/** * @file llunit.h * @brief Unit conversion classes * * $LicenseInfo:firstyear=2001&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2012, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #ifndef LL_UNITTYPE_H #define LL_UNITTYPE_H #include "stdtypes.h" #include "llpreprocessor.h" #include "llerror.h" //lightweight replacement of type traits for simple type equality check template struct LLIsSameType { static const bool value = false; }; template struct LLIsSameType { static const bool value = true; }; // workaround for decltype() not existing and typeof() not working inline in gcc 4.2 template struct LLResultTypeAdd { typedef LL_TYPEOF(S() + T()) type_t; }; template struct LLResultTypeSubtract { typedef LL_TYPEOF(S() - T()) type_t; }; template struct LLResultTypeMultiply { typedef LL_TYPEOF(S() * T()) type_t; }; template struct LLResultTypeDivide { typedef LL_TYPEOF(S() / T(1)) type_t; }; template struct LLResultTypePromote { typedef LL_TYPEOF((true) ? S() : T()) type_t; }; template struct LLUnit { typedef LLUnit self_t; typedef STORAGE_TYPE storage_t; // value initialization LL_FORCE_INLINE explicit LLUnit(storage_t value = storage_t()) : mValue(value) {} // unit initialization and conversion template LL_FORCE_INLINE LLUnit(LLUnit other) : mValue(convert(other).mValue) {} storage_t value() const { return mValue; } void value(storage_t value) { mValue = value; } template storage_t valueInUnits() { return LLUnit(*this).value(); } template void valueInUnits(storage_t value) { *this = LLUnit(value); } void operator += (self_t other) { mValue += convert(other).mValue; } void operator -= (self_t other) { mValue -= convert(other).mValue; } void operator *= (storage_t multiplicand) { mValue *= multiplicand; } void operator *= (self_t multiplicand) { // spurious use of dependent type to stop gcc from triggering the static assertion before instantiating the template LL_BAD_TEMPLATE_INSTANTIATION(STORAGE_TYPE, "Multiplication of unit types not supported."); } void operator /= (storage_t divisor) { mValue /= divisor; } void operator /= (self_t divisor) { // spurious use of dependent type to stop gcc from triggering the static assertion before instantiating the template LL_BAD_TEMPLATE_INSTANTIATION(STORAGE_TYPE, "Illegal in-place division of unit types."); } template LL_FORCE_INLINE static self_t convert(LLUnit v) { typedef typename LLResultTypePromote::type_t result_storage_t; LLUnit result; result_storage_t divisor = ll_convert_units(v, result); result.value(result.value() / divisor); return self_t(result.value()); } protected: storage_t mValue; }; template std::ostream& operator <<(std::ostream& s, const LLUnit& unit) { s << unit.value() << UNIT_TYPE::getUnitLabel(); return s; } template std::istream& operator >>(std::istream& s, LLUnit& unit) { STORAGE_TYPE val; s >> val; unit.value(val); return s; } template struct LLUnitImplicit : public LLUnit { typedef LLUnitImplicit self_t; typedef typename LLUnit::storage_t storage_t; typedef LLUnit base_t; LLUnitImplicit(storage_t value = storage_t()) : base_t(value) {} template LLUnitImplicit(LLUnit other) : base_t(other) {} // unlike LLUnit, LLUnitImplicit is *implicitly* convertable to a POD value (F32, S32, etc) // this allows for interoperability with legacy code operator storage_t() const { return base_t::value(); } using base_t::operator +=; void operator += (storage_t value) { base_t::mValue += value; } // this overload exists to explicitly catch use of another implicit unit // without ambiguity between conversion to storage_t vs conversion to base_t template void operator += (LLUnitImplicit other) { base_t::mValue += convert(other).value(); } using base_t::operator -=; void operator -= (storage_t value) { base_t::mValue -= value; } // this overload exists to explicitly catch use of another implicit unit // without ambiguity between