/** * @file lltrace.h * @brief Runtime statistics accumulation. * * $LicenseInfo:firstyear=2001&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2012, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #ifndef LL_LLTRACE_H #define LL_LLTRACE_H #include "stdtypes.h" #include "llpreprocessor.h" #include "llthread.h" #include namespace LLTrace { //TODO figure out best way to do this and proper naming convention static void init() { } // one per thread per type template struct AccumulatorBuffer : public AccumulatorBufferBase { ACCUMULATOR* mStorage; size_t mStorageSize; size_t mNextStorageSlot; static S32 sStorageKey; // key used to access thread local storage pointer to accumulator values AccumulatorBuffer() : mStorageSize(64), mStorage(new ACCUMULATOR[64]), mNextStorageSlot(0) {} AccumulatorBuffer(const AccumulatorBuffer& other) : mStorageSize(other.mStorageSize), mStorage(new ACCUMULATOR[other.mStorageSize]), mNextStorageSlot(other.mNextStorageSlot) { } LL_FORCE_INLINE ACCUMULATOR& operator[](size_t index) { return (*mStorage)[index]; } void mergeFrom(const AccumulatorBuffer& other) { llassert(mNextStorageSlot == other.mNextStorageSlot); for (size_t i = 0; i < mNextStorageSlot; i++) { mStorage[i].mergeFrom(other.mStorage[i]); } } void copyFrom(const AccumulatorBuffer& other) { for (size_t i = 0; i < mNextStorageSlot; i++) { mStorage[i] = other.mStorage[i]; } } void reset() { for (size_t i = 0; i < mNextStorageSlot; i++) { mStorage[i].reset(); } } void makePrimary() { //TODO: use sStorageKey to set mStorage as active buffer } // NOTE: this is not thread-safe. We assume that slots are reserved in the main thread before any child threads are spawned size_t reserveSlot() { size_t next_slot = mNextStorageSlot++; if (next_slot >= mStorageSize) { size_t new_size = mStorageSize + (mStorageSize >> 2); delete [] mStorage; mStorage = new mStorage(new_size); mStorageSize = new_size; } llassert(next_slot < mStorageSize); return next_slot; } }; template S32 AccumulatorBuffer::sStorageKey; template class Trace { public: Trace(const std::string& name) : mName(name) { mAccumulatorIndex = sAccumulatorBuffer.reserveSlot(); } LL_FORCE_INLINE ACCUMULATOR& getAccumulator() { return sAccumulatorBuffer[mAccumulatorIndex]; } private: std::string mName; size_t mAccumulatorIndex; // this needs to be thread local static AccumulatorBuffer sAccumulatorBuffer; }; template std::vector Trace::sAccumulatorBuffer; template class StatAccumulator { public: StatAccumulator() : mSum(), mMin(), mMax(), mNumSamples(0) {} LL_FORCE_INLINE void sample(T value) { mNumSamples++; mSum += value; if (value < mMin) { mMin = value; } else if (value > mMax) { mMax = value; } } void mergeFrom(const Stat& other) { mSum += other.mSum; if (other.mMin < mMin) { mMin = other.mMin; } if (other.mMax > mMax) { mMax = other.mMax; } mNumSamples += other.mNumSamples; } void reset() { mNumSamples = 0; mSum = 0; mMin = 0; mMax = 0; } private: T mSum, mMin, mMax; U32 mNumSamples; }; template class Stat : public Trace > { public: Stat(const std::string& name) : Trace(name) {} void sample(T value) { getAccumulator().sample(value); } }; struct TimerAccumulator { U32 mTotalTimeCounter, mChildTimeCounter, mCalls; TimerAccumulator* mParent; // info for caller timer TimerAccumulator* mLastCaller; // used to bootstrap tree construction const class BlockTimer* mTimer; // points to block timer associated with this storage U8 mActiveCount; // number of timers with this ID active on stack bool mMoveUpTree; // needs to be moved up the tree of timers at the end of frame std::vector mChildren; // currently assumed child timers void mergeFrom(const TimerAccumulator& other) { mTotalTimeCounter += other.mTotalTimeCounter; mChildTimeCounter += other.mChildTimeCounter; mCalls += other.mCalls; } void reset() { mTotalTimeCounter = 0; mChildTimeCounter = 0; mCalls = 0; } }; class BlockTimer : public Trace { public: BlockTimer(const char* name) : Trace(name) {} struct Recorder { struct StackEntry { Recorder* mRecorder; TimerAccumulator* mAccumulator; U32 mChildTime; }; LL_FORCE_INLINE Recorder(BlockTimer& block_timer) : mLastRecorder(sCurRecorder) { mStartTime = getCPUClockCount32(); TimerAccumulator* accumulator = &block_timer.getAccumulator(); // get per-thread accumulator accumulator->mActiveCount++; accumulator->mCalls++; accumulator->mMoveUpTree |= (accumulator->mParent->mActiveCount == 0); // push new timer on stack