/** * @file lltrace.h * @brief Runtime statistics accumulation. * * $LicenseInfo:firstyear=2001&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2012, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #ifndef LL_LLTRACE_H #define LL_LLTRACE_H #include "stdtypes.h" #include "llpreprocessor.h" #include "llmemory.h" #include "llrefcount.h" #include "lltraceaccumulators.h" #include "llthreadlocalstorage.h" #include "lltimer.h" #include #define LL_RECORD_BLOCK_TIME(block_timer) LLTrace::TimeBlock::Recorder LL_GLUE_TOKENS(block_time_recorder, __COUNTER__)(block_timer); namespace LLTrace { class Recording; template T storage_value(T val) { return val; } template STORAGE_TYPE storage_value(LLUnit val) { return val.value(); } template STORAGE_TYPE storage_value(LLUnitImplicit val) { return val.value(); } class TraceBase { public: TraceBase(const char* name, const char* description); virtual ~TraceBase() {}; virtual const char* getUnitLabel() const; const std::string& getName() const { return mName; } const std::string& getDescription() const { return mDescription; } protected: const std::string mName; const std::string mDescription; }; template class TraceType : public TraceBase, public LLInstanceTracker, std::string> { public: TraceType(const char* name, const char* description = NULL) : LLInstanceTracker, std::string>(name), TraceBase(name, description), mAccumulatorIndex(AccumulatorBuffer::getDefaultBuffer()->reserveSlot()) {} LL_FORCE_INLINE ACCUMULATOR* getPrimaryAccumulator() const { ACCUMULATOR* accumulator_storage = AccumulatorBuffer::getPrimaryStorage(); return &accumulator_storage[mAccumulatorIndex]; } size_t getIndex() const { return mAccumulatorIndex; } static size_t getNumIndices() { return AccumulatorBuffer::getNumIndices(); } private: const size_t mAccumulatorIndex; }; template<> class TraceType : public TraceType { public: TraceType(const char* name, const char* description = "") : TraceType(name, description) {} }; template<> class TraceType : public TraceType { public: TraceType(const char* name, const char* description = "") : TraceType(name, description) {} }; template class EventStatHandle : public TraceType { public: typedef F64 storage_t; typedef TraceType trace_t; typedef EventStatHandle self_t; EventStatHandle(const char* name, const char* description = NULL) : trace_t(name, description) {} /*virtual*/ const char* getUnitLabel() const { return LLGetUnitLabel::getUnitLabel(); } }; template void record(EventStatHandle& measurement, VALUE_T value) { T converted_value(value); measurement.getPrimaryAccumulator()->record(storage_value(converted_value)); } template class SampleStatHandle : public TraceType { public: typedef F64 storage_t; typedef TraceType trace_t; typedef SampleStatHandle self_t; SampleStatHandle(const char* name, const char* description = NULL) : trace_t(name, description) {} /*virtual*/ const char* getUnitLabel() const { return LLGetUnitLabel::getUnitLabel(); } }; template void sample(SampleStatHandle& measurement, VALUE_T value) { T converted_value(value); measurement.getPrimaryAccumulator()->sample(storage_value(converted_value)); } template class CountStatHandle : public TraceType { public: typedef F64 storage_t; typedef TraceType trace_t; typedef CountStatHandle self_t; CountStatHandle(const char* name, const char* description = NULL) : trace_t(name, description) {} /*virtual*/ const char* getUnitLabel() const { return LLGetUnitLabel::getUnitLabel(); } }; template void add(CountStatHandle& count, VALUE_T value) { T converted_value(value); count.getPrimaryAccumulator()->add(storage_value(converted_value)); } template<> class TraceType : public TraceType { public: TraceType(const char* name, const char* description = "") : TraceType(name, description) {} }; template<> class TraceType : public TraceType { public: TraceType(const char* name, const char* description = "") : TraceType(name, description) {} }; template<> class TraceType : public TraceType { public: TraceType(const char* name, const char* description = "") : TraceType(name, description) {} }; class MemStatHandle : public TraceType { public: typedef TraceType trace_t; MemStatHandle(const char* name) : trace_t(name) {} /*virtual*/ const char* getUnitLabel() const { return "B"; } TraceType& allocationCount() { return static_cast&>(*(TraceType*)this); } TraceType& deallocationCount() { return static_cast&>(*(TraceType*)this); } TraceType& childMem() { return static_cast&>(*(TraceType*)this); } }; // measures effective memory footprint of specified type // specialize to cover different types template struct MemFootprint { static size_t measure(const T& value) { return sizeof(T); } static