conversion to storage_t vs conversion to base_t template void operator -= (LLUnitImplicit other) { base_t::mValue -= convert(other).value(); } }; template std::ostream& operator <<(std::ostream& s, const LLUnitImplicit& unit) { s << unit.value() << UNIT_TYPE::getUnitLabel(); return s; } template std::istream& operator >>(std::istream& s, LLUnitImplicit& unit) { STORAGE_TYPE val; s >> val; unit = val; return s; } template LL_FORCE_INLINE S2 ll_convert_units(LLUnit in, LLUnit& out) { S2 divisor(1); LL_STATIC_ASSERT((LLIsSameType::value || !LLIsSameType::value || !LLIsSameType::value), "conversion requires compatible units"); if (LLIsSameType::value) { // T1 and T2 same type, just assign out.value((S2)in.value()); } else if (T1::sLevel > T2::sLevel) { // reduce T1 LLUnit new_in; divisor *= (S2)ll_convert_units(in, new_in); divisor *= (S2)ll_convert_units(new_in, out); } else { // reduce T2 LLUnit new_out; divisor *= (S2)ll_convert_units(in, new_out); divisor *= (S2)ll_convert_units(new_out, out); } return divisor; } template struct LLStorageType { typedef T type_t; }; template struct LLStorageType > { typedef STORAGE_TYPE type_t; }; // all of these operators need to perform type promotion on the storage type of the units, so they // cannot be expressed as operations on identical types with implicit unit conversion // e.g. typeof(S32Bytes(x) + F32Megabytes(y)) <==> F32Bytes // // operator + // template LLUnit::type_t, UNIT_TYPE1> operator + (LLUnit first, LLUnit second) { LLUnit::type_t, UNIT_TYPE1> result(first); result += second; return result; } template LLUnit operator + (LLUnit first, UNITLESS second) { LL_BAD_TEMPLATE_INSTANTIATION(STORAGE_TYPE, "operator + requires compatible unit types"); return LLUnit(0); } template LLUnit operator + (UNITLESS first, LLUnit second) { LL_BAD_TEMPLATE_INSTANTIATION(STORAGE_TYPE, "operator + requires compatible unit types"); return LLUnit(0); } template LLUnitImplicit::type_t, UNIT_TYPE1> operator + (LLUnitImplicit first, LLUnitImplicit second) { LLUnitImplicit::type_t, UNIT_TYPE1> result(first); result += second; return result; } template LLUnitImplicit::type_t, UNIT_TYPE1> operator + (LLUnit first, LLUnitImplicit second) { LLUnitImplicit::type_t, UNIT_TYPE1> result(first); result += second; return result; } template LLUnitImplicit::type_t, UNIT_TYPE1> operator + (LLUnitImplicit first, LLUnit second) { LLUnitImplicit::type_t, UNIT_TYPE1> result(first); result += LLUnitImplicit(second); return result; } template LLUnitImplicit::type_t>::type_t, UNIT_TYPE> operator + (LLUnitImplicit first, UNITLESS_TYPE second) { LLUnitImplicit::type_t>::type_t, UNIT_TYPE> result(first); result += second; return result; } template LLUnitImplicit::type_t, STORAGE_TYPE>:: type_t, UNIT_TYPE> operator + (UNITLESS_TYPE first, LLUnitImplicit second) { LLUnitImplicit::type_t, STORAGE_TYPE>::type_t, UNIT_TYPE> result(first); result += second; return result; } // // operator - // template LLUnit::type_t, UNIT_TYPE1> operator - (LLUnit first, LLUnit second) { LLUnit::type_t, UNIT_TYPE1> result(first); result -= second; return result; } template LLUnit operator - (LLUnit first, UNITLESS second) { LL_BAD_TEMPLATE_INSTANTIATION(STORAGE_TYPE, "operator - requires compatible unit types"); return LLUnit(0); } template LLUnit operator - (UNITLESS first, LLUnit second) { LL_BAD_TEMPLATE_INSTANTIATION(STORAGE_TYPE, "operator - requires compatible unit types"); return LLUnit(0); } template LLUnitImplicit::type_t, UNIT_TYPE1> operator - (LLUnitImplicit first, LLUnitImplicit second) { LLUnitImplicit::type_t, UNIT_TYPE1> result(first); result -= second; return result; } template LLUnitImplicit::type_t, UNIT_TYPE1> operator - (LLUnit first, LLUnitImplicit second) { LLUnitImplicit::type_t, UNIT_TYPE1> result(first); result -= second; return result; } template LLUnitImplicit::type_t, UNIT_TYPE1> operator - (LLUnitImplicit first, LLUnit second) { LLUnitImplicit::type_t, UNIT_TYPE1> result(first); result -= LLUnitImplicit(second); return result; } template LLUnitImplicit::type_t>::type_t, UNIT_TYPE> operator - (LLUnitImplicit first, UNITLESS_TYPE second) { LLUnitImplicit::type_t>::type_t, UNIT_TYPE> result(first); result -= second; return result; } template LLUnitImplicit::type_t, STORAGE_TYPE>::type_t, UNIT_TYPE> operator - (UNITLESS_TYPE first, LLUnitImplicit second) { LLUnitImplicit::type_t, STORAGE_TYPE>::type_t, UNIT_TYPE> result(first); result -= second; return result; } // // operator * // template LLUnit operator * (LLUnit, LLUnit) { // spurious use of dependent type to stop gcc from triggering the static assertion before instantiating the template LL_BAD_TEMPLATE_INSTANTIATION(STORAGE_TYPE1, "multiplication of unit types results in new unit type - not supported."); return LLUnit(); } template LLUnit::type_t>::type_t, UNIT_TYPE> operator * (LLUnit first, UNITLESS_TYPE second) { return LLUnit::type_t>::type_t, UNIT_TYPE>(first.value() * second); } template LLUnit::type_t, STORAGE_TYPE>::type_t, UNIT_TYPE> operator * (UNITLESS_TYPE first, LLUnit second) { return LLUnit::type_t, STORAGE_TYPE>::type_t, UNIT_TYPE>(first * second.value()); } template LLUnitImplicit operator * (LLUnitImplicit, LLUnitImplicit) { // spurious use of dependent type to stop gcc from triggering the static assertion before instantiating the template LL_BAD_TEMPLATE_INSTANTIATION(STORAGE_TYPE1, "multiplication of unit types results in new unit type - not supported."); return LLUnitImplicit(); } template LLUnitImplicit::type_t>::type_t, UNIT_TYPE> operator * (LLUnitImplicit first, UNITLESS_TYPE second) { return LLUnitImplicit::type_t, UNIT_TYPE>(first.value() * second); } template LLUnitImplicit::type_t, STORAGE_TYPE>::type_t, UNIT_TYPE> operator * (UNITLESS_TYPE first, LLUnitImplicit second) { return LLUnitImplicit::type_t, STORAGE_TYPE>::type_t, UNIT_TYPE>(first * second.value()); } // // operator / // template LLUnit::type_t>::type_t, UNIT_TYPE> operator / (LLUnit first, UNITLESS_TYPE second) { return LLUnit::type_t>::type_t, UNIT_TYPE>(first.value() / second); } template typename LLResultTypeDivide::type_t operator / (LLUnit first, LLUnit second) { return first.value() / first.convert(second).value(); } template LLUnitImplicit::type_t>::type_t, UNIT_TYPE> operator / (LLUnitImplicit first, UNITLESS_TYPE second) { return LLUnitImplicit::type_t>::type_t, UNIT_TYPE>(first.value() / second); } template typename LLResultTypeDivide::type_t operator / (LLUnitImplicit first, LLUnitImplicit second) { return (typename LLResultTypeDivide::type_t)(first.value() / first.convert(second).value()); } template typename LLResultTypeDivide::type_t operator / (LLUnit first, LLUnitImplicit second) { return (typename LLResultTypeDivide::type_t)(first.value() / first.convert(second).value()); } template typename LLResultTypeDivide::type_t operator / (LLUnitImplicit first, LLUnit second) { return (typename LLResultTypeDivide::type_t)(first.value() / first.convert(second).value()); } // // comparison operators // #define LL_UNIT_DECLARE_COMPARISON_OPERATOR(op) \ template \ bool operator op (LLUnitImplicit first, LLUnitImplicit second) \ { \ return first.value() op first.convert(second).value(); \ } \ \ template \ bool operator op (LLUnitImplicit first, UNITLESS_TYPE second) \ { \ return first.value() op second; \ } \ \ template \ bool operator op (UNITLESS_TYPE first, LLUnitImplicit second) \ { \ return first op second.value(); \ } \ \ template \ bool operator op (LLUnit first, LLUnit second) \ { \ return first.value() op first.convert(second).value(); \ } \ \ template \ bool operator op (LLUnit first, UNITLESS_TYPE second) \ { \ LL_BAD_TEMPLATE_INSTANTIATION(UNITLESS_TYPE, "operator " #op " requires compatible unit