/** * @file lltraceaccumulators.h * @brief Storage for accumulating statistics * * $LicenseInfo:firstyear=2001&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2012, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #ifndef LL_LLTRACEACCUMULATORS_H #define LL_LLTRACEACCUMULATORS_H #include "stdtypes.h" #include "llpreprocessor.h" #include "llunit.h" #include "lltimer.h" #include "llrefcount.h" #include "llthreadlocalstorage.h" #include namespace LLTrace { template class AccumulatorBuffer : public LLRefCount { typedef AccumulatorBuffer self_t; static const U32 DEFAULT_ACCUMULATOR_BUFFER_SIZE = 64; private: struct StaticAllocationMarker { }; AccumulatorBuffer(StaticAllocationMarker m) : mStorageSize(0), mStorage(NULL) {} public: AccumulatorBuffer(const AccumulatorBuffer& other = *getDefaultBuffer()) : mStorageSize(0), mStorage(NULL) { resize(other.mStorageSize); for (S32 i = 0; i < sNextStorageSlot; i++) { mStorage[i] = other.mStorage[i]; } } ~AccumulatorBuffer() { if (isPrimary()) { LLThreadLocalSingletonPointer::setInstance(NULL); } delete[] mStorage; } LL_FORCE_INLINE ACCUMULATOR& operator[](size_t index) { return mStorage[index]; } LL_FORCE_INLINE const ACCUMULATOR& operator[](size_t index) const { return mStorage[index]; } void addSamples(const AccumulatorBuffer& other, bool append = true) { llassert(mStorageSize >= sNextStorageSlot && other.mStorageSize > sNextStorageSlot); for (size_t i = 0; i < sNextStorageSlot; i++) { mStorage[i].addSamples(other.mStorage[i], append); } } void copyFrom(const AccumulatorBuffer& other) { llassert(mStorageSize >= sNextStorageSlot && other.mStorageSize > sNextStorageSlot); for (size_t i = 0; i < sNextStorageSlot; i++) { mStorage[i] = other.mStorage[i]; } } void reset(const AccumulatorBuffer* other = NULL) { llassert(mStorageSize >= sNextStorageSlot); for (size_t i = 0; i < sNextStorageSlot; i++) { mStorage[i].reset(other ? &other->mStorage[i] : NULL); } } void sync(LLUnitImplicit time_stamp) { llassert(mStorageSize >= sNextStorageSlot); for (size_t i = 0; i < sNextStorageSlot; i++) { mStorage[i].sync(time_stamp); } } void makePrimary() { LLThreadLocalSingletonPointer::setInstance(mStorage); } bool isPrimary() const { return LLThreadLocalSingletonPointer::getInstance() == mStorage; } static void clearPrimary() { LLThreadLocalSingletonPointer::setInstance(NULL); } LL_FORCE_INLINE static ACCUMULATOR* getPrimaryStorage() { ACCUMULATOR* accumulator = LLThreadLocalSingletonPointer::getInstance(); return accumulator ? accumulator : getDefaultBuffer()->mStorage; } // NOTE: this is not thread-safe. We assume that slots are reserved in the main thread before any child threads are spawned size_t reserveSlot() { size_t next_slot = sNextStorageSlot++; if (next_slot >= mStorageSize) { resize(mStorageSize + (mStorageSize >> 2)); } llassert(mStorage && next_slot < mStorageSize); return next_slot; } void resize(size_t new_size) { if (new_size <= mStorageSize) return; ACCUMULATOR* old_storage = mStorage; mStorage = new ACCUMULATOR[new_size]; if (old_storage) { for (S32 i = 0; i < mStorageSize; i++) { mStorage[i] = old_storage[i]; } } mStorageSize = new_size; delete[] old_storage; self_t* default_buffer = getDefaultBuffer(); if (this != default_buffer && new_size > default_buffer->size()) { //NB: this is not thread safe, but we assume that all