/** * @file llinitparam.h * @brief parameter block abstraction for creating complex objects and * parsing construction parameters from xml and LLSD * * $LicenseInfo:firstyear=2008&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #ifndef LL_LLPARAM_H #define LL_LLPARAM_H #include #include #include #include #include #include #include "llerror.h" #include "llstl.h" #include "llpredicate.h" namespace LLInitParam { // used to indicate no matching value to a given name when parsing struct Flag{}; template const T& defaultValue() { static T value; return value; } template ::value > struct ParamCompare { static bool equals(const T &a, const T &b) { return a == b; } }; // boost function types are not comparable template struct ParamCompare { static bool equals(const T&a, const T &b) { return false; } }; template<> struct ParamCompare { static bool equals(const LLSD &a, const LLSD &b) { return false; } }; template<> struct ParamCompare { static bool equals(const Flag& a, const Flag& b) { return false; } }; // helper functions and classes typedef ptrdiff_t param_handle_t; // empty default implementation of key cache // leverages empty base class optimization template class TypeValues { private: struct Inaccessable{}; public: typedef std::map value_name_map_t; typedef Inaccessable name_t; void setValueName(const std::string& key) {} std::string getValueName() const { return ""; } std::string calcValueName(const T& value) const { return ""; } void clearValueName() const {} static bool getValueFromName(const std::string& name, T& value) { return false; } static bool valueNamesExist() { return false; } static std::vector* getPossibleValues() { return NULL; } static value_name_map_t* getValueNames() {return NULL;} }; template > class TypeValuesHelper { public: typedef typename std::map value_name_map_t; typedef std::string name_t; //TODO: cache key by index to save on param block size void setValueName(const std::string& value_name) { mValueName = value_name; } std::string getValueName() const { return mValueName; } std::string calcValueName(const T& value) const { value_name_map_t* map = getValueNames(); for (typename value_name_map_t::iterator it = map->begin(), end_it = map->end(); it != end_it; ++it) { if (ParamCompare::equals(it->second, value)) { return it->first; } } return ""; } void clearValueName() const { mValueName.clear(); } static bool getValueFromName(const std::string& name, T& value) { value_name_map_t* map = getValueNames(); typename value_name_map_t::iterator found_it = map->find(name); if (found_it == map->end()) return false; value = found_it->second; return true; } static bool valueNamesExist() { return !getValueNames()->empty(); } static value_name_map_t* getValueNames() { static value_name_map_t sMap; static bool sInitialized = false; if (!sInitialized) { sInitialized = true; DERIVED_TYPE::declareValues(); } return &sMap; } static std::vector* getPossibleValues() { static std::vector sValues; value_name_map_t* map = getValueNames(); for (typename value_name_map_t::iterator it = map->begin(), end_it = map->end(); it != end_it; ++it) { sValues.push_back(it->first); } return &sValues; } static void declare(const std::string& name, const T& value) { (*getValueNames())[name] = value; } protected: static void getName(const std::string& name, const T& value) {} mutable std::string mValueName; }; class LL_COMMON_API Parser { LOG_CLASS(Parser); public: typedef std::vector > name_stack_t; typedef std::pair name_stack_range_t; typedef std::vector possible_values_t; typedef bool (*parser_read_func_t)(Parser& parser, void* output); typedef bool (*parser_write_func_t)(Parser& parser, const void*, name_stack_t&); typedef boost::function parser_inspect_func_t; typedef std::map parser_read_func_map_t; typedef std::map parser_write_func_map_t; typedef std::map parser_inspect_func_map_t; private: template::value> struct ReaderWriter { static bool read(T& param, Parser* parser) { parser_read_func_map_t::iterator found_it = parser->mParserReadFuncs->find(&typeid(T)); if (found_it != parser->mParserReadFuncs->end()) { return found_it->second(*parser, (void*)¶m); } return false; } static bool write(const T& param, Parser* parser, name_stack_t& name_stack) { parser_write_func_map_t::iterator found_it = parser->mParserWriteFuncs->find(&typeid(T)); if (found_it != parser->mParserWriteFuncs->end()) { return found_it->second(*parser, (const void*)¶m, name_stack); } return false; } }; // read enums as ints template struct ReaderWriter { static bool read(T& param, Parser* parser) { // read all enums as ints parser_read_func_map_t::iterator found_it = parser->mParserReadFuncs->find(&typeid(S32)); if (found_it != parser->mParserReadFuncs->end()) { S32 value; if (found_it->second(*parser, (void*)&value)) { param = (T)value; return true; } } return false; } static bool write(const T& param, Parser* parser, name_stack_t& name_stack) { parser_write_func_map_t::iterator found_it = parser->mParserWriteFuncs->find(&typeid(S32)); if (found_it != parser->mParserWriteFuncs->end()) { return found_it->second(*parser, (const void*)¶m, name_stack); } return false; } }; public: Parser(parser_read_func_map_t& read_map, parser_write_func_map_t& write_map, parser_inspect_func_map_t& inspect_map) : mParseSilently(false), mParserReadFuncs(&read_map), mParserWriteFuncs(&write_map), mParserInspectFuncs(&inspect_map) {} virtual ~Parser(); template bool readValue(T& param) { return ReaderWriter::read(param, this); } template bool writeValue(const T& param, name_stack_t& name_stack) { return ReaderWriter::write(param, this, name_stack); } // dispatch inspection to registered inspection functions, for each parameter in a param block template bool inspectValue(name_stack_t& name_stack, S32 min_count, S32 max_count, const possible_values_t* possible_values) { parser_inspect_func_map_t::iterator found_it = mParserInspectFuncs->find(&typeid(T)); if (found_it != mParserInspectFuncs->end()) { found_it->second(name_stack, min_count, max_count, possible_values); return true; } return false; } virtual std::string getCurrentElementName() = 0; virtual void parserWarning(const std::string& message); virtual void parserError(const std::string& message); void setParseSilently(bool silent) { mParseSilently = silent; } protected: template void registerParserFuncs(parser_read_func_t read_func, parser_write_func_t write_func = NULL) { mParserReadFuncs->insert(std::make_pair(&typeid(T), read_func)); mParserWriteFuncs->insert(std::make_pair(&typeid(T), write_func)); } template void registerInspectFunc(parser_inspect_func_t