sCurRecorder.mRecorder = this; sCurRecorder.mAccumulator = accumulator; sCurRecorder.mChildTime = 0; } LL_FORCE_INLINE ~Recorder() { U32 total_time = getCPUClockCount32() - mStartTime; TimerAccumulator* accumulator = sCurRecorder.mAccumulator; accumulator->mTotalTimeCounter += total_time; accumulator->mChildTimeCounter += sCurRecorder.mChildTime; accumulator->mActiveCount--; accumulator->mLastCaller = mLastRecorder.mAccumulator; mLastRecorder.mChildTime += total_time; // pop stack sCurRecorder = mLastRecorder; } StackEntry mLastRecorder; U32 mStartTime; }; private: static U32 getCPUClockCount32() { U32 ret_val; __asm { _emit 0x0f _emit 0x31 shr eax,8 shl edx,24 or eax, edx mov dword ptr [ret_val], eax } return ret_val; } // return full timer value, *not* shifted by 8 bits static U64 getCPUClockCount64() { U64 ret_val; __asm { _emit 0x0f _emit 0x31 mov eax,eax mov edx,edx mov dword ptr [ret_val+4], edx mov dword ptr [ret_val], eax } return ret_val; } static Recorder::StackEntry sCurRecorder; }; BlockTimer::Recorder::StackEntry BlockTimer::sCurRecorder; class Sampler { public: Sampler(const Sampler& other) : mF32Stats(other.mF32Stats), mS32Stats(other.mS32Stats), mTimers(other.mTimers) {} ~Sampler() { stop(); } void makePrimary() { mF32Stats.makePrimary(); mS32Stats.makePrimary(); mTimers.makePrimary(); } void start() { reset(); resume(); } void stop() { getThreadData()->deactivate(this); } void resume() { ThreadData* thread_data = getThreadData(); thread_data->flushPrimarySampler(); thread_data->activate(this); } void mergeFrom(const Sampler& other) { mF32Stats.mergeFrom(other.mF32Stats); mS32Stats.mergeFrom(other.mS32Stats); mTimers.mergeFrom(other.mTimers); } void reset() { mF32Stats.reset(); mS32Stats.reset(); mTimers.reset(); } private: // returns data for current thread struct ThreadData* getThreadData() { return NULL; } AccumulatorBuffer > mF32Stats; AccumulatorBuffer > mS32Stats; AccumulatorBuffer mTimers; }; struct ThreadData { ThreadData(LLThread& this_thread, ThreadData& parent_data) : mPrimarySampler(parent_data.mPrimarySampler), mSharedSampler(parent_data.mSharedSampler), mSharedSamplerMutex(this_thread.getAPRPool()), mParent(parent_data) { mPrimarySampler.makePrimary(); parent_data.addChildThread(this); } ~ThreadData() { mParent.removeChildThread(this); } void addChildThread(ThreadData* child) { mChildThreadData.push_back(child); } void removeChildThread(ThreadData* child) { // TODO: replace with intrusive list std::list::iterator found_it = std::find(mChildThreadData.begin(), mChildThreadData.end(), child); if (found_it != mChildThreadData.end()) { mChildThreadData.erase(found_it); } } void flushPrimarySampler() { for (std::list::iterator it = mActiveSamplers.begin(), end_it = mActiveSamplers.end(); it != end_it; ++it) { (*it)->mergeFrom(mPrimarySampler); } mPrimarySampler.reset(); } void activate(Sampler* sampler) { mActiveSamplers.push_back(sampler); } void deactivate(Sampler* sampler) { // TODO: replace with intrusive list std::list::iterator found_it = std::find(mActiveSamplers.begin(), mActiveSamplers.end(), sampler); if (found_it != mActiveSamplers.end()) { mActiveSamplers.erase(found_it); } } // call this periodically to gather stats data in parent thread void publishToParent() { mSharedSamplerMutex.lock(); { mSharedSampler.mergeFrom(mPrimarySampler); } mSharedSamplerMutex.unlock(); } // call this periodically to gather stats data from children void gatherChildData() { for (std::list::iterator child_it = mChildThreadData.begin(), end_it = mChildThreadData.end(); child_it != end_it; ++child_it) { (*child_it)->mSharedSamplerMutex.lock(); { //TODO for now, just aggregate, later keep track of thread data independently mPrimarySampler.mergeFrom((*child_it)->mSharedSampler); } (*child_it)->mSharedSamplerMutex.unlock(); } } Sampler mPrimarySampler; ThreadData& mParent; std::list mActiveSamplers; std::list mChildThreadData; // TODO: add unused space here to avoid false sharing? LLMutex mSharedSamplerMutex; Sampler mSharedSampler; }; class TimeInterval { public: void start() {} void stop() {} void resume() {} }; class Sampler { public: void start() {} void stop() {} void resume() {} }; } #define TOKEN_PASTE_ACTUAL(x, y) x##y #define TOKEN_PASTE(x, y) TOKEN_PASTE_ACTUAL(x, y) #define RECORD_BLOCK_TIME(block_timer) LLTrace::BlockTimer::Recorder TOKEN_PASTE(block_time_recorder, __COUNTER__)(block_timer); #endif // LL_LLTRACE_H