticks since // Jan 1, 1601. UUIDs use time in 100ns ticks since Oct 15, 1582. // The difference is 17 Days in Oct + 30 (Nov) + 31 (Dec) // + 18 years and 5 leap days. time.QuadPart += (unsigned __int64)(1000 * 1000 * 10) // seconds * (unsigned __int64)(60 * 60 * 24) // days * (unsigned __int64)(17 + 30 + 31 + 365 * 18 + 5); // # of days timestamp->high = time.HighPart; timestamp->low = time.LowPart; #else struct timeval tp; gettimeofday(&tp, 0); // Offset between UUID formatted times and Unix formatted times. // UUID UTC base time is October 15, 1582. // Unix base time is January 1, 1970. U64 uuid_time = ((U64)tp.tv_sec * 10000000) + (tp.tv_usec * 10) + U64L(0x01B21DD213814000); timestamp->high = (U32)(uuid_time >> 32); timestamp->low = (U32)(uuid_time & 0xFFFFFFFF); #endif } void LLUUID::getCurrentTime(uuid_time_t* timestamp) { // Get current time as 60 bit 100ns ticks since whenever. // Compensate for the fact that real clock resolution is less // than 100ns. const U32 uuids_per_tick = 1024; static uuid_time_t time_last; static U32 uuids_this_tick; static bool init = false; if (!init) { getSystemTime(&time_last); uuids_this_tick = uuids_per_tick; init = true; mMutex = new LLMutex(); } uuid_time_t time_now = { 0,0 }; while (1) { getSystemTime(&time_now); // if clock reading changed since last UUID generated if (cmpTime(&time_last, &time_now)) { // reset count of uuid's generated with this clock reading uuids_this_tick = 0; break; } if (uuids_this_tick < uuids_per_tick) { uuids_this_tick++; break; } // going too fast for our clock; spin } time_last = time_now; if (uuids_this_tick != 0) { if (time_now.low & 0x80000000) { time_now.low += uuids_this_tick; if (!(time_now.low & 0x80000000)) time_now.high++; } else time_now.low += uuids_this_tick; } timestamp->high = time_now.high; timestamp->low = time_now.low; } void LLUUID::generate() { // Create a UUID. uuid_time_t timestamp; static unsigned char node_id[6]; /* Flawfinder: ignore */ static int has_init = 0; // Create a UUID. static uuid_time_t time_last = { 0,0 }; static U16 clock_seq = 0; #if LL_USE_JANKY_RANDOM_NUMBER_GENERATOR static U32 seed = 0L; // dummy seed. reset it below #endif if (!has_init) { has_init = 1; if (getNodeID(node_id) <= 0) { get_random_bytes(node_id, 6); /* * Set multicast bit, to prevent conflicts * with IEEE 802 addresses obtained from * network cards */ node_id[0] |= 0x80; } getCurrentTime(&time_last); #if LL_USE_JANKY_RANDOM_NUMBER_GENERATOR seed = time_last.low; #endif #if LL_USE_JANKY_RANDOM_NUMBER_GENERATOR clock_seq = (U16)janky_fast_random_seeded_bytes(seed, 65536); #else clock_seq = (U16)ll_rand(65536); #endif } // get current time getCurrentTime(×tamp); U16 our_clock_seq = clock_seq; // if clock hasn't changed or went backward, change clockseq if (cmpTime(×tamp, &time_last) != 1) { LLMutexLock lock(mMutex); clock_seq = (clock_seq + 1) & 0x3FFF; if (clock_seq == 0) clock_seq++; our_clock_seq = clock_seq; // Ensure we're using a different clock_seq value from previous time } time_last = timestamp; memcpy(mData + 10, node_id, 6); /* Flawfinder: ignore */ U32 tmp; tmp = timestamp.low; mData[3] = (unsigned char)tmp; tmp >>= 8; mData[2] = (unsigned char)tmp; tmp >>= 8; mData[1] = (unsigned char)tmp; tmp >>= 8; mData[0] = (unsigned char)tmp; tmp = (U16)timestamp.high; mData[5] = (unsigned char)tmp; tmp >>= 8; mData[4] = (unsigned char)tmp; tmp = (timestamp.high >> 16) | 0x1000; mData[7] = (unsigned char)tmp; tmp >>= 8; mData[6] = (unsigned char)tmp; tmp = our_clock_seq; mData[9] = (unsigned char)tmp; tmp >>= 8; mData[8] = (unsigned char)tmp; HBXXH128::digest(*this, (const void*)mData, 16); } void