types"); \ return false; \ } \ \ template \ bool operator op (UNITLESS_TYPE first, LLUnit second) \ { \ LL_BAD_TEMPLATE_INSTANTIATION(UNITLESS_TYPE, "operator " #op " requires compatible unit types"); \ return false; \ } \ \ template \ bool operator op (LLUnit first, LLUnitImplicit second) \ { \ return first.value() op first.convert(second).value(); \ } \ \ template \ bool operator op (LLUnitImplicit first, LLUnit second) \ { \ return first.value() op first.convert(second).value(); \ } LL_UNIT_DECLARE_COMPARISON_OPERATOR(<); LL_UNIT_DECLARE_COMPARISON_OPERATOR(<=); LL_UNIT_DECLARE_COMPARISON_OPERATOR(>); LL_UNIT_DECLARE_COMPARISON_OPERATOR(>=); LL_UNIT_DECLARE_COMPARISON_OPERATOR(==); LL_UNIT_DECLARE_COMPARISON_OPERATOR(!=); template struct LLGetUnitLabel { static const char* getUnitLabel() { return ""; } }; template struct LLGetUnitLabel > { static const char* getUnitLabel() { return T::getUnitLabel(); } }; template struct LLUnitLinearOps { typedef LLUnitLinearOps self_t; LLUnitLinearOps(T val) : mValue(val), mDivisor(1) {} template self_t operator * (OTHER_T other) { return mValue * other; } template self_t operator / (OTHER_T other) { mDivisor *= other; return *this; } template self_t operator + (OTHER_T other) { mValue /= mDivisor; mValue += other; return *this; } template self_t operator - (OTHER_T other) { mValue /= mDivisor; mValue -= other; return *this; } T mValue; T mDivisor; }; template struct LLUnitInverseLinearOps { typedef LLUnitInverseLinearOps self_t; LLUnitInverseLinearOps(T val) : mValue(val), mDivisor(1) {} template self_t operator * (OTHER_T other) { mDivisor *= other; return *this; } template self_t operator / (OTHER_T other) { mValue *= other; return *this; } template self_t operator + (OTHER_T other) { mValue /= mDivisor; mValue -= other; return *this; } template self_t operator - (OTHER_T other) { mValue /= mDivisor; mValue += other; return *this; } T mValue; T mDivisor; }; #define LL_DECLARE_BASE_UNIT(base_unit_name, unit_label) \ struct base_unit_name \ { \ static const int sLevel = 0; \ typedef base_unit_name base_unit_t; \ static const char* getUnitLabel() { return unit_label; } \ template \ static LLUnit fromValue(T value) { return LLUnit(value); } \ template \ static LLUnit fromValue(LLUnit value) \ { return LLUnit(value); } \ } #define LL_DECLARE_DERIVED_UNIT(unit_name, unit_label, base_unit_name, conversion_operation) \ struct unit_name \ { \ static const int sLevel = base_unit_name::sLevel + 1; \ typedef base_unit_name base_unit_t; \ static const char* getUnitLabel() { return unit_label; } \ template \ static LLUnit fromValue(T value) { return LLUnit(value); } \ template \ static LLUnit fromValue(LLUnit value) \ { return LLUnit(value); } \ }; \ \ template \ LL_FORCE_INLINE S2 ll_convert_units(LLUnit in, LLUnit& out) \ { \ typedef typename LLResultTypePromote::type_t result_storage_t; \ LLUnitInverseLinearOps op = \ LLUnitInverseLinearOps(in.value()) conversion_operation; \ out = LLUnit((S2)op.mValue); \ return op.mDivisor; \ } \ \ template \ LL_FORCE_INLINE S2 ll_convert_units(LLUnit in, LLUnit& out) \ { \ typedef typename LLResultTypePromote::type_t result_storage_t; \ LLUnitLinearOps op = \ LLUnitLinearOps(in.value()) conversion_operation; \ out = LLUnit((S2)op.mValue); \ return op.mDivisor; \ } #define LL_DECLARE_UNIT_TYPEDEFS(ns, unit_name) \ typedef LLUnit F32##unit_name; \ typedef LLUnitImplicit F32##unit_name##Implicit;\ typedef LLUnit F64##unit_name; \ typedef LLUnitImplicit F64##unit_name##Implicit;\ typedef LLUnit S32##unit_name; \ typedef LLUnitImplicit S32##unit_name##Implicit;\ typedef LLUnit S64##unit_name; \ typedef LLUnitImplicit S64##unit_name##Implicit;\ typedef LLUnit U32##unit_name; \ typedef LLUnitImplicit U32##unit_name##Implicit;\ typedef LLUnit U64##unit_name; \ typedef LLUnitImplicit U64##unit_name##Implicit #endif //LL_UNITTYPE_H