/** * @file llthreadsafequeue.h * @brief Queue protected with mutexes for cross-thread use * * $LicenseInfo:firstyear=2004&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #ifndef LL_LLTHREADSAFEQUEUE_H #define LL_LLTHREADSAFEQUEUE_H #include "llcoros.h" #include LLCOROS_MUTEX_HEADER #include #include LLCOROS_CONDVAR_HEADER #include "llexception.h" #include "mutex.h" #include #include #include /***************************************************************************** * LLThreadSafeQueue *****************************************************************************/ // // A general queue exception. // class LL_COMMON_API LLThreadSafeQueueError: public LLException { public: LLThreadSafeQueueError(std::string const & message): LLException(message) { ; // No op. } }; // // An exception raised when blocking operations are interrupted. // class LL_COMMON_API LLThreadSafeQueueInterrupt: public LLThreadSafeQueueError { public: LLThreadSafeQueueInterrupt(void): LLThreadSafeQueueError("queue operation interrupted") { ; // No op. } }; /** * Implements a thread safe FIFO. */ // Let the default std::queue default to underlying std::deque. Override if // desired. template> class LLThreadSafeQueue { public: typedef ElementT value_type; // Limiting the number of pending items prevents unbounded growth of the // underlying queue. LLThreadSafeQueue(U32 capacity = 1024); virtual ~LLThreadSafeQueue() {} // Add an element to the queue (will block if the queue has reached // capacity). // // This call will raise an interrupt error if the queue is closed while // the caller is blocked. template void push(T&& element); // legacy name void pushFront(ElementT const & element) { return push(element); } // Add an element to the queue (will block if the queue has reached // capacity). Return false if the queue is closed before push is possible. template bool pushIfOpen(T&& element); // Try to add an element to the queue without blocking. Returns // true only if the element was actually added. template bool tryPush(T&& element); // legacy name bool tryPushFront(ElementT const & element) { return tryPush(element); } // Try to add an element to the queue, blocking if full but with timeout // after specified duration. Returns true if the element was added. // There are potentially two different timeouts involved: how long to try // to lock the mutex, versus how long to wait for the queue to stop being // full. Careful settings for each timeout might be orders of magnitude // apart. However, this method conflates them. template bool tryPushFor(const std::chrono::duration& timeout, T&& element); // legacy name template bool tryPushFrontFor(const std::chrono::duration& timeout, ElementT const & element) { return tryPushFor(timeout, element); } // Try to add an element to the queue, blocking if full but with // timeout at specified time_point. Returns true if the element was added. template bool tryPushUntil(const std::chrono::time_point& until, T&& element); // no legacy name because this is a newer method // Pop the element at the head of the queue (will block if the queue is // empty). // // This call will raise an interrupt error if the queue is closed while // the caller is blocked. ElementT pop(void); // legacy name ElementT popBack(void) { return pop(); } // Pop an element from the head of the queue if there is one available. // Returns true only if an element was popped. bool tryPop(ElementT & element); // legacy name bool tryPopBack(ElementT & element) { return tryPop(element); } // Pop the element at the head of the queue, blocking if empty, with // timeout after specified duration. Returns true if an element was popped. template bool tryPopFor(const std::chrono::duration& timeout, ElementT& element); // no legacy name because this is a newer method // Pop the element at the head of the queue, blocking if empty, with // timeout at specified time_point. Returns true if an element was popped. template bool tryPopUntil(const std::chrono::time_point& until, ElementT& element); // no legacy name because this is a newer method // Returns the size of the queue. size_t size(); //Returns the capacity of the queue. U32 capacity() { return mCapacity; } // closes the queue: // - every subsequent push() call will throw LLThreadSafeQueueInterrupt // - every subsequent tryPush() call will return false // - pop() calls will return normally until the queue is drained, then // every subsequent pop() will throw LLThreadSafeQueueInterrupt // - tryPop() calls will return normally until the queue is drained, // then every subsequent tryPop() call will return false void close(); // producer end: are we prevented from pushing any additional items? bool isClosed(); // consumer end: are we done, is the queue entirely drained? bool done(); protected: typedef QueueT queue_type; QueueT mStorage; U32 mCapacity; bool mClosed; boost::fibers::timed_mutex mLock; typedef std::unique_lock lock_t; boost::fibers::condition_variable_any mCapacityCond; boost::fibers::condition_variable_any mEmptyCond; enum pop_result { EMPTY, DONE, WAITING, POPPED }; // implementation logic, suitable for passing to tryLockUntil() template pop_result tryPopUntil_(lock_t& lock, const std::chrono::time_point& until, ElementT& element); // if we're able to lock immediately, do so and run the passed callable, // which must accept lock_t& and return bool template bool tryLock(CALLABLE&& callable); // if we're able to lock before the passed time_point, do so and run the // passed callable, which must accept lock_t& and return bool template bool tryLockUntil(const std::chrono::time_point& until, CALLABLE&& callable); // while lock is locked, really push the passed element, if we can template bool push_(lock_t& lock, T&& element); // while lock is locked, really pop the head element, if we can pop_result pop_(lock_t& lock, ElementT& element); // Is the current head element ready to pop? We say yes; subclass can // override as needed. virtual bool canPop(const ElementT& head) const { return true; } }; /***************************************************************************** * PriorityQueueAdapter *****************************************************************************/ namespace LL { /** * std::priority_queue's API is almost like std::queue, intentionally of * course, but you must access the element about to pop() as top() rather * than as front(). Make an adapter for use with LLThreadSafeQueue. */ template , typename Compare=std::less> class PriorityQueueAdapter { public: // publish all the same types typedef std::priority_queue queue_type; typedef typename queue_type::container_type container_type; typedef typename queue_type::value_compare value_compare; typedef typename queue_type::value_type value_type; typedef typename queue_type::size_type size_type; typedef typename queue_type::reference reference; typedef typename queue_type::const_reference const_reference; // Although std::queue defines both const and non-const front() // methods, std::priority_queue defines only const top(). const_reference front() const { return mQ.top(); } // std::priority_queue has no equivalent to back(), so it's good that // LLThreadSafeQueue doesn't use it. // All the rest of these merely forward to the corresponding // queue_type methods. bool empty() const { return mQ.empty(); } size_type size() const { return mQ.size(); } void push(const value_type& value) { mQ.push(value); } void push(value_type&& value) { mQ.push(std::move(value)); } template void emplace(Args&&... args) { mQ.emplace(std::forward(args)...); } void pop() { mQ.pop(); } private: queue_type mQ; }; } // namespace LL /***************************************************************************** * LLThreadSafeQueue implementation *****************************************************************************/ template LLThreadSafeQueue::LLThreadSafeQueue(U32 capacity) : mCapacity(capacity), mClosed(false) { } // if we're able to lock immediately, do so and run the passed callable, which // must accept lock_t& and return bool template template bool LLThreadSafeQueue::tryLock(CALLABLE&& callable) { LL_PROFILE_ZONE_SCOPED; lock_t lock1(mLock, std::defer_lock); if (!lock1.try_lock()) return false; return std::forward(callable)(lock1); } // if we're able to lock before the passed time_point, do so and run the // passed callable, which must accept lock_t& and return bool template template bool LLThreadSafeQueue::tryLockUntil( const std::chrono::time_point& until, CALLABLE&& callable) { LL_PROFILE_ZONE_SCOPED; lock_t lock1(mLock, std::defer_lock); if (!lock1.try_lock_until(until)) return false; return std::forward(callable)(lock1); } // while lock is locked, really push the passed element, if we can template template bool LLThreadSafeQueue::push_(lock_t& lock, T&& element) { LL_PROFILE_ZONE_SCOPED; if (mStorage.size() >= mCapacity) return false; mStorage.push(std::forward(element)); lock.unlock(); // now that we've pushed, if somebody's been waiting to pop, signal them mEmptyCond.notify_one(); return true; } template template bool LLThreadSafeQueue::pushIfOpen(T&& element) { LL_PROFILE_ZONE_SCOPED; lock_t lock1(mLock); while (true) { // On the producer side, it doesn't matter whether the queue has been // drained or not: the moment either end calls close(), further push() // operations will fail. if (mClosed) return false; if (push_(lock1, std::forward(element))) return true; // Storage Full. Wait for signal. mCapacityCond.wait(lock1); } } template template void LLThreadSafeQueue::push(T&& element) { LL_PROFILE_ZONE_SCOPED; if (! pushIfOpen(std::forward(element))) { LLTHROW(LLThreadSafeQueueInterrupt()); } } template template bool LLThreadSafeQueue::tryPush(T&& element) { LL_PROFILE_ZONE_SCOPED; return tryLock( [this, element=std::move(element)](lock_t& lock) { if (mClosed) return false; return push_(lock, std::move(element)); }); } template template bool LLThreadSafeQueue::tryPushFor( const std::chrono::duration& timeout, T&& element) { LL_PROFILE_ZONE_SCOPED; // Convert duration to time_point: passing the same timeout duration to // each of multiple calls is wrong. return tryPushUntil(std::chrono::steady_clock::now() + timeout, std::forward(element)); } template template bool LLThreadSafeQueue::tryPushUntil( const std::chrono::time_point& until, T&& element) { LL_PROFILE_ZONE_SCOPED; return tryLockUntil( until, [this, until, element=std::move(element)](lock_t& lock) { while (true) { if (mClosed) { return false; } if (push_(lock, std::move(element))) return true; // Storage Full. Wait for signal. if (LLCoros::cv_status::timeout == mCapacityCond.wait_until(lock, until)) { // timed out -- formally we might recheck both conditions above return false; } // If we didn't time out, we were notified for some reason. Loop back // to check. } }); } // while lock is locked, really pop the head element, if we can template typename LLThreadSafeQueue::pop_result LLThreadSafeQueue::pop_(lock_t& lock, ElementT& element) { LL_PROFILE_ZONE_SCOPED; // If mStorage is empty, there's no head element. if (mStorage.empty()) return mClosed? DONE : EMPTY; // If there's a head element, pass it to canPop() to see if it's ready to pop. if (! canPop(mStorage.front())) return WAITING; // std::queue::front() is the element about to pop() element = mStorage.front(); mStorage.pop(); lock.unlock(); // now that we've popped, if somebody's been waiting to push, signal them mCapacityCond.notify_one(); return POPPED; } template ElementT LLThreadSafeQueue::pop(void) { LL_PROFILE_ZONE_SCOPED; lock_t lock1(mLock); ElementT value; while (true) { // On the consumer side, we always try to pop before checking mClosed // so we can finish draining the queue. pop_result popped = pop_(lock1, value); if (popped == POPPED) return std::move(value); // Once the queue is DONE, there will never be any more coming. if (popped == DONE) { LLTHROW(LLThreadSafeQueueInterrupt()); } // If we didn't pop because WAITING, i.e. canPop() returned false, // then even if the producer end has been closed, there's still at // least one item to drain: wait for it. Or we might be EMPTY, with // the queue still open. Either way, wait for signal. mEmptyCond.wait(lock1); } } template bool LLThreadSafeQueue::tryPop(ElementT & element) { LL_PROFILE_ZONE_SCOPED; return tryLock( [this, &element](lock_t& lock) { // conflate EMPTY, DONE, WAITING: tryPop() behavior when the queue // is closed is implemented by simple inability to push any new // elements return pop_(lock, element) == POPPED; }); } template template bool LLThreadSafeQueue::tryPopFor( const std::chrono::duration& timeout, ElementT& element) { LL_PROFILE_ZONE_SCOPED; // Convert duration to time_point: passing the same timeout duration to // each of multiple calls is wrong. return tryPopUntil(std::chrono::steady_clock::now() + timeout, element); } template template bool LLThreadSafeQueue::tryPopUntil( const std::chrono::time_point& until, ElementT& element) { LL_PROFILE_ZONE_SCOPED; return tryLockUntil( until, [this, until, &element](lock_t& lock) { // conflate EMPTY, DONE, WAITING return tryPopUntil_(lock, until, element) == POPPED; }); } // body of tryPopUntil(), called once we have the lock template template typename LLThreadSafeQueue::pop_result LLThreadSafeQueue::tryPopUntil_( lock_t& lock, const std::chrono::time_point& until, ElementT& element) { LL_PROFILE_ZONE_SCOPED; while (true) { pop_result popped = pop_(lock, element); if (popped == POPPED || popped == DONE) { // If we succeeded, great! If we've drained the last item, so be // it. Either way, break the loop and tell caller. return popped; } // EMPTY or WAITING: wait for signal. if (LLCoros::cv_status::timeout == mEmptyCond.wait_until(lock, until)) { // timed out -- formally we might recheck // as it is, break loop return popped; } // If we didn't time out, we were notified for some reason. Loop back // to check. } } template size_t LLThreadSafeQueue::size(void) { LL_PROFILE_ZONE_SCOPED; lock_t lock(mLock); return mStorage.size(); } template void LLThreadSafeQueue::close() { LL_PROFILE_ZONE_SCOPED; lock_t lock(mLock); mClosed = true; lock.unlock(); // wake up any blocked pop() calls mEmptyCond.notify_all(); // wake up any blocked push() calls mCapacityCond.notify_all(); } template bool LLThreadSafeQueue::isClosed() { LL_PROFILE_ZONE_SCOPED; lock_t lock(mLock); return mClosed; } template bool LLThreadSafeQueue::done() { LL_PROFILE_ZONE_SCOPED; lock_t lock(mLock); return mClosed && mStorage.empty(); } #endif