/** * @file lltrace.h * @brief Runtime statistics accumulation. * * $LicenseInfo:firstyear=2001&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2012, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #ifndef LL_LLTRACE_H #define LL_LLTRACE_H #include "stdtypes.h" #include "llpreprocessor.h" #include "llmemory.h" #include "llrefcount.h" #include "llunit.h" #include "llapr.h" #include #define LL_RECORD_BLOCK_TIME(block_timer) LLTrace::TimeBlock::Recorder LL_GLUE_TOKENS(block_time_recorder, __COUNTER__)(block_timer); namespace LLTrace { class Recording; typedef LLUnit Bytes; typedef LLUnit Kilobytes; typedef LLUnit Megabytes; typedef LLUnit Gigabytes; typedef LLUnit Bits; typedef LLUnit Kilobits; typedef LLUnit Megabits; typedef LLUnit Gigabits; typedef LLUnit Seconds; typedef LLUnit Milliseconds; typedef LLUnit Minutes; typedef LLUnit Hours; typedef LLUnit Milliseconds; typedef LLUnit Microseconds; typedef LLUnit Nanoseconds; typedef LLUnit Meters; typedef LLUnit Kilometers; typedef LLUnit Centimeters; typedef LLUnit Millimeters; void init(); void cleanup(); bool isInitialized(); LLThreadLocalPointer& get_thread_recorder(); class MasterThreadRecorder& getMasterThreadRecorder(); // one per thread per type template class AccumulatorBuffer : public LLRefCount { static const U32 DEFAULT_ACCUMULATOR_BUFFER_SIZE = 64; private: enum StaticAllocationMarker { STATIC_ALLOC }; AccumulatorBuffer(StaticAllocationMarker m) : mStorageSize(64), mNextStorageSlot(0), mStorage(new ACCUMULATOR[DEFAULT_ACCUMULATOR_BUFFER_SIZE]) {} public: AccumulatorBuffer(const AccumulatorBuffer& other = getDefaultBuffer()) : mStorageSize(other.mStorageSize), mStorage(new ACCUMULATOR[other.mStorageSize]), mNextStorageSlot(other.mNextStorageSlot) { for (S32 i = 0; i < mNextStorageSlot; i++) { mStorage[i] = other.mStorage[i]; } } ~AccumulatorBuffer() { if (sPrimaryStorage == mStorage) { //TODO pick another primary? sPrimaryStorage = NULL; } delete[] mStorage; } LL_FORCE_INLINE ACCUMULATOR& operator[](size_t index) { return mStorage[index]; } LL_FORCE_INLINE const ACCUMULATOR& operator[](size_t index) const { return mStorage[index]; } void addSamples(const AccumulatorBuffer& other) { llassert(mNextStorageSlot == other.mNextStorageSlot); for (size_t i = 0; i < mNextStorageSlot; i++) { mStorage[i].addSamples(other.mStorage[i]); } } void copyFrom(const AccumulatorBuffer& other) { for (size_t i = 0; i < mNextStorageSlot; i++) { mStorage[i] = other.mStorage[i]; } } void reset(const AccumulatorBuffer* other = NULL) { for (size_t i = 0; i < mNextStorageSlot; i++) { mStorage[i].reset(other ? &other->mStorage[i] : NULL); } } void makePrimary() { sPrimaryStorage = mStorage; } bool isPrimary() const { return sPrimaryStorage == mStorage; } LL_FORCE_INLINE static ACCUMULATOR* getPrimaryStorage() { return sPrimaryStorage.get(); } // NOTE: this is not thread-safe. We assume that slots are reserved in the main thread before any child threads are spawned size_t reserveSlot() { if (LLTrace::isInitialized()) { llerrs << "Attempting to declare trace object after program initialization. Trace objects should be statically initialized." << llendl; } size_t next_slot = mNextStorageSlot++; if (next_slot >= mStorageSize) { resize(mStorageSize + (mStorageSize >> 2)); } llassert(mStorage && next_slot < mStorageSize); return next_slot; } void resize(size_t new_size) { ACCUMULATOR* old_storage = mStorage; mStorage = new ACCUMULATOR[new_size]; for (S32 i = 0; i < mStorageSize; i++) { mStorage[i] = old_storage[i]; } mStorageSize = new_size; delete[] old_storage; } size_t size() { return mNextStorageSlot; } static AccumulatorBuffer& getDefaultBuffer() { static AccumulatorBuffer sBuffer(STATIC_ALLOC); return sBuffer; } private: ACCUMULATOR* mStorage; size_t mStorageSize; size_t mNextStorageSlot; static LLThreadLocalPointer sPrimaryStorage; }; template LLThreadLocalPointer AccumulatorBuffer::sPrimaryStorage; template class TraceType : public LLInstanceTracker, std::string> { public: TraceType(const char* name, const char* description = NULL) : LLInstanceTracker(name), mName(name), mDescription(description ? description : "") { mAccumulatorIndex = AccumulatorBuffer::getDefaultBuffer().reserveSlot(); } LL_FORCE_INLINE ACCUMULATOR& getPrimaryAccumulator() const { ACCUMULATOR* accumulator_storage = AccumulatorBuffer::getPrimaryStorage(); return accumulator_storage[mAccumulatorIndex]; } size_t getIndex() const { return mAccumulatorIndex; } std::string& getName() { return