inspect_func) { mParserInspectFuncs->insert(std::make_pair(&typeid(T), inspect_func)); } bool mParseSilently; private: parser_read_func_map_t* mParserReadFuncs; parser_write_func_map_t* mParserWriteFuncs; parser_inspect_func_map_t* mParserInspectFuncs; }; class Param; enum ESerializePredicates { PROVIDED, REQUIRED, VALID, HAS_DEFAULT_VALUE, EMPTY }; typedef LLPredicate::Rule predicate_rule_t; predicate_rule_t default_parse_rules(); // various callbacks and constraints associated with an individual param struct LL_COMMON_API ParamDescriptor { struct UserData { virtual ~UserData() {} }; typedef bool(*merge_func_t)(Param&, const Param&, bool); typedef bool(*deserialize_func_t)(Param&, Parser&, const Parser::name_stack_range_t&, bool); typedef bool(*serialize_func_t)(const Param&, Parser&, Parser::name_stack_t&, const predicate_rule_t, const Param*); typedef void(*inspect_func_t)(const Param&, Parser&, Parser::name_stack_t&, S32, S32); typedef bool(*validation_func_t)(const Param*); ParamDescriptor(param_handle_t p, merge_func_t merge_func, deserialize_func_t deserialize_func, serialize_func_t serialize_func, validation_func_t validation_func, inspect_func_t inspect_func, S32 min_count, S32 max_count); ParamDescriptor(); ~ParamDescriptor(); param_handle_t mParamHandle; merge_func_t mMergeFunc; deserialize_func_t mDeserializeFunc; serialize_func_t mSerializeFunc; inspect_func_t mInspectFunc; validation_func_t mValidationFunc; S32 mMinCount; S32 mMaxCount; S32 mNumRefs; UserData* mUserData; }; typedef ParamDescriptor* ParamDescriptorPtr; // each derived Block class keeps a static data structure maintaining offsets to various params class LL_COMMON_API BlockDescriptor { public: BlockDescriptor(); typedef enum e_initialization_state { UNINITIALIZED, INITIALIZING, INITIALIZED } EInitializationState; void aggregateBlockData(BlockDescriptor& src_block_data); typedef boost::unordered_map param_map_t; typedef std::vector param_list_t; typedef std::list all_params_list_t; typedef std::vector > param_validation_list_t; param_map_t mNamedParams; // parameters with associated names param_list_t mUnnamedParams; // parameters with_out_ associated names param_validation_list_t mValidationList; // parameters that must be validated all_params_list_t mAllParams; // all parameters, owns descriptors size_t mMaxParamOffset; EInitializationState mInitializationState; // whether or not static block data has been initialized class BaseBlock* mCurrentBlockPtr; // pointer to block currently being constructed }; class LL_COMMON_API BaseBlock { public: //TODO: implement in terms of owned_ptr template class Lazy { public: Lazy() : mPtr(NULL) {} ~Lazy() { delete mPtr; } Lazy(const Lazy& other) { if (other.mPtr) { mPtr = new T(*other.mPtr); } else { mPtr = NULL; } } Lazy& operator = (const Lazy& other) { if (other.mPtr) { mPtr = new T(*other.mPtr); } else { mPtr = NULL; } return *this; } bool empty() const { return mPtr == NULL; } void set(const T& other) { delete mPtr; mPtr = new T(other); } const T& get() const { return ensureInstance(); } T& get() { return ensureInstance(); } private: // lazily allocate an instance of T T* ensureInstance() const { if (mPtr == NULL) { mPtr = new T(); } return mPtr; } private: // if you get a compilation error with this, that means you are using a forward declared struct for T // unfortunately, the type traits we rely on don't work with forward declared typed //static const int dummy = sizeof(T); mutable T* mPtr; }; // "Multiple" constraint types, put here in root class to avoid ambiguity during use struct AnyAmount { enum { minCount = 0 }; enum { maxCount = U32_MAX }; }; template struct AtLeast { enum { minCount = MIN_AMOUNT }; enum { maxCount = U32_MAX }; }; template struct AtMost { enum { minCount = 0 }; enum { maxCount = MAX_AMOUNT }; }; template struct Between { enum { minCount = MIN_AMOUNT }; enum { maxCount = MAX_AMOUNT }; }; template struct Exactly { enum { minCount = EXACT_COUNT }; enum { maxCount = EXACT_COUNT }; }; // this typedef identifies derived classes as being blocks typedef void baseblock_base_class_t; LOG_CLASS(BaseBlock); friend class Param; BaseBlock() : mValidated(false), mParamProvided(false) {} virtual ~BaseBlock() {} bool submitValue(Parser::name_stack_t& name_stack, Parser& p, bool silent=false); param_handle_t getHandleFromParam(const Param* param) const; bool validateBlock(bool emit_errors = true) const; bool isProvided() const { return mParamProvided; } bool isValid() const { return validateBlock(false); } Param* getParamFromHandle(const param_handle_t param_handle) { if (param_handle == 0) return NULL; U8* baseblock_address = reinterpret_cast(this); return reinterpret_cast(baseblock_address + param_handle); } const Param* getParamFromHandle(const param_handle_t param_handle) const { const U8* baseblock_address = reinterpret_cast(this); return reinterpret_cast(baseblock_address + param_handle); } void addSynonym(Param& param, const std::string& synonym); // Blocks can override this to do custom tracking of changes virtual void paramChanged(const Param& changed_param, bool user_provided) { if (user_provided) { // a child param has been explicitly changed // so *some* aspect of this block is now provided mValidated = false; mParamProvided = true; } } bool deserializeBlock(Parser& p, Parser::name_stack_range_t name_stack_range, bool new_name); bool serializeBlock(Parser& p, Parser::name_stack_t& name_stack, const predicate_rule_t rule, const BaseBlock* diff_block = NULL) const; bool inspectBlock(Parser& p, Parser::name_stack_t name_stack = Parser::name_stack_t(), S32 min_count = 0, S32 max_count = S32_MAX) const; virtual const BlockDescriptor& mostDerivedBlockDescriptor() const { return selfBlockDescriptor(); } virtual BlockDescriptor& mostDerivedBlockDescriptor() { return selfBlockDescriptor(); } // take all provided params from other and apply to self bool overwriteFrom(const BaseBlock& other) { return false; } // take all provided params that are not already provided, and apply to self bool fillFrom(const BaseBlock& other) { return false; } static void addParam(BlockDescriptor& block_data, ParamDescriptorPtr param, const char* name); ParamDescriptorPtr findParamDescriptor(const Param& param); protected: void init(BlockDescriptor& descriptor, BlockDescriptor& base_descriptor, size_t block_size); bool mergeBlockParam(bool source_provided, bool dst_provided, BlockDescriptor& block_data, const BaseBlock& source, bool overwrite) { return mergeBlock(block_data, source, overwrite); } // take all provided params