size_t measure() { return sizeof(T); } }; template struct MemFootprint { static size_t measure(const T* value) { if (!value) { return 0; } return MemFootprint::measure(*value); } static size_t measure() { return MemFootprint::measure(); } }; template struct MemFootprint > { static size_t measure(const std::basic_string& value) { return value.capacity() * sizeof(T); } static size_t measure() { return sizeof(std::basic_string); } }; template struct MemFootprint > { static size_t measure(const std::vector& value) { return value.capacity() * MemFootprint::measure(); } static size_t measure() { return sizeof(std::vector); } }; template struct MemFootprint > { static size_t measure(const std::list& value) { return value.size() * (MemFootprint::measure() + sizeof(void*) * 2); } static size_t measure() { return sizeof(std::list); } }; template class MemTrackable { template struct TrackMemImpl; typedef MemTrackable mem_trackable_t; public: typedef void mem_trackable_tag_t; virtual ~MemTrackable() { memDisclaim(mMemFootprint); } void* operator new(size_t size) { MemStatAccumulator* accumulator = DERIVED::sMemStat.getPrimaryAccumulator(); if (accumulator) { accumulator->mSize.sample(accumulator->mSize.getLastValue() + (F64)size); accumulator->mAllocatedCount++; } return ::operator new(size); } void operator delete(void* ptr, size_t size) { MemStatAccumulator* accumulator = DERIVED::sMemStat.getPrimaryAccumulator(); if (accumulator) { accumulator->mSize.sample(accumulator->mSize.getLastValue() - (F64)size); accumulator->mAllocatedCount--; accumulator->mDeallocatedCount++; } ::operator delete(ptr); } void *operator new [](size_t size) { MemStatAccumulator* accumulator = DERIVED::sMemStat.getPrimaryAccumulator(); if (accumulator) { accumulator->mSize.sample(accumulator->mSize.getLastValue() + (F64)size); accumulator->mAllocatedCount++; } return ::operator new[](size); } void operator delete[](void* ptr, size_t size) { MemStatAccumulator* accumulator = DERIVED::sMemStat.getPrimaryAccumulator(); if (accumulator) { accumulator->mSize.sample(accumulator->mSize.getLastValue() - (F64)size); accumulator->mAllocatedCount--; accumulator->mDeallocatedCount++; } ::operator delete[](ptr); } // claim memory associated with other objects/data as our own, adding to our calculated footprint template CLAIM_T& memClaim(CLAIM_T& value) { TrackMemImpl::claim(*this, value); return value; } template const CLAIM_T& memClaim(const CLAIM_T& value) { TrackMemImpl::claim(*this, value); return value; } template AMOUNT_T& memClaimAmount(AMOUNT_T& size) { MemStatAccumulator* accumulator = DERIVED::sMemStat.getPrimaryAccumulator(); mMemFootprint += (size_t)size; if (accumulator) { accumulator->mSize.sample(accumulator->mSize.getLastValue() + (F64)size); } return size; } // remove memory we had claimed from our calculated footprint template CLAIM_T& memDisclaim(CLAIM_T& value) { TrackMemImpl::disclaim(*this, value); return value; } template const CLAIM_T& memDisclaim(const CLAIM_T& value) { TrackMemImpl::disclaim(*this, value); return value; } template AMOUNT_T& memDisclaimAmount(AMOUNT_T& size) { MemStatAccumulator* accumulator = DERIVED::sMemStat.getPrimaryAccumulator(); if (accumulator) { accumulator->mSize.sample(accumulator->mSize.getLastValue() - (F64)size); } return size; } private: size_t mMemFootprint; template struct TrackMemImpl { static void claim(mem_trackable_t& tracker, const TRACKED& tracked) { MemStatAccumulator* accumulator = DERIVED::sMemStat.getPrimaryAccumulator(); if (accumulator) { size_t footprint = MemFootprint::measure(tracked); accumulator->mSize.sample(accumulator->mSize.getLastValue() + (F64)footprint); tracker.mMemFootprint += footprint; } } static void disclaim(mem_trackable_t& tracker, const TRACKED& tracked) { MemStatAccumulator* accumulator = DERIVED::sMemStat.getPrimaryAccumulator(); if (accumulator) { size_t footprint = MemFootprint::measure(tracked); accumulator->mSize.sample(accumulator->mSize.getLastValue() - (F64)footprint); tracker.mMemFootprint -= footprint; } } }; template struct TrackMemImpl { static void claim(mem_trackable_t& tracker, TRACKED& tracked) { MemStatAccumulator* accumulator = DERIVED::sMemStat.getPrimaryAccumulator(); if (accumulator) { accumulator->mChildSize.sample(accumulator->mChildSize.getLastValue() + (F64)MemFootprint::measure(tracked)); } } static void disclaim(mem_trackable_t& tracker, TRACKED& tracked) { MemStatAccumulator* accumulator = DERIVED::sMemStat.getPrimaryAccumulator(); if (accumulator) { accumulator->mChildSize.sample(accumulator->mChildSize.getLastValue() - (F64)MemFootprint::measure(tracked)); } } }; }; } #endif // LL_LLTRACE_H