LLUUID::generate(const std::string& hash_string) { HBXXH128::digest(*this, hash_string); } U32 LLUUID::getRandomSeed() { static unsigned char seed[16]; /* Flawfinder: ignore */ getNodeID(&seed[0]); // Incorporate the pid into the seed to prevent // processes that start on the same host at the same // time from generating the same seed. pid_t pid = LLApp::getPid(); seed[6] = (unsigned char)(pid >> 8); seed[7] = (unsigned char)(pid); getSystemTime((uuid_time_t*)(&seed[8])); U64 seed64 = HBXXH64::digest((const void*)seed, 16); return U32(seed64) ^ U32(seed64 >> 32); } bool LLUUID::parseUUID(const std::string& buf, LLUUID* value) { if (buf.empty() || value == NULL) { return false; } std::string temp(buf); LLStringUtil::trim(temp); if (LLUUID::validate(temp)) { value->set(temp); return true; } return false; } //static LLUUID LLUUID::generateNewID(std::string hash_string) { LLUUID new_id; if (hash_string.empty()) { new_id.generate(); } else { new_id.generate(hash_string); } return new_id; } LLAssetID LLTransactionID::makeAssetID(const LLUUID& session) const { LLAssetID result; if (isNull()) { result.setNull(); } else { combine(session, result); } return result; } // Construct LLUUID::LLUUID() { setNull(); } // Faster than copying from memory void LLUUID::setNull() { U32* word = (U32*)mData; word[0] = 0; word[1] = 0; word[2] = 0; word[3] = 0; } // Compare bool LLUUID::operator==(const LLUUID& rhs) const { U32* tmp = (U32*)mData; U32* rhstmp = (U32*)rhs.mData; // Note: binary & to avoid branching return (tmp[0] == rhstmp[0]) & (tmp[1] == rhstmp[1]) & (tmp[2] == rhstmp[2]) & (tmp[3] == rhstmp[3]); } bool LLUUID::operator!=(const LLUUID& rhs) const { U32* tmp = (U32*)mData; U32* rhstmp = (U32*)rhs.mData; // Note: binary | to avoid branching return (tmp[0] != rhstmp[0]) | (tmp[1] != rhstmp[1]) | (tmp[2] != rhstmp[2]) | (tmp[3] != rhstmp[3]); } /* // JC: This is dangerous. It allows UUIDs to be cast automatically // to integers, among other things. Use isNull() or notNull(). LLUUID::operator bool() const { U32 *word = (U32 *)mData; return (word[0] | word[1] | word[2] | word[3]) > 0; } */ bool LLUUID::notNull() const { U32* word = (U32*)mData; return (word[0] | word[1] | word[2] | word[3]) > 0; } // Faster than == LLUUID::null because doesn't require // as much memory access. bool LLUUID::isNull() const { U32* word = (U32*)mData; // If all bits are zero, return !0 == TRUE return !(word[0] | word[1] | word[2] | word[3]); } LLUUID::LLUUID(const char* in_string) { if (!in_string || in_string[0] == 0) { setNull(); return; } set(in_string); } LLUUID::LLUUID(const std::string& in_string) { if (in_string.empty()) { setNull(); return; } set(in_string); } // IW: DON'T "optimize" these w/ U32s or you'll scoogie the sort order // IW: this will make me very sad bool LLUUID::operator<(const LLUUID& rhs) const { U32 i; for (i = 0; i < (UUID_BYTES - 1); i++) { if (mData[i] != rhs.mData[i]) { return (mData[i] < rhs.mData[i]); } } return (mData[UUID_BYTES - 1] < rhs.mData[UUID_BYTES - 1]); } bool LLUUID::operator>(const LLUUID& rhs) const { U32 i; for (i = 0; i < (UUID_BYTES - 1); i++) { if (mData[i] != rhs.mData[i]) { return (mData[i] > rhs.mData[i]); } } return (mData[UUID_BYTES - 1] > rhs.mData[UUID_BYTES - 1]); } U16 LLUUID::getCRC16() const { // A UUID is 16 bytes, or 8 shorts. U16* short_data = (U16*)mData; U16 out = 0; out += short_data[0]; out += short_data[1]; out += short_data[2]; out += short_data[3]; out += short_data[4]; out += short_data[5]; out += short_data[6]; out += short_data[7]; return out; } U32 LLUUID::getCRC32() const { U32* tmp = (U32*)mData; return tmp[0] + tmp[1] + tmp[2] + tmp[3]; }