from other and apply to self bool mergeBlock(BlockDescriptor& block_data, const BaseBlock& other, bool overwrite); static BlockDescriptor& selfBlockDescriptor() { static BlockDescriptor sBlockDescriptor; return sBlockDescriptor; } mutable bool mValidated; // lazy validation flag bool mParamProvided; private: const std::string& getParamName(const BlockDescriptor& block_data, const Param* paramp) const; }; template struct ParamCompare, false > { static bool equals(const BaseBlock::Lazy& a, const BaseBlock::Lazy& b) { return !a.empty() || !b.empty(); } }; class LL_COMMON_API Param { public: void setProvided(bool is_provided = true) { mIsProvided = is_provided; enclosingBlock().paramChanged(*this, is_provided); } Param& operator =(const Param& other) { mIsProvided = other.mIsProvided; // don't change mEnclosingblockoffset return *this; } protected: bool anyProvided() const { return mIsProvided; } Param(BaseBlock* enclosing_block); // store pointer to enclosing block as offset to reduce space and allow for quick copying BaseBlock& enclosingBlock() const { const U8* my_addr = reinterpret_cast(this); // get address of enclosing BLOCK class using stored offset to enclosing BaseBlock class return *const_cast (reinterpret_cast (my_addr - (ptrdiff_t)(S32)mEnclosingBlockOffset)); } private: friend class BaseBlock; U32 mEnclosingBlockOffset:31; U32 mIsProvided:1; }; // these templates allow us to distinguish between template parameters // that derive from BaseBlock and those that don't template struct IsBlock { static const bool value = false; struct EmptyBase {}; typedef EmptyBase base_class_t; }; template struct IsBlock { static const bool value = true; typedef BaseBlock base_class_t; }; template struct IsBlock, typename T::baseblock_base_class_t > { static const bool value = true; typedef BaseBlock base_class_t; }; template::value> class ParamValue : public NAME_VALUE_LOOKUP { public: typedef const T& value_assignment_t; typedef T value_t; typedef ParamValue self_t; ParamValue(): mValue() {} ParamValue(value_assignment_t other) : mValue(other) {} void setValue(value_assignment_t val) { mValue = val; } value_assignment_t getValue() const { return mValue; } T& getValue() { return mValue; } operator value_assignment_t() const { return mValue; } value_assignment_t operator()() const { return mValue; } void operator ()(const typename NAME_VALUE_LOOKUP::name_t& name) { *this = name; } self_t& operator =(const typename NAME_VALUE_LOOKUP::name_t& name) { if (NAME_VALUE_LOOKUP::getValueFromName(name, mValue)) { setValueName(name); } return *this; } protected: T mValue; }; template class ParamValue : public T, public NAME_VALUE_LOOKUP { public: typedef const T& value_assignment_t; typedef T value_t; typedef ParamValue self_t; ParamValue() : T() {} ParamValue(value_assignment_t other) : T(other) {} void setValue(value_assignment_t val) { *this = val; } value_assignment_t getValue() const { return *this; } T& getValue() { return *this; } operator value_assignment_t() const { return *this; } value_assignment_t operator()() const { return *this; } void operator ()(const typename NAME_VALUE_LOOKUP::name_t& name) { *this = name; } self_t& operator =(const typename NAME_VALUE_LOOKUP::name_t& name) { if (NAME_VALUE_LOOKUP::getValueFromName(name, *this)) { setValueName(name); } return *this; } }; template class ParamValue : public NAME_VALUE_LOOKUP { public: typedef const std::string& value_assignment_t; typedef std::string value_t; typedef ParamValue self_t; ParamValue(): mValue() {} ParamValue(value_assignment_t other) : mValue(other) {} void setValue(value_assignment_t val) { if (NAME_VALUE_LOOKUP::getValueFromName(val, mValue)) { NAME_VALUE_LOOKUP::setValueName(val); } else { mValue = val; } } value_assignment_t getValue() const { return mValue; } std::string& getValue() { return mValue; } operator value_assignment_t() const { return mValue; } value_assignment_t operator()() const { return mValue; } protected: std::string mValue; }; template > struct ParamIterator { typedef typename std::vector >::const_iterator const_iterator; typedef typename std::vector >::iterator iterator; }; // specialize for custom parsing/decomposition of specific classes // e.g. TypedParam has left, top, right, bottom, etc... template, bool HAS_MULTIPLE_VALUES = false, bool VALUE_IS_BLOCK = IsBlock >::value> class TypedParam : public Param, public ParamValue { public: typedef TypedParam self_t; typedef ParamValue param_value_t; typedef typename param_value_t::value_assignment_t value_assignment_t; typedef NAME_VALUE_LOOKUP name_value_lookup_t; using param_value_t::operator(); TypedParam(BlockDescriptor& block_descriptor, const char* name, value_assignment_t value, ParamDescriptor::validation_func_t validate_func, S32 min_count, S32 max_count) : Param(block_descriptor.mCurrentBlockPtr) { if (LL_UNLIKELY(block_descriptor.mInitializationState == BlockDescriptor::INITIALIZING)) { ParamDescriptorPtr param_descriptor = ParamDescriptorPtr(new ParamDescriptor( block_descriptor.mCurrentBlockPtr->getHandleFromParam(this), &mergeWith, &deserializeParam, &serializeParam, validate_func, &inspectParam, min_count, max_count)); BaseBlock::addParam(block_descriptor, param_descriptor, name); } setValue(value); } bool isProvided() const { return Param::anyProvided(); } bool isValid() const { return true; } static bool deserializeParam(Param& param, Parser& parser, const Parser::name_stack_range_t& name_stack_range, bool new_name) { self_t& typed_param = static_cast(param); // no further names in stack, attempt to parse value now if (name_stack_range.first == name_stack_range.second) { std::string name; // try to parse a known named value if(name_value_lookup_t::valueNamesExist() && parser.readValue(name) && name_value_lookup_t::getValueFromName(name, typed_param.getValue())) { typed_param.setValueName(name); typed_param.setProvided(); return true; } // try to read value directly else if (parser.readValue(typed_param.getValue())) { typed_param.clearValueName(); typed_param.setProvided(); return true; } } return false; } static bool serializeParam(const Param& param, Parser& parser, Parser::name_stack_t& name_stack, const predicate_rule_t predicate_rule, const Param* diff_param) { bool serialized = false; const self_t& typed_param = static_cast(param); const self_t* diff_typed_param = static_cast(diff_param); LLPredicate::Value predicate; if (diff_typed_param && ParamCompare::equals(typed_param.getValue(), diff_typed_param->getValue())) { predicate.set(HAS_DEFAULT_VALUE); } predicate.set(VALID, typed_param.isValid()); predicate.set(PROVIDED, typed_param.anyProvided()); predicate.set(EMPTY, false); if (!predicate_rule.check(predicate)) return false; if (!name_stack.empty()) { name_stack.back().second = true; } std::string key = typed_param.getValueName(); // first try to write out name of name/value pair if (!key.empty()) { if (!diff_typed_param || !ParamCompare::equals(diff_typed_param->getValueName(), key)) { serialized = parser.writeValue(key, name_stack); } } // then try to serialize value directly else if (!diff_typed_param || ParamCompare::equals(typed_param.getValue(), diff_typed_param->getValue())) { serialized = parser.writeValue(typed_param.getValue(), name_stack); if (!serialized) { std::string calculated_key = typed_param.calcValueName(typed_param.getValue()); if (!diff_typed_param || !ParamCompare::equals(diff_typed_param->getValueName(), calculated_key)) { serialized = parser.writeValue(calculated_key, name_stack); } } } return serialized; } static void inspectParam(const Param& param, Parser& parser, Parser::name_stack_t& name_stack, S32 min_count, S32 max_count) { // tell parser about our actual type parser.inspectValue(name_stack, min_count, max_count, NULL); // then tell it about string-based alternatives ("red", "blue", etc. for LLColor4) if (name_value_lookup_t::getPossibleValues()) { parser.inspectValue(name_stack, min_count, max_count, name_value_lookup_t::getPossibleValues()); } } void set(value_assignment_t val, bool flag_as_provided = true) { param_value_t::clearValueName(); setValue(val); setProvided(flag_as_provided); } self_t& operator =(const typename NAME_VALUE_LOOKUP::name_t& name) { return static_cast(param_value_t::operator =(name)); } protected: self_t& operator =(const self_t& other) { param_value_t::operator =(other); Param::operator =(other); return *this; } static bool mergeWith(Param& dst, const Param& src, bool overwrite) { const self_t& src_typed_param = static_cast(src); self_t& dst_typed_param = static_cast(dst); if (src_typed_param.isProvided() && (overwrite || !dst_typed_param.isProvided())) { dst_typed_param.set(src_typed_param.getValue()); return true; } return false; } }; // parameter that is a block template class TypedParam : public Param, public ParamValue { public: typedef ParamValue param_value_t; typedef typename param_value_t::value_assignment_t value_assignment_t; typedef TypedParam self_t; typedef NAME_VALUE_LOOKUP name_value_lookup_t; using param_value_t::operator(); TypedParam(BlockDescriptor& block_descriptor, const char* name, value_assignment_t value, ParamDescriptor::validation_func_t validate_func, S32 min_count, S32 max_count) : Param(block_descriptor.mCurrentBlockPtr), param_value_t(value) { if (LL_UNLIKELY(block_descriptor.mInitializationState == BlockDescriptor::INITIALIZING)) { ParamDescriptorPtr param_descriptor = ParamDescriptorPtr(new ParamDescriptor( block_descriptor.mCurrentBlockPtr->getHandleFromParam(this), &mergeWith, &deserializeParam, &serializeParam, validate_func, &inspectParam, min_count, max_count)); BaseBlock::addParam(block_descriptor, param_descriptor, name); } } static bool deserializeParam(Param& param, Parser& parser, const Parser::name_stack_range_t& name_stack_range, bool new_name) { self_t& typed_param = static_cast(param); if (name_stack_range.first == name_stack_range.second) { // try to parse a known named value std::string name; if(name_value_lookup_t::valueNamesExist() && parser.readValue(name) && name_value_lookup_t::getValueFromName(name, typed_param.getValue())) { typed_param.setValueName(name); typed_param.setProvided(); return true; } } if(typed_param.deserializeBlock(parser, name_stack_range, new_name)) { // attempt to parse block... typed_param.clearValueName(); typed_param.setProvided(); return true; } return false; } static bool serializeParam(const Param& param, Parser& parser, Parser::name_stack_t& name_stack, const predicate_rule_t predicate_rule, const Param* diff_param) { const self_t& typed_param = static_cast(param); LLPredicate::Value predicate; predicate.set(VALID, typed_param.isValid()); predicate.set(PROVIDED, typed_param.anyProvided()); if (!predicate_rule.check(predicate)) return false; if (!name_stack.empty()) { name_stack.back().second = true; } std::string key = typed_param.getValueName(); if (!key.empty()) { if (parser.writeValue(key, name_stack)) { return true; } } else { return typed_param.serializeBlock(parser, name_stack, predicate_rule, static_cast(diff_param)); } return false; } static void inspectParam(const Param& param, Parser& parser, Parser::name_stack_t& name_stack, S32 min_count, S32 max_count) { // I am a param that is also a block, so just recurse into my contents const self_t& typed_param = static_cast(param); typed_param.inspectBlock(parser, name_stack, min_count, max_count); } // a param-that-is-a-block is provided when the user has set one of its child params // *and* the block as a whole validates bool isProvided() const { return Param::anyProvided() && isValid(); } using param_value_t::isValid; // assign block contents to this param-that-is-a-block void set(value_assignment_t val, bool flag_as_provided = true) { setValue(val); param_value_t::clearValueName(); setProvided(flag_as_provided); } self_t& operator =(const typename NAME_VALUE_LOOKUP::name_t& name) { return static_cast(param_value_t::operator =(name)); } // propagate changed status up to enclosing block /*virtual*/ void paramChanged(const Param& changed_param, bool user_provided) { param_value_t::paramChanged(changed_param, user_provided); if (user_provided) { setProvided(); param_value_t::clearValueName(); } else { Param::enclosingBlock().paramChanged(*this, user_provided); } } protected: self_t& operator =(const self_t& other) { param_value_t::operator =(other); Param::operator =(other); return *this; } static bool mergeWith(Param& dst, const Param& src, bool overwrite) { const self_t& src_typed_param = static_cast(src); self_t& dst_typed_param = static_cast(dst); if (src_typed_param.anyProvided()) { if (dst_typed_param.mergeBlockParam(src_typed_param.isProvided(), dst_typed_param.isProvided(), param_value_t::selfBlockDescriptor(), src_typed_param, overwrite)) { dst_typed_param.clearValueName(); dst_typed_param.setProvided(true); return true; } } return false; } }; // container of non-block parameters template class TypedParam : public Param { public: typedef TypedParam self_t; typedef ParamValue param_value_t; typedef typename std::vector container_t; typedef const container_t& value_assignment_t; typedef typename param_value_t::value_t value_t; typedef