resizing occurs during static initialization default_buffer->resize(new_size); } } size_t size() const { return getNumIndices(); } static size_t getNumIndices() { return sNextStorageSlot; } static self_t* getDefaultBuffer() { static bool sInitialized = false; if (!sInitialized) { // this buffer is allowed to leak so that trace calls from global destructors have somewhere to put their data // so as not to trigger an access violation sDefaultBuffer = new AccumulatorBuffer(StaticAllocationMarker()); sInitialized = true; sDefaultBuffer->resize(DEFAULT_ACCUMULATOR_BUFFER_SIZE); } return sDefaultBuffer; } private: ACCUMULATOR* mStorage; size_t mStorageSize; static size_t sNextStorageSlot; static self_t* sDefaultBuffer; }; template size_t AccumulatorBuffer::sNextStorageSlot = 0; template AccumulatorBuffer* AccumulatorBuffer::sDefaultBuffer = NULL; class EventAccumulator { public: typedef F64 value_t; typedef F64 mean_t; EventAccumulator() : mSum(0), mMin((std::numeric_limits::max)()), mMax((std::numeric_limits::min)()), mMean(0), mVarianceSum(0), mNumSamples(0), mLastValue(0) {} void record(F64 value) { mNumSamples++; mSum += value; // NOTE: both conditions will hold on first pass through if (value < mMin) { mMin = value; } if (value > mMax) { mMax = value; } F64 old_mean = mMean; mMean += (value - old_mean) / (F64)mNumSamples; mVarianceSum += (value - old_mean) * (value - mMean); mLastValue = value; } void addSamples(const EventAccumulator& other, bool append) { if (other.mNumSamples) { mSum += other.mSum; // NOTE: both conditions will hold first time through if (other.mMin < mMin) { mMin = other.mMin; } if (other.mMax > mMax) { mMax = other.mMax; } // combine variance (and hence standard deviation) of 2 different sized sample groups using // the following formula: http://www.mrc-bsu.cam.ac.uk/cochrane/handbook/chapter_7/7_7_3_8_combining_groups.htm F64 n_1 = (F64)mNumSamples, n_2 = (F64)other.mNumSamples; F64 m_1 = mMean, m_2 = other.mMean; F64 v_1 = mVarianceSum / mNumSamples, v_2 = other.mVarianceSum / other.mNumSamples; if (n_1 == 0) { mVarianceSum = other.mVarianceSum; } else if (n_2 == 0) { // don't touch variance // mVarianceSum = mVarianceSum; } else { mVarianceSum = (F64)mNumSamples * ((((n_1 - 1.f) * v_1) + ((n_2 - 1.f) * v_2) + (((n_1 * n_2) / (n_1 + n_2)) * ((m_1 * m_1) + (m_2 * m_2) - (2.f * m_1 * m_2)))) / (n_1 + n_2 - 1.f)); } F64 weight = (F64)mNumSamples / (F64)(mNumSamples + other.mNumSamples); mNumSamples += other.mNumSamples; mMean = mMean * weight + other.mMean * (1.f - weight); if (append) mLastValue = other.mLastValue; } } void reset(const EventAccumulator* other) { mNumSamples = 0; mSum = 0; mMin = std::numeric_limits::max(); mMax = std::numeric_limits::min(); mMean = 0; mVarianceSum = 0; mLastValue = other ? other->mLastValue : 0; } void sync(LLUnitImplicit) {} F64 getSum() const { return mSum; } F64 getMin() const { return mMin; } F64 getMax() const { return mMax; } F64 getLastValue() const { return mLastValue; } F64 getMean() const { return mMean; } F64 getStandardDeviation() const { return sqrtf(mVarianceSum / mNumSamples); } U32 getSampleCount() const { return mNumSamples; } private: F64 mSum, mMin, mMax, mLastValue; F64 mMean, mVarianceSum; U32 mNumSamples; }; class SampleAccumulator { public: typedef F64 value_t; typedef F64 