/** * @file lltrace.h * @brief Runtime statistics accumulation. * * $LicenseInfo:firstyear=2001&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2012, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #ifndef LL_LLTRACE_H #define LL_LLTRACE_H #include "stdtypes.h" #include "llpreprocessor.h" #include "llmutex.h" #include "llmemory.h" #include "lltimer.h" #include "llrefcount.h" #include "lltracerecording.h" #include #define TOKEN_PASTE_ACTUAL(x, y) x##y #define TOKEN_PASTE(x, y) TOKEN_PASTE_ACTUAL(x, y) #define RECORD_BLOCK_TIME(block_timer) LLTrace::BlockTimer::Recorder TOKEN_PASTE(block_time_recorder, __COUNTER__)(block_timer); namespace LLTrace { class Recording; void init(); void cleanup(); LLThreadLocalPointer& get_thread_recorder(); class LL_COMMON_API MasterThreadRecorder& getMasterThreadRecorder(); // one per thread per type template class LL_COMMON_API AccumulatorBuffer : public LLRefCount { static const U32 DEFAULT_ACCUMULATOR_BUFFER_SIZE = 64; private: enum StaticAllocationMarker { STATIC_ALLOC }; AccumulatorBuffer(StaticAllocationMarker m) : mStorageSize(64), mNextStorageSlot(0), mStorage(new ACCUMULATOR[DEFAULT_ACCUMULATOR_BUFFER_SIZE]) {} public: // copying an accumulator buffer does not copy the actual contents, but simply initializes the buffer size // to be identical to the other buffer AccumulatorBuffer(const AccumulatorBuffer& other = getDefaultBuffer()) : mStorageSize(other.mStorageSize), mStorage(new ACCUMULATOR[other.mStorageSize]), mNextStorageSlot(other.mNextStorageSlot) {} ~AccumulatorBuffer() { if (sPrimaryStorage == mStorage) { //TODO pick another primary? sPrimaryStorage = NULL; } } LL_FORCE_INLINE ACCUMULATOR& operator[](size_t index) { return mStorage[index]; } void mergeSamples(const AccumulatorBuffer& other) { llassert(mNextStorageSlot == other.mNextStorageSlot); for (size_t i = 0; i < mNextStorageSlot; i++) { mStorage[i].mergeSamples(other.mStorage[i]); } } void mergeDeltas(const AccumulatorBuffer& start, const AccumulatorBuffer& finish) { llassert(mNextStorageSlot == start.mNextStorageSlot && mNextStorageSlot == finish.mNextStorageSlot); for (size_t i = 0; i < mNextStorageSlot; i++) { mStorage[i].mergeDeltas(start.mStorage[i], finish.mStorage[i]); } } void copyFrom(const AccumulatorBuffer& other) { for (size_t i = 0; i < mNextStorageSlot; i++) { mStorage[i] = other.mStorage[i]; } } void reset() { for (size_t i = 0; i < mNextStorageSlot; i++) { mStorage[i].reset(); } } void makePrimary() { sPrimaryStorage = mStorage; } bool isPrimary() const { return sPrimaryStorage == mStorage; } LL_FORCE_INLINE static ACCUMULATOR* getPrimaryStorage() { return sPrimaryStorage.get(); } // NOTE: this is not thread-safe. We assume that slots are reserved in the main thread before any child threads are spawned size_t reserveSlot() { size_t next_slot = mNextStorageSlot++; if (next_slot >= mStorageSize) { size_t new_size = mStorageSize + (mStorageSize >> 2); delete [] mStorage; mStorage = new ACCUMULATOR[new_size]; mStorageSize = new_size; } llassert(next_slot < mStorageSize); return next_slot; } static AccumulatorBuffer& getDefaultBuffer() { static AccumulatorBuffer sBuffer(STATIC_ALLOC); return sBuffer; } private: ACCUMULATOR* mStorage; size_t mStorageSize; size_t mNextStorageSlot; static LLThreadLocalPointer sPrimaryStorage; }; template LLThreadLocalPointer AccumulatorBuffer::sPrimaryStorage; template class LL_COMMON_API TraceType { public: TraceType(const std::string& name) : mName(name) { mAccumulatorIndex = AccumulatorBuffer::getDefaultBuffer().reserveSlot(); } LL_FORCE_INLINE ACCUMULATOR& getPrimaryAccumulator() { return AccumulatorBuffer::getPrimaryStorage()[mAccumulatorIndex]; } ACCUMULATOR& getAccumulator(AccumulatorBuffer* buffer) { return (*buffer)[mAccumulatorIndex]; } protected: std::string mName; size_t mAccumulatorIndex; }; template class LL_COMMON_API MeasurementAccumulator { public: MeasurementAccumulator() : mSum(0), mMin(0), mMax(0), mNumSamples(0) {} LL_FORCE_INLINE void sample(T value) { mNumSamples++; mSum += value; if (value < mMin) { mMin = value; } else if (value > mMax) { mMax = value; } F32 old_mean = mMean; mMean += ((F32)value - old_mean) / (F32)mNumSamples; mStandardDeviation += ((F32)value - old_mean) * ((F32)value - mMean); } void mergeSamples(const MeasurementAccumulator& other) { mSum += other.mSum; if (other.mMin < mMin) { mMin = other.mMin; } if (other.mMax > mMax) { mMax = other.mMax; } mNumSamples += other.mNumSamples; F32 weight = (F32)mNumSamples / (F32)(mNumSamples + other.mNumSamples); mMean = mMean * weight + other.mMean * (1.f - weight); F32 n_1 = (F32)mNumSamples, n_2 = (F32)other.mNumSamples; F32 m_1 = mMean, m_2 = other.mMean; F32 sd_1 = mStandardDeviation, sd_2 = other.mStandardDeviation; // combine variance (and hence standard deviation) of 2 different sized sample groups using // the following formula: http://www.mrc-bsu.cam.ac.uk/cochrane/handbook/chapter_7/7_7_3_8_combining_groups.htm F32 variance = ((((n_1 - 1.f) * sd_1 * sd_1) + ((n_2 - 1.f) * sd_2 * sd_2) + (((n_1 * n_2) / (n_1 + n_2)) * ((m_1 * m_1) + (m_2 * m_2) - (2.f * m_1 * m_2)))) / (n_1 + n_2 - 1.f)); mStandardDeviation = sqrtf(variance); } void mergeDeltas(const MeasurementAccumulator& start, const MeasurementAccumulator& finish) { llerrs << "Delta merge invalid for measurement accumulators" << llendl; } void reset() { mNumSamples = 0; mSum = 0; mMin = 0; mMax = 0; } T getSum() { return mSum; } T getMin() { return mMin; } T getMax() { return mMax; } F32 getMean() { return mMean; } F32 getStandardDeviation() { return mStandardDeviation; } private: T mSum, mMin, mMax; F32 mMean, mStandardDeviation; U32 mNumSamples; }; template class LL_COMMON_API RateAccumulator { public: RateAccumulator() : mSum(0), mNumSamples(0) {} LL_FORCE_INLINE void add(T value) { mNumSamples++; mSum += value; } void mergeSamples(const RateAccumulator& other) { mSum += other.mSum; mNumSamples += other.mNumSamples; } void mergeDeltas(const RateAccumulator& start, const RateAccumulator& finish) { mSum += finish.mSum - start.mSum; mNumSamples += finish.mNumSamples - start.mNumSamples; } void reset() { mNumSamples = 0; mSum = 0; } T getSum() { return mSum; } private: T mSum; U32 mNumSamples; }; template class LL_COMMON_API Measurement : public TraceType >, public LLInstanceTracker, std::string> { public: Measurement(const std::string& name) : TraceType(name), LLInstanceTracker(name) {} void sample(T value) { getPrimaryAccumulator().sample(value); } }; template class LL_COMMON_API Rate : public TraceType >, public LLInstanceTracker, std::string> { public: Rate(const std::string& name) : TraceType(name), LLInstanceTracker(name) {} void add(T value) { getPrimaryAccumulator().add(value); } }; class LL_COMMON_API TimerAccumulator { public: U32 mTotalTimeCounter, mChildTimeCounter, mCalls; TimerAccumulator* mParent; // info for caller timer TimerAccumulator* mLastCaller; // used to bootstrap tree construction const class BlockTimer* mTimer; // points to block timer associated with this storage U8 mActiveCount; // number of timers with this ID active on stack bool mMoveUpTree; // needs to be moved up the tree of timers at the end of frame std::vector mChildren; // currently assumed child timers void mergeSamples(const TimerAccumulator& other) { mTotalTimeCounter += other.mTotalTimeCounter; mChildTimeCounter += other.mChildTimeCounter; mCalls += other.mCalls; } void mergeDeltas(const TimerAccumulator& start, const TimerAccumulator& finish) { mTotalTimeCounter += finish.mTotalTimeCounter - start.mTotalTimeCounter; mChildTimeCounter += finish.mChildTimeCounter - start.mChildTimeCounter; mCalls += finish.mCalls - start.mCalls; } void reset() { mTotalTimeCounter = 0; mChildTimeCounter = 0; mCalls = 0; } }; class LL_COMMON_API BlockTimer : public TraceType { public: BlockTimer(const char* name) : TraceType(name) {} struct Recorder { struct StackEntry { Recorder* mRecorder; TimerAccumulator* mAccumulator; U32 mChildTime; }; LL_FORCE_INLINE Recorder(BlockTimer& block_timer) : mLastRecorder(sCurRecorder) { mStartTime = getCPUClockCount32(); TimerAccumulator* accumulator = &block_timer.getPrimaryAccumulator(); // get per-thread accumulator accumulator->mActiveCount++; accumulator->mCalls++; accumulator->mMoveUpTree |= (accumulator->mParent->mActiveCount == 0); // push new timer on stack sCurRecorder.mRecorder = this; sCurRecorder.mAccumulator = accumulator; sCurRecorder.mChildTime = 0; } LL_FORCE_INLINE ~Recorder() { U32 total_time = getCPUClockCount32() - mStartTime; TimerAccumulator* accumulator = sCurRecorder.mAccumulator; accumulator->mTotalTimeCounter += total_time; accumulator->mChildTimeCounter += sCurRecorder.mChildTime; accumulator->mActiveCount--; accumulator->mLastCaller = mLastRecorder.mAccumulator; mLastRecorder.mChildTime += total_time; // pop stack sCurRecorder = mLastRecorder; } StackEntry mLastRecorder; U32 mStartTime; }; private: static U32 getCPUClockCount32() { U32 ret_val; __asm { _emit 0x0f _emit 0x31 shr eax,8 shl edx,24 or eax, edx mov dword ptr [ret_val], eax } return ret_val; } // return full timer value, *not* shifted by 8 bits static U64 getCPUClockCount64() { U64 ret_val; __asm { _emit 0x0f _emit 0x31 mov eax,eax mov edx,edx mov dword ptr [ret_val+4], edx mov dword ptr [ret_val], eax } return ret_val; } static Recorder::StackEntry sCurRecorder; }; class LL_COMMON_API ThreadRecorder { public: ThreadRecorder(); ThreadRecorder(const ThreadRecorder& other); virtual ~ThreadRecorder(); void activate(Recording* recording); void deactivate(Recording* recording); virtual void pushToMaster() = 0; Recording* getPrimaryRecording(); protected: struct ActiveRecording { ActiveRecording(Recording* source, Recording* target); Recording* mTargetRecording; Recording mBaseline; void mergeMeasurements(ActiveRecording& other); void flushAccumulators(Recording* current); }; Recording* mPrimaryRecording; Recording mFullRecording; std::list mActiveRecordings; }; class LL_COMMON_API MasterThreadRecorder : public ThreadRecorder { public: MasterThreadRecorder(); void addSlaveThread(class SlaveThreadRecorder* child); void removeSlaveThread(class SlaveThreadRecorder* child); /*virtual */ void pushToMaster(); // call this periodically to gather stats data from slave threads void pullFromSlaveThreads(); LLMutex* getSlaveListMutex() { return &mSlaveListMutex; } private: struct SlaveThreadRecorderProxy { SlaveThreadRecorderProxy(class SlaveThreadRecorder* recorder); class SlaveThreadRecorder* mRecorder; Recording mSlaveRecording; private: //no need to copy these and then have to duplicate the storage SlaveThreadRecorderProxy(const SlaveThreadRecorderProxy& other) {} }; typedef std::list slave_thread_recorder_list_t; slave_thread_recorder_list_t mSlaveThreadRecorders; LLMutex mSlaveListMutex; }; class LL_COMMON_API SlaveThreadRecorder : public ThreadRecorder { public: SlaveThreadRecorder(); ~SlaveThreadRecorder(); // call this periodically to gather stats data for master thread to consume /*virtual*/ void pushToMaster(); MasterThreadRecorder* mMaster; class SharedData { public: void copyFrom(const Recording& source); void copyTo(Recording& sink); private: LLMutex mRecorderMutex; Recording mRecorder; }; SharedData mSharedData; }; } #endif // LL_LLTRACE_H