/** * @file lltrace.h * @brief Runtime statistics accumulation. * * $LicenseInfo:firstyear=2001&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2012, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #ifndef LL_LLTRACE_H #define LL_LLTRACE_H #include "stdtypes.h" #include "llpreprocessor.h" #include "llmemory.h" #include "llrefcount.h" //#include "lltracethreadrecorder.h" #include "llunit.h" #include "llapr.h" #include #define TOKEN_PASTE_ACTUAL(x, y) x##y #define TOKEN_PASTE(x, y) TOKEN_PASTE_ACTUAL(x, y) #define RECORD_BLOCK_TIME(block_timer) LLTrace::BlockTimer::Recorder TOKEN_PASTE(block_time_recorder, __COUNTER__)(block_timer); namespace LLTrace { class Recording; void init(); void cleanup(); LLThreadLocalPointer& get_thread_recorder(); class LL_COMMON_API MasterThreadRecorder& getMasterThreadRecorder(); // one per thread per type template class LL_COMMON_API AccumulatorBuffer : public LLRefCount { static const U32 DEFAULT_ACCUMULATOR_BUFFER_SIZE = 64; private: enum StaticAllocationMarker { STATIC_ALLOC }; AccumulatorBuffer(StaticAllocationMarker m) : mStorageSize(64), mNextStorageSlot(0), mStorage(new ACCUMULATOR[DEFAULT_ACCUMULATOR_BUFFER_SIZE]) {} public: // copying an accumulator buffer does not copy the actual contents, but simply initializes the buffer size // to be identical to the other buffer AccumulatorBuffer(const AccumulatorBuffer& other = getDefaultBuffer()) : mStorageSize(other.mStorageSize), mStorage(new ACCUMULATOR[other.mStorageSize]), mNextStorageSlot(other.mNextStorageSlot) {} ~AccumulatorBuffer() { if (sPrimaryStorage == mStorage) { //TODO pick another primary? sPrimaryStorage = NULL; } } LL_FORCE_INLINE ACCUMULATOR& operator[](size_t index) { return mStorage[index]; } LL_FORCE_INLINE const ACCUMULATOR& operator[](size_t index) const { return mStorage[index]; } void addSamples(const AccumulatorBuffer& other) { llassert(mNextStorageSlot == other.mNextStorageSlot); for (size_t i = 0; i < mNextStorageSlot; i++) { mStorage[i].addSamples(other.mStorage[i]); } } void copyFrom(const AccumulatorBuffer& other) { for (size_t i = 0; i < mNextStorageSlot; i++) { mStorage[i] = other.mStorage[i]; } } void reset() { for (size_t i = 0; i < mNextStorageSlot; i++) { mStorage[i].reset(); } } void makePrimary() { sPrimaryStorage = mStorage; } bool isPrimary() const { return sPrimaryStorage == mStorage; } LL_FORCE_INLINE static ACCUMULATOR* getPrimaryStorage() { return sPrimaryStorage.get(); } // NOTE: this is not thread-safe. We assume that slots are reserved in the main thread before any child threads are spawned size_t reserveSlot() { size_t next_slot = mNextStorageSlot++; if (next_slot >= mStorageSize) { size_t new_size = mStorageSize + (mStorageSize >> 2); delete [] mStorage; mStorage = new ACCUMULATOR[new_size]; mStorageSize = new_size; } llassert(next_slot < mStorageSize); return next_slot; } static AccumulatorBuffer& getDefaultBuffer() { static AccumulatorBuffer sBuffer(STATIC_ALLOC); return sBuffer; } private: ACCUMULATOR* mStorage; size_t mStorageSize; size_t mNextStorageSlot; static LLThreadLocalPointer sPrimaryStorage; }; template LLThreadLocalPointer AccumulatorBuffer::sPrimaryStorage; template class LL_COMMON_API TraceType { public: TraceType(const char* name, const char* description = NULL) : mName(name), mDescription(description ? description : "") { mAccumulatorIndex = AccumulatorBuffer::getDefaultBuffer().reserveSlot(); } LL_FORCE_INLINE ACCUMULATOR& getPrimaryAccumulator() { return AccumulatorBuffer::getPrimaryStorage()[mAccumulatorIndex]; } ACCUMULATOR& getAccumulator(AccumulatorBuffer* buffer) { return (*buffer)[mAccumulatorIndex]; } const ACCUMULATOR& getAccumulator(const AccumulatorBuffer* buffer) const { return (*buffer)[mAccumulatorIndex]; } protected: std::string mName; std::string mDescription; size_t mAccumulatorIndex; }; template class LL_COMMON_API MeasurementAccumulator { public: MeasurementAccumulator() : mSum(0), mMin(std::numeric_limits::max()), mMax(std::numeric_limits::min()), mMean(0), mVarianceSum(0), mNumSamples(0), mLastValue(0) {} LL_FORCE_INLINE void sample(T value) { mNumSamples++; mSum += value; if (value < mMin) { mMin = value; } else if (value > mMax) { mMax = value; } F64 old_mean = mMean; mMean += ((F64)value - old_mean) / (F64)mNumSamples; mVarianceSum += ((F64)value - old_mean) * ((F64)value - mMean); mLastValue = value; } void addSamples(const MeasurementAccumulator& other) { mSum += other.mSum; if (other.mMin < mMin) { mMin = other.mMin; } if (other.mMax > mMax) { mMax = other.mMax; } mNumSamples += other.mNumSamples; F64 weight = (F64)mNumSamples / (F64)(mNumSamples + other.mNumSamples); mMean = mMean * weight + other.mMean * (1.f - weight); F64 n_1 = (F64)mNumSamples, n_2 = (F64)other.mNumSamples; F64 m_1 = mMean, m_2 = other.mMean; F64 sd_1 = getStandardDeviation(), sd_2 = other.getStandardDeviation(); // combine variance (and hence standard deviation) of 2 different sized sample groups using // the following formula: http://www.mrc-bsu.cam.ac.uk/cochrane/handbook/chapter_7/7_7_3_8_combining_groups.htm if (n_1 == 0) { mVarianceSum = other.mVarianceSum; } else if (n_2 == 0) { // don't touch variance // mVarianceSum = mVarianceSum; } else { mVarianceSum = (F32)mNumSamples * ((((n_1 - 1.f) * sd_1 * sd_1) + ((n_2 - 1.f) * sd_2 * sd_2) + (((n_1 * n_2) / (n_1 + n_2)) * ((m_1 * m_1) + (m_2 * m_2) - (2.f * m_1 * m_2)))) / (n_1 + n_2 - 1.f)); } mLastValue = other.mLastValue; } void reset() { mNumSamples = 0; mSum = 0; mMin = 0; mMax = 0; } T getSum() const { return mSum; } T getMin() const { return mMin; } T getMax() const { return mMax; } T getLastValue() const { return mLastValue; } F64 getMean() const { return mMean; } F64 getStandardDeviation() const { return sqrtf(mVarianceSum / mNumSamples); } private: T mSum, mMin, mMax, mLastValue; F64 mMean, mVarianceSum; U32 mNumSamples; }; template class LL_COMMON_API CountAccumulator { public: CountAccumulator() : mSum(0), mNumSamples(0) {} LL_FORCE_INLINE void add(T value) { mNumSamples++; mSum += value; } void addSamples(const CountAccumulator& other) { mSum += other.mSum; mNumSamples += other.mNumSamples; } void reset() { mNumSamples = 0; mSum = 0; } T getSum() const { return mSum; } private: T mSum; U32 mNumSamples; }; template class LL_COMMON_API Measurement : public TraceType >, public LLInstanceTracker, std::string> { public: typedef T storage_t; typedef T base_unit_t; Measurement(const char* name, const char* description = NULL) : TraceType(name), LLInstanceTracker(name) {} void sample(T value) { getPrimaryAccumulator().sample(value); } }; template class LL_COMMON_API Measurement : public Measurement { public: typedef typename T::storage_t storage_t; typedef typename T::base_unit_t base_unit_t; typedef Measurement base_measurement_t; Measurement(const char* name, const char* description = NULL) : Measurement(name) {} template void sample(UNIT_T value) { base_measurement_t::sample(((T)value).value()); } }; template class LL_COMMON_API Count : public TraceType >, public LLInstanceTracker, std::string> { public: typedef T storage_t; typedef T base_unit_t; Count(const char* name, const char* description = NULL) : TraceType(name), LLInstanceTracker(name) {} void add(T value) { getPrimaryAccumulator().add(value); } }; template class LL_COMMON_API Count : public Count { public: typedef typename T::storage_t storage_t; typedef typename T::base_unit_t base_unit_t; typedef Count base_count_t; Count(const char* name, const char* description = NULL) : Count(name) {} template void add(UNIT_T value) { base_count_t::add(((T)value).value()); } }; class LL_COMMON_API TimerAccumulator { public: U32 mTotalTimeCounter, mChildTimeCounter, mCalls; TimerAccumulator* mParent; // info for caller timer TimerAccumulator* mLastCaller; // used to bootstrap tree construction const class BlockTimer* mTimer; // points to block timer associated with this storage U8 mActiveCount; // number of timers with this ID active on stack bool mMoveUpTree; // needs to be moved up the tree of timers at the end of frame std::vector mChildren; // currently assumed child timers void addSamples(const TimerAccumulator& other) { mTotalTimeCounter += other.mTotalTimeCounter; mChildTimeCounter += other.mChildTimeCounter; mCalls += other.mCalls; } void reset() { mTotalTimeCounter = 0; mChildTimeCounter = 0; mCalls = 0; } }; class LL_COMMON_API BlockTimer : public TraceType { public: BlockTimer(const char* name) : TraceType(name) {} struct Recorder { struct StackEntry { Recorder* mRecorder; TimerAccumulator* mAccumulator; U32 mChildTime; }; LL_FORCE_INLINE Recorder(BlockTimer& block_timer) : mLastRecorder(sCurRecorder) { mStartTime = getCPUClockCount32(); TimerAccumulator* accumulator = &block_timer.getPrimaryAccumulator(); // get per-thread accumulator accumulator->mActiveCount++; accumulator->mCalls++; accumulator->mMoveUpTree |= (accumulator->mParent->mActiveCount == 0); // push new timer on stack sCurRecorder.mRecorder = this; sCurRecorder.mAccumulator = accumulator; sCurRecorder.mChildTime = 0; } LL_FORCE_INLINE ~Recorder() { U32 total_time = getCPUClockCount32() - mStartTime; TimerAccumulator* accumulator = sCurRecorder.mAccumulator; accumulator->mTotalTimeCounter += total_time; accumulator->mChildTimeCounter += sCurRecorder.mChildTime; accumulator->mActiveCount--; accumulator->mLastCaller = mLastRecorder.mAccumulator; mLastRecorder.mChildTime += total_time; // pop stack sCurRecorder = mLastRecorder; } StackEntry mLastRecorder; U32 mStartTime; }; private: static U32 getCPUClockCount32() { U32 ret_val; __asm { _emit 0x0f _emit 0x31 shr eax,8 shl edx,24 or eax, edx mov dword ptr [ret_val], eax } return ret_val; } // return full timer value, *not* shifted by 8 bits static U64 getCPUClockCount64() { U64 ret_val; __asm { _emit 0x0f _emit 0x31 mov eax,eax mov edx,edx mov dword ptr [ret_val+4], edx mov dword ptr [ret_val], eax } return ret_val; } static Recorder::StackEntry sCurRecorder; }; } #endif // LL_LLTRACE_H