mName; } const std::string& getName() const { return mName; } protected: std::string mName; std::string mDescription; size_t mAccumulatorIndex; }; template class MeasurementAccumulator { public: typedef T value_t; typedef MeasurementAccumulator self_t; MeasurementAccumulator() : mSum(0), mMin((std::numeric_limits::max)()), mMax((std::numeric_limits::min)()), mMean(0), mVarianceSum(0), mNumSamples(0), mLastValue(0) {} LL_FORCE_INLINE void sample(T value) { T storage_value(value); mNumSamples++; mSum += storage_value; if (storage_value < mMin) { mMin = storage_value; } if (storage_value > mMax) { mMax = storage_value; } F64 old_mean = mMean; mMean += ((F64)storage_value - old_mean) / (F64)mNumSamples; mVarianceSum += ((F64)storage_value - old_mean) * ((F64)storage_value - mMean); mLastValue = storage_value; } void addSamples(const self_t& other) { if (other.mNumSamples) { mSum += other.mSum; if (other.mMin < mMin) { mMin = other.mMin; } if (other.mMax > mMax) { mMax = other.mMax; } F64 weight = (F64)mNumSamples / (F64)(mNumSamples + other.mNumSamples); mNumSamples += other.mNumSamples; mMean = mMean * weight + other.mMean * (1.f - weight); F64 n_1 = (F64)mNumSamples, n_2 = (F64)other.mNumSamples; F64 m_1 = mMean, m_2 = other.mMean; F64 sd_1 = getStandardDeviation(), sd_2 = other.getStandardDeviation(); // combine variance (and hence standard deviation) of 2 different sized sample groups using // the following formula: http://www.mrc-bsu.cam.ac.uk/cochrane/handbook/chapter_7/7_7_3_8_combining_groups.htm if (n_1 == 0) { mVarianceSum = other.mVarianceSum; } else if (n_2 == 0) { // don't touch variance // mVarianceSum = mVarianceSum; } else { mVarianceSum = (F64)mNumSamples * ((((n_1 - 1.f) * sd_1 * sd_1) + ((n_2 - 1.f) * sd_2 * sd_2) + (((n_1 * n_2) / (n_1 + n_2)) * ((m_1 * m_1) + (m_2 * m_2) - (2.f * m_1 * m_2)))) / (n_1 + n_2 - 1.f)); } mLastValue = other.mLastValue; } } void reset(const self_t* other) { mNumSamples = 0; mSum = 0; mMin = 0; mMax = 0; mMean = 0; mVarianceSum = 0; mLastValue = other ? other->mLastValue : 0; } T getSum() const { return (T)mSum; } T getMin() const { return (T)mMin; } T getMax() const { return (T)mMax; } T getLastValue() const { return (T)mLastValue; } F64 getMean() const { return mMean; } F64 getStandardDeviation() const { return sqrtf(mVarianceSum / mNumSamples); } U32 getSampleCount() const { return mNumSamples; } private: T mSum, mMin, mMax, mLastValue; F64 mMean, mVarianceSum; U32 mNumSamples; }; template class CountAccumulator { public: typedef CountAccumulator self_t; typedef T value_t; CountAccumulator() : mSum(0), mNumSamples(0) {} LL_FORCE_INLINE void add(T value) { mNumSamples++; mSum += value; } void addSamples(const CountAccumulator& other) { mSum += other.mSum; mNumSamples += other.mNumSamples; } void reset(const self_t* other) { mNumSamples = 0; mSum = 0; } T getSum() const { return (T)mSum; } U32 getSampleCount() const { return mNumSamples; } private: T mSum; U32 mNumSamples; }; class TimeBlockAccumulator { public: typedef LLUnit value_t; // fake class that allows us to view call count aspect of timeblock accumulator struct CallCountAspect { typedef U32 value_t; }; TimeBlockAccumulator(); void addSamples(const TimeBlockAccumulator& other); void reset(const TimeBlockAccumulator* other); // // members // U64 mSelfTimeCounter, mTotalTimeCounter; U32 mCalls; }; template<> class TraceType : public TraceType { TraceType(const char* name, const char* description = "") : TraceType(name, description) {} }; class TimeBlockTreeNode { public: TimeBlockTreeNode(); class TimeBlock* mLastCaller; // used to bootstrap tree construction U16 mActiveCount; // number of timers with this ID active on stack bool mMoveUpTree; // needs to be moved up the tree of timers at the end of frame }; template class Measurement : public TraceType::type_t> > { public: typedef typename LLUnits::HighestPrecisionType::type_t storage_t; Measurement(const char* name, const char* description = NULL) : TraceType(name, description) {} template void sample(UNIT_T value) { T converted_value(value); getPrimaryAccumulator().sample((storage_t)converted_value); } }; template class Count : public TraceType::type_t> > { public: typedef typename LLUnits::HighestPrecisionType::type_t storage_t; Count(const char* name, const char* description = NULL) : TraceType(name) {} template void add(UNIT_T value) { T converted_value(value); getPrimaryAccumulator().add((storage_t)converted_value); } }; } #endif // LL_LLTRACE_H