mean_t; SampleAccumulator() : mSum(0), mMin((std::numeric_limits::max)()), mMax((std::numeric_limits::min)()), mMean(0), mVarianceSum(0), mLastSampleTimeStamp(LLTimer::getTotalSeconds()), mTotalSamplingTime(0), mNumSamples(0), mLastValue(0), mHasValue(false) {} void sample(F64 value) { LLUnitImplicit time_stamp = LLTimer::getTotalSeconds(); LLUnitImplicit delta_time = time_stamp - mLastSampleTimeStamp; mLastSampleTimeStamp = time_stamp; if (mHasValue) { mTotalSamplingTime += delta_time; mSum += mLastValue * delta_time; // NOTE: both conditions will hold first time through if (value < mMin) { mMin = value; } if (value > mMax) { mMax = value; } F64 old_mean = mMean; mMean += (delta_time / mTotalSamplingTime) * (mLastValue - old_mean); mVarianceSum += delta_time * (mLastValue - old_mean) * (mLastValue - mMean); } mLastValue = value; mNumSamples++; mHasValue = true; } void addSamples(const SampleAccumulator& other, bool append) { if (other.mTotalSamplingTime) { mSum += other.mSum; // NOTE: both conditions will hold first time through if (other.mMin < mMin) { mMin = other.mMin; } if (other.mMax > mMax) { mMax = other.mMax; } // combine variance (and hence standard deviation) of 2 different sized sample groups using // the following formula: http://www.mrc-bsu.cam.ac.uk/cochrane/handbook/chapter_7/7_7_3_8_combining_groups.htm F64 n_1 = mTotalSamplingTime, n_2 = other.mTotalSamplingTime; F64 m_1 = mMean, m_2 = other.mMean; F64 v_1 = mVarianceSum / mTotalSamplingTime, v_2 = other.mVarianceSum / other.mTotalSamplingTime; if (n_1 == 0) { mVarianceSum = other.mVarianceSum; } else if (n_2 == 0) { // variance is unchanged // mVarianceSum = mVarianceSum; } else { mVarianceSum = mTotalSamplingTime * ((((n_1 - 1.f) * v_1) + ((n_2 - 1.f) * v_2) + (((n_1 * n_2) / (n_1 + n_2)) * ((m_1 * m_1) + (m_2 * m_2) - (2.f * m_1 * m_2)))) / (n_1 + n_2 - 1.f)); } llassert(other.mTotalSamplingTime > 0); F64 weight = mTotalSamplingTime / (mTotalSamplingTime + other.mTotalSamplingTime); mNumSamples += other.mNumSamples; mTotalSamplingTime += other.mTotalSamplingTime; mMean = (mMean * weight) + (other.mMean * (1.0 - weight)); if (append) { mLastValue = other.mLastValue; mLastSampleTimeStamp = other.mLastSampleTimeStamp; mHasValue |= other.mHasValue; } } } void reset(const SampleAccumulator* other) { mNumSamples = 0; mSum = 0; mMin = std::numeric_limits::max(); mMax = std::numeric_limits::min(); mMean = other ? other->mLastValue : 0; mVarianceSum = 0; mLastSampleTimeStamp = LLTimer::getTotalSeconds(); mTotalSamplingTime = 0; mLastValue = other ? other->mLastValue : 0; mHasValue = other ? other->mHasValue : false; } void sync(LLUnitImplicit time_stamp) { LLUnitImplicit delta_time = time_stamp - mLastSampleTimeStamp; if (mHasValue) { mSum += mLastValue * delta_time; mTotalSamplingTime += delta_time; } mLastSampleTimeStamp = time_stamp; } F64 getSum() const { return mSum; } F64 getMin() const { return mMin; } F64 getMax() const { return mMax; } F64 getLastValue() const { return mLastValue; } F64 getMean() const { return mMean; } F64 getStandardDeviation() const { return sqrtf(mVarianceSum / mTotalSamplingTime); } U32 getSampleCount() const { return mNumSamples; } private: F64 mSum, mMin, mMax, mLastValue; bool mHasValue; F64 mMean, mVarianceSum; LLUnitImplicit mLastSampleTimeStamp, mTotalSamplingTime; U32 mNumSamples; }; class CountAccumulator { public: typedef F64 value_t; typedef F64 mean_t; CountAccumulator() : mSum(0), mNumSamples(0) {} void add(F64 value) { mNumSamples++; mSum += value; } void addSamples(const CountAccumulator& other, bool /*append*/) { mSum += other.mSum; mNumSamples += other.mNumSamples; } void reset(const CountAccumulator* other) { mNumSamples = 0; mSum = 0; } void sync(LLUnitImplicit) {} F64 getSum() const { return mSum; } U32 getSampleCount() const { return mNumSamples; } private: F64 mSum; U32 mNumSamples; }; class TimeBlockAccumulator { public: typedef LLUnit value_t; typedef LLUnit mean_t; typedef TimeBlockAccumulator self_t; // fake classes that allows us to view different facets of underlying statistic struct CallCountFacet { typedef U32 value_t; typedef F32 mean_t; }; struct SelfTimeFacet { typedef LLUnit value_t; typedef LLUnit mean_t; }; TimeBlockAccumulator(); void addSamples(const self_t& other, bool /*append*/); void reset(const self_t* other); void sync(LLUnitImplicit) {} // // members // U64 mStartTotalTimeCounter, mTotalTimeCounter, mSelfTimeCounter; U32 mCalls; class TimeBlock* mParent; // last acknowledged parent of this time block class TimeBlock* mLastCaller; // used to bootstrap tree construction U16 mActiveCount; // number of timers with this ID active on stack bool mMoveUpTree; // needs to be moved up the tree of timers at the end of frame }; class TimeBlock; class TimeBlockTreeNode { public: TimeBlockTreeNode(); void setParent(TimeBlock* parent); TimeBlock* getParent() { return mParent; } TimeBlock* mBlock; TimeBlock* mParent; std::vector mChildren; bool mCollapsed; bool mNeedsSorting; }; struct BlockTimerStackRecord { class BlockTimer* mActiveTimer; class TimeBlock* mTimeBlock; U64 mChildTime; }; struct MemStatAccumulator { typedef MemStatAccumulator self_t; // fake classes that allows us to view different facets of underlying statistic struct AllocationCountFacet { typedef U32 value_t; typedef F32 mean_t; }; struct DeallocationCountFacet { typedef U32 value_t; typedef F32 mean_t; }; struct ChildMemFacet { typedef LLUnit value_t; typedef LLUnit mean_t; }; MemStatAccumulator() : mAllocatedCount(0), mDeallocatedCount(0) {} void addSamples(const MemStatAccumulator& other, bool append) { mSize.addSamples(other.mSize, append); mChildSize.addSamples(other.mChildSize, append); mAllocatedCount += other.mAllocatedCount; mDeallocatedCount += other.mDeallocatedCount; } void reset(const MemStatAccumulator* other) { mSize.reset(other ? &other->mSize : NULL); mChildSize.reset(other ? &other->mChildSize : NULL); mAllocatedCount = 0; mDeallocatedCount = 0; } void sync(LLUnitImplicit time_stamp) { mSize.sync(time_stamp); mChildSize.sync(time_stamp); } SampleAccumulator mSize, mChildSize; int mAllocatedCount, mDeallocatedCount; }; struct AccumulatorBufferGroup : public LLRefCount { AccumulatorBufferGroup(); void handOffTo(AccumulatorBufferGroup& other); void makePrimary(); bool isPrimary() const; static void clearPrimary(); void append(const AccumulatorBufferGroup& other); void merge(const AccumulatorBufferGroup& other); void reset(AccumulatorBufferGroup* other = NULL); void sync(); AccumulatorBuffer mCounts; AccumulatorBuffer mSamples; AccumulatorBuffer mEvents; AccumulatorBuffer mStackTimers; AccumulatorBuffer mMemStats; }; } #endif // LL_LLTRACEACCUMULATORS_H