NAME_VALUE_LOOKUP name_value_lookup_t; TypedParam(BlockDescriptor& block_descriptor, const char* name, value_assignment_t value, ParamDescriptor::validation_func_t validate_func, S32 min_count, S32 max_count) : Param(block_descriptor.mCurrentBlockPtr), mMinCount(min_count), mMaxCount(max_count) { std::copy(value.begin(), value.end(), std::back_inserter(mValues)); if (LL_UNLIKELY(block_descriptor.mInitializationState == BlockDescriptor::INITIALIZING)) { ParamDescriptorPtr param_descriptor = ParamDescriptorPtr(new ParamDescriptor( block_descriptor.mCurrentBlockPtr->getHandleFromParam(this), &mergeWith, &deserializeParam, &serializeParam, validate_func, &inspectParam, min_count, max_count)); BaseBlock::addParam(block_descriptor, param_descriptor, name); } } bool isProvided() const { return Param::anyProvided() && isValid(); } bool isValid() const { size_t num_elements = numValidElements(); return mMinCount < num_elements && num_elements < mMaxCount; } static bool deserializeParam(Param& param, Parser& parser, const Parser::name_stack_range_t& name_stack_range, bool new_name) { Parser::name_stack_range_t new_name_stack_range(name_stack_range); self_t& typed_param = static_cast(param); value_t value; // pop first element if empty string if (new_name_stack_range.first != new_name_stack_range.second && new_name_stack_range.first->first.empty()) { ++new_name_stack_range.first; } // no further names in stack, attempt to parse value now if (new_name_stack_range.first == new_name_stack_range.second) { std::string name; // try to parse a known named value if(name_value_lookup_t::valueNamesExist() && parser.readValue(name) && name_value_lookup_t::getValueFromName(name, value)) { typed_param.add(value); typed_param.mValues.back().setValueName(name); return true; } else if (parser.readValue(value)) // attempt to read value directly { typed_param.add(value); return true; } } return false; } static bool serializeParam(const Param& param, Parser& parser, Parser::name_stack_t& name_stack, const predicate_rule_t predicate_rule, const Param* diff_param) { bool serialized = false; const self_t& typed_param = static_cast(param); LLPredicate::Value predicate; predicate.set(REQUIRED, typed_param.mMinCount > 0); predicate.set(VALID, typed_param.isValid()); predicate.set(PROVIDED, typed_param.anyProvided()); predicate.set(EMPTY, typed_param.mValues.empty()); if (!predicate_rule.check(predicate)) return false; for (const_iterator it = typed_param.mValues.begin(), end_it = typed_param.mValues.end(); it != end_it; ++it) { std::string key = it->getValueName(); name_stack.push_back(std::make_pair(std::string(), true)); if(key.empty()) // not parsed via name values, write out value directly { bool value_written = parser.writeValue(*it, name_stack); if (!value_written) { std::string calculated_key = it->calcValueName(it->getValue()); if (parser.writeValue(calculated_key, name_stack)) { serialized = true; } else { break; } } } else { if(parser.writeValue(key, name_stack)) { serialized = true; } else { break; } } name_stack.pop_back(); } if (!serialized && predicate_rule.check(ll_make_predicate(EMPTY))) { serialized |= parser.writeValue(Flag(), name_stack); } return serialized; } static void inspectParam(const Param& param, Parser& parser, Parser::name_stack_t& name_stack, S32 min_count, S32 max_count) { parser.inspectValue(name_stack, min_count, max_count, NULL); if (name_value_lookup_t::getPossibleValues()) { parser.inspectValue(name_stack, min_count, max_count, name_value_lookup_t::getPossibleValues()); } } void set(value_assignment_t val, bool flag_as_provided = true) { mValues = val; setProvided(flag_as_provided); } param_value_t& add() { mValues.push_back(param_value_t(value_t())); Param::setProvided(); return mValues.back(); } self_t& add(const value_t& item) { param_value_t param_value; param_value.setValue(item); mValues.push_back(param_value); setProvided(); return *this; } self_t& add(const typename name_value_lookup_t::name_t& name) { value_t value; // try to parse a per type named value if (name_value_lookup_t::getValueFromName(name, value)) { add(value); mValues.back().setValueName(name); } return *this; } // implicit conversion operator value_assignment_t() const { return mValues; } // explicit conversion value_assignment_t operator()() const { return mValues; } typedef typename container_t::iterator iterator; typedef typename container_t::const_iterator const_iterator; iterator begin() { return mValues.begin(); } iterator end() { return mValues.end(); } const_iterator begin() const { return mValues.begin(); } const_iterator end() const { return mValues.end(); } bool empty() const { return mValues.empty(); } size_t size() const { return mValues.size(); } size_t numValidElements() const { return mValues.size(); } protected: static bool mergeWith(Param& dst, const Param& src, bool overwrite) { const self_t& src_typed_param = static_cast(src); self_t& dst_typed_param = static_cast(dst); if (overwrite) { std::copy(src_typed_param.begin(), src_typed_param.end(), std::back_inserter(dst_typed_param.mValues)); } else { container_t new_values(src_typed_param.mValues); std::copy(dst_typed_param.begin(), dst_typed_param.end(), std::back_inserter(new_values)); std::swap(dst_typed_param.mValues, new_values); } if (src_typed_param.begin() != src_typed_param.end()) { dst_typed_param.setProvided(); } return true; } container_t mValues; size_t mMinCount, mMaxCount; }; // container of block parameters template class TypedParam : public Param { public: typedef TypedParam self_t; typedef ParamValue param_value_t; typedef typename std::vector container_t; typedef const container_t& value_assignment_t; typedef typename param_value_t::value_t value_t; typedef NAME_VALUE_LOOKUP name_value_lookup_t; TypedParam(BlockDescriptor& block_descriptor, const char* name, value_assignment_t value, ParamDescriptor::validation_func_t validate_func, S32 min_count, S32 max_count) : Param(block_descriptor.mCurrentBlockPtr), mMinCount(min_count), mMaxCount(max_count) { std::copy(value.begin(), value.end(), back_inserter(mValues)); if (LL_UNLIKELY(block_descriptor.mInitializationState == BlockDescriptor::INITIALIZING)) { ParamDescriptorPtr param_descriptor = ParamDescriptorPtr(new ParamDescriptor( block_descriptor.mCurrentBlockPtr->getHandleFromParam(this), &mergeWith, &deserializeParam, &serializeParam, validate_func, &inspectParam, min_count, max_count)); BaseBlock::addParam(block_descriptor, param_descriptor, name); } } bool isProvided() const { return Param::anyProvided() && isValid(); } bool isValid() const { size_t num_elements = numValidElements(); return mMinCount < num_elements && num_elements < mMaxCount; } static bool deserializeParam(Param& param, Parser& parser, const Parser::name_stack_range_t& name_stack_range, bool new_name) { Parser::name_stack_range_t new_name_stack_range(name_stack_range); self_t& typed_param = static_cast(param); bool new_value = false; bool new_array_value = false; // pop first element if empty string if (new_name_stack_range.first != new_name_stack_range.second && new_name_stack_range.first->first.empty()) { new_array_value = new_name_stack_range.first->second; ++new_name_stack_range.first; } if (new_name || new_array_value || typed_param.mValues.empty()) { new_value = true; typed_param.mValues.push_back(value_t()); } param_value_t& value = typed_param.mValues.back(); if (new_name_stack_range.first == new_name_stack_range.second) { // try to parse a known named value std::string name; if(name_value_lookup_t::valueNamesExist() && parser.readValue(name) && name_value_lookup_t::getValueFromName(name, value.getValue())) { typed_param.mValues.back().setValueName(name); typed_param.setProvided(); if (new_array_value) { name_stack_range.first->second = false; } return true; } } // attempt to parse block... if(value.deserializeBlock(parser, name_stack_range, new_name)) { typed_param.setProvided(); if (new_array_value) { name_stack_range.first->second = false; } return true; } if (new_value) { // failed to parse new value, pop it off typed_param.mValues.pop_back(); } return false; } static bool serializeParam(const Param& param, Parser& parser, Parser::name_stack_t& name_stack, const predicate_rule_t predicate_rule, const Param* diff_param) { bool serialized = false; const self_t& typed_param = static_cast(param); LLPredicate::Value predicate; predicate.set(REQUIRED, typed_param.mMinCount > 0); predicate.set(VALID, typed_param.isValid()); predicate.set(PROVIDED, typed_param.anyProvided()); predicate.set(EMPTY, typed_param.mValues.empty()); if (!predicate_rule.check(predicate)) return false; for (const_iterator it = typed_param.mValues.begin(), end_it = typed_param.mValues.end(); it != end_it; ++it) { name_stack.push_back(std::make_pair(std::string(), true)); std::string key = it->getValueName(); if (!key.empty()) { serialized |= parser.writeValue(key, name_stack); } // Not parsed via named values, write out value directly // NOTE: currently we don't do diffing of Multiples else { serialized = it->serializeBlock(parser, name_stack, predicate_rule, NULL); } name_stack.pop_back(); } if (!serialized && predicate_rule.check(ll_make_predicate(EMPTY))) { serialized |= parser.writeValue(Flag(), name_stack); } return serialized; } static void inspectParam(const Param& param, Parser& parser, Parser::name_stack_t& name_stack, S32 min_count, S32 max_count) { // I am a vector of blocks, so describe my contents recursively param_value_t(value_t()).inspectBlock(parser, name_stack, min_count, max_count); } void set(value_assignment_t val, bool flag_as_provided = true) { mValues = val; setProvided(flag_as_provided); } param_value_t& add() { mValues.push_back(value_t()); setProvided(); return mValues.back(); } self_t& add(const value_t& item) { mValues.push_back(item); setProvided(); return *this; } self_t& add(const typename name_value_lookup_t::name_t& name) { value_t value; // try to parse a per type named value if (name_value_lookup_t::getValueFromName(name, value)) { add(value); mValues.back().setValueName(name); } return *this; } // implicit conversion operator value_assignment_t() const { return mValues; } // explicit conversion value_assignment_t operator()() const { return mValues; } typedef typename container_t::iterator iterator; typedef typename container_t::const_iterator const_iterator; iterator begin() { return mValues.begin(); } iterator end() { return mValues.end(); } const_iterator begin() const { return mValues.begin(); } const_iterator end() const { return mValues.end(); } bool empty() const { return mValues.empty(); } size_t size() const { return mValues.size(); } size_t numValidElements() const { size_t count = 0; for (const_iterator it = mValues.begin(), end_it = mValues.end(); it != end_it; ++it) { if(it->isValid()) count++; } return count; } protected: static bool mergeWith(Param& dst, const Param& src, bool overwrite) { const self_t& src_typed_param = static_cast(src); self_t& dst_typed_param = static_cast(dst); if (overwrite) { std::copy(src_typed_param.begin(), src_typed_param.end(), std::back_inserter(dst_typed_param.mValues)); } else { container_t new_values(src_typed_param.mValues); std::copy(dst_typed_param.begin(), dst_typed_param.end(), std::back_inserter(new_values)); std::swap(dst_typed_param.mValues, new_values); } if (src_typed_param.begin() != src_typed_param.end()) { dst_typed_param.setProvided(); } return true; } container_t mValues; size_t mMinCount, mMaxCount; }; template class ChoiceBlock : public BASE_BLOCK { typedef ChoiceBlock self_t; typedef ChoiceBlock enclosing_block_t; typedef BASE_BLOCK base_block_t; LOG_CLASS(self_t); public: // take all provided params from other and apply to self bool overwriteFrom(const self_t& other) { return static_cast(this)->mergeBlock(selfBlockDescriptor(), other, true); } // take all provided params that are not already provided, and apply to self bool fillFrom(const self_t& other) { return static_cast(this)->mergeBlock(selfBlockDescriptor(), other, false); } bool mergeBlockParam(bool source_provided, bool dest_provided, BlockDescriptor& block_data, const self_t& source, bool overwrite) { bool source_override = source_provided && (overwrite || !dest_provided); if (source_override || source.mCurChoice == mCurChoice) { return mergeBlock(block_data, source, overwrite); } return false; } // merge with other block bool mergeBlock(BlockDescriptor& block_data, const self_t& other, bool overwrite) { mCurChoice = other.mCurChoice; return base_block_t::mergeBlock(selfBlockDescriptor(), other, overwrite); } // clear out old choice when param has changed /*virtual*/ void paramChanged(const Param& changed_param, bool user_provided) { param_handle_t changed_param_handle = base_block_t::getHandleFromParam(&changed_param); // if we have a new choice... if (changed_param_handle != mCurChoice) { // clear provided flag on previous choice Param* previous_choice = base_block_t::getParamFromHandle(mCurChoice); if (previous_choice) { previous_choice->setProvided(false); } mCurChoice = changed_param_handle; } base_block_t::paramChanged(changed_param, user_provided); } virtual const BlockDescriptor& mostDerivedBlockDescriptor() const { return selfBlockDescriptor(); } virtual BlockDescriptor& mostDerivedBlockDescriptor() { return selfBlockDescriptor(); } protected: ChoiceBlock() : mCurChoice(0) { BaseBlock::init(selfBlockDescriptor(), base_block_t::selfBlockDescriptor(), sizeof(DERIVED_BLOCK)); } // Alternatives are mutually exclusive wrt other Alternatives in the same block. // One alternative in a block will always have isChosen() == true. // At most one alternative in a block will have isProvided() == true. template > class Alternative : public TypedParam { public: friend class ChoiceBlock; typedef Alternative self_t; typedef TypedParam >::value> super_t; typedef typename super_t::value_assignment_t value_assignment_t; using super_t::operator =; explicit Alternative(const char* name = "", value_assignment_t val = defaultValue()) : super_t(DERIVED_BLOCK::selfBlockDescriptor(), name, val, NULL, 0, 1), mOriginalValue(val) { // assign initial choice to first declared option DERIVED_BLOCK* blockp = ((DERIVED_BLOCK*)DERIVED_BLOCK::selfBlockDescriptor().mCurrentBlockPtr); if (LL_UNLIKELY(DERIVED_BLOCK::selfBlockDescriptor().mInitializationState == BlockDescriptor::INITIALIZING)) { if(blockp->mCurChoice == 0) { blockp->mCurChoice = Param::enclosingBlock().getHandleFromParam(this); } } } void choose() { static_cast(Param::enclosingBlock()).paramChanged(*this, true); } void chooseAs(value_assignment_t val) { super_t::set(val); } void operator =(value_assignment_t val) { super_t::set(val); } void operator()(typename super_t::value_assignment_t val) { super_t::set(val); } operator value_assignment_t() const { return (*this)(); } value_assignment_t operator()() const { if (static_cast(Param::enclosingBlock()).getCurrentChoice() == this) { return super_t::getValue(); } return mOriginalValue; } bool isChosen() const { return static_cast(Param::enclosingBlock()).getCurrentChoice() == this; } private: T mOriginalValue; }; protected: static BlockDescriptor& selfBlockDescriptor() { static BlockDescriptor sBlockDescriptor; return sBlockDescriptor; } private: param_handle_t mCurChoice; const Param* getCurrentChoice() const { return base_block_t::getParamFromHandle(mCurChoice); } }; template class Block : public BASE_BLOCK { typedef Block self_t; typedef Block block_t; public: typedef BASE_BLOCK base_block_t; // take all provided params from other and apply to self bool overwriteFrom(const self_t& other) { return static_cast(this)->mergeBlock(selfBlockDescriptor(), other, true); } // take all provided params that are not already provided, and apply to self bool fillFrom(const self_t& other) { return static_cast(this)->mergeBlock(selfBlockDescriptor(), other, false); } virtual const BlockDescriptor& mostDerivedBlockDescriptor() const { return selfBlockDescriptor(); } virtual BlockDescriptor& mostDerivedBlockDescriptor() { return selfBlockDescriptor(); } protected: Block() { //#pragma message("Parsing LLInitParam::Block") BaseBlock::init(selfBlockDescriptor(), BASE_BLOCK::selfBlockDescriptor(), sizeof(DERIVED_BLOCK)); } // // Nested classes for declaring parameters // template > class Optional : public TypedParam { public: typedef TypedParam >::value> super_t; typedef typename super_t::value_assignment_t value_assignment_t; using super_t::operator(); using super_t::operator =; explicit Optional(const char* name = "", value_assignment_t val = defaultValue()) : super_t(DERIVED_BLOCK::selfBlockDescriptor(), name, val, NULL, 0, 1) { //#pragma message("Parsing LLInitParam::Block::Optional") } Optional& operator =(value_assignment_t val) { set(val); return *this; } DERIVED_BLOCK& operator()(value_assignment_t val) { super_t::set(val); return static_cast(Param::enclosingBlock()); } }; template > class Mandatory : public TypedParam { public: typedef TypedParam >::value> super_t; typedef Mandatory self_t; typedef typename super_t::value_assignment_t value_assignment_t; using super_t::operator(); using super_t::operator =; // mandatory parameters require a name to be parseable explicit Mandatory(const char* name = "", value_assignment_t val = defaultValue()) : super_t(DERIVED_BLOCK::selfBlockDescriptor(), name, val, &validate, 1, 1) {} Mandatory& operator =(value_assignment_t val) { set(val); return *this; } DERIVED_BLOCK& operator()(typename super_t::value_assignment_t val) { super_t::set(val); return static_cast(Param::enclosingBlock()); } static bool validate(const Param* p) { // valid only if provided return static_cast(p)->isProvided(); } }; template > class Multiple : public TypedParam { public: typedef TypedParam >::value> super_t; typedef Multiple self_t; typedef typename super_t::container_t container_t; typedef typename super_t::value_assignment_t value_assignment_t; typedef typename super_t::iterator iterator; typedef typename super_t::const_iterator const_iterator; explicit Multiple(const char* name = "") : super_t(DERIVED_BLOCK::selfBlockDescriptor(), name, container_t(), &validate, RANGE::minCount, RANGE::maxCount) {} Multiple& operator =(value_assignment_t val) { set(val); return *this; } DERIVED_BLOCK& operator()(typename super_t::value_assignment_t val) { super_t::set(val); return static_cast(Param::enclosingBlock()); } static bool validate(const Param* paramp) { size_t num_valid = ((super_t*)paramp)->numValidElements(); return RANGE::minCount <= num_valid && num_valid <= RANGE::maxCount; } }; class Deprecated : public Param { public: explicit Deprecated(const char* name) : Param(DERIVED_BLOCK::selfBlockDescriptor().mCurrentBlockPtr) { BlockDescriptor& block_descriptor = DERIVED_BLOCK::selfBlockDescriptor(); if (LL_UNLIKELY(block_descriptor.mInitializationState == BlockDescriptor::INITIALIZING)) { ParamDescriptorPtr param_descriptor = ParamDescriptorPtr(new ParamDescriptor( block_descriptor.mCurrentBlockPtr->getHandleFromParam(this), NULL, &deserializeParam, NULL, NULL, NULL, 0, S32_MAX)); BaseBlock::addParam(block_descriptor, param_descriptor, name); } } static bool deserializeParam(Param& param, Parser& parser, const Parser::name_stack_range_t& name_stack_range, bool new_name) { if (name_stack_range.first == name_stack_range.second) { //std::string message = llformat("Deprecated value %s ignored", getName().c_str()); //parser.parserWarning(message); return true; } return false; } }; // different semantics for documentation purposes, but functionally identical typedef Deprecated Ignored; protected: static BlockDescriptor& selfBlockDescriptor() { static BlockDescriptor sBlockDescriptor; return sBlockDescriptor; } template void changeDefault(TypedParam& param, typename TypedParam::value_assignment_t value) { if (!param.isProvided()) { param.set(value, false); } } }; template class BatchBlock : public Block { public: typedef BatchBlock self_t; typedef Block super_t; BatchBlock() {} bool deserializeBlock(Parser& p, Parser::name_stack_range_t name_stack_range, bool new_name) { if (new_name) { // reset block *static_cast(this) = defaultBatchValue(); } return super_t::deserializeBlock(p, name_stack_range, new_name); } bool mergeBlock(BlockDescriptor& block_data, const BaseBlock& other, bool overwrite) { if (overwrite) { *static_cast(this) = defaultBatchValue(); // merge individual parameters into destination return super_t::mergeBlock(super_t::selfBlockDescriptor(), other, overwrite); } return false; } protected: static const DERIVED_BLOCK& defaultBatchValue() { static DERIVED_BLOCK default_value; return default_value; } }; // FIXME: this specialization is not currently used, as it only matches against the BatchBlock base class // and not the derived class with the actual params template class ParamValue , NAME_VALUE_LOOKUP, true> : public NAME_VALUE_LOOKUP, protected BatchBlock { public: typedef BatchBlock block_t; typedef const BatchBlock& value_assignment_t; typedef block_t value_t; ParamValue() : block_t() {} ParamValue(value_assignment_t other) : block_t(other) { } void setValue(value_assignment_t val) { *this = val; } value_assignment_t getValue() const { return *this; } BatchBlock& getValue() { return *this; } operator value_assignment_t() const { return *this; } value_assignment_t operator()() const { return *this; } }; template class ParamValue , TypeValues, IS_BLOCK> : public IsBlock::base_class_t { public: typedef ParamValue , TypeValues, false> self_t; typedef const T& value_assignment_t; typedef T value_t; ParamValue() : mValue() {} ParamValue(value_assignment_t other) : mValue(other) {} void setValue(value_assignment_t val) { mValue.set(val); } value_assignment_t getValue() const { return mValue.get(); } T& getValue() { return mValue.get(); } operator value_assignment_t() const { return mValue.get(); } value_assignment_t operator()() const { return mValue.get(); } bool deserializeBlock(Parser& p, Parser::name_stack_range_t name_stack_range, bool new_name) { return mValue.get().deserializeBlock(p, name_stack_range, new_name); } bool serializeBlock(Parser& p, Parser::name_stack_t& name_stack, const predicate_rule_t predicate_rule, const BaseBlock* diff_block = NULL) const { if (mValue.empty()) return false; return mValue.get().serializeBlock(p, name_stack, predicate_rule, diff_block); } bool inspectBlock(Parser& p, Parser::name_stack_t name_stack = Parser::name_stack_t(), S32 min_count = 0, S32 max_count = S32_MAX) const { if (mValue.empty()) return false; return mValue.get().inspectBlock(p, name_stack, min_count, max_count); } private: BaseBlock::Lazy mValue; }; template <> class ParamValue , false> : public TypeValues, public BaseBlock { public: typedef ParamValue, false> self_t; typedef const LLSD& value_assignment_t; ParamValue() {} ParamValue(value_assignment_t other) : mValue(other) {} void setValue(value_assignment_t val) { mValue = val; } value_assignment_t getValue() const { return mValue; } LLSD& getValue() { return mValue; } operator value_assignment_t() const { return mValue; } value_assignment_t operator()() const { return mValue; } // block param interface LL_COMMON_API bool deserializeBlock(Parser& p, Parser::name_stack_range_t name_stack_range, bool new_name); LL_COMMON_API bool serializeBlock(Parser& p, Parser::name_stack_t& name_stack, const predicate_rule_t predicate_rule, const BaseBlock* diff_block = NULL) const; bool inspectBlock(Parser& p, Parser::name_stack_t name_stack = Parser::name_stack_t(), S32 min_count = 0, S32 max_count = S32_MAX) const { //TODO: implement LLSD params as schema type Any return true; } private: static void serializeElement(Parser& p, const LLSD& sd, Parser::name_stack_t& name_stack); LLSD mValue; }; template class CustomParamValue : public Block > >, public TypeValues { public: typedef enum e_value_age { VALUE_NEEDS_UPDATE, // mValue needs to be refreshed from the block parameters VALUE_AUTHORITATIVE, // mValue holds the authoritative value (which has been replicated to the block parameters via updateBlockFromValue) BLOCK_AUTHORITATIVE // mValue is derived from the block parameters, which are authoritative } EValueAge; typedef ParamValue > derived_t; typedef CustomParamValue self_t; typedef Block block_t; typedef const T& value_assignment_t; typedef T value_t; CustomParamValue(const T& value = T()) : mValue(value), mValueAge(VALUE_AUTHORITATIVE) {} bool deserializeBlock(Parser& parser, Parser::name_stack_range_t name_stack_range, bool new_name) { derived_t& typed_param = static_cast(*this); // try to parse direct value T if (name_stack_range.first == name_stack_range.second) { if(parser.readValue(typed_param.mValue)) { typed_param.mValueAge = VALUE_AUTHORITATIVE; typed_param.updateBlockFromValue(false); typed_param.clearValueName(); return true; } } // fall back on parsing block components for T return typed_param.BaseBlock::deserializeBlock(parser, name_stack_range, new_name); } bool serializeBlock(Parser& parser, Parser::name_stack_t& name_stack, const predicate_rule_t predicate_rule, const BaseBlock* diff_block = NULL) const { const derived_t& typed_param = static_cast(*this); const derived_t* diff_param = static_cast(diff_block); std::string key = typed_param.getValueName(); // first try to write out name of name/value pair if (!key.empty()) { if (!diff_param || !ParamCompare::equals(diff_param->getValueName(), key)) { return parser.writeValue(key, name_stack); } } // then try to serialize value directly else if (!diff_param || !ParamCompare::equals(typed_param.getValue(), diff_param->getValue())) { if (parser.writeValue(typed_param.getValue(), name_stack)) { return true; } else { //RN: *always* serialize provided components of BlockValue (don't pass diff_param on), // since these tend to be viewed as the constructor arguments for the value T. It seems // cleaner to treat the uniqueness of a BlockValue according to the generated value, and // not the individual components. This way will not // be exported as , since it was probably the intent of the user to // be specific about the RGB color values. This also fixes an issue where we distinguish // between rect.left not being provided and rect.left being explicitly set to 0 (same as default) if (typed_param.mValueAge == VALUE_AUTHORITATIVE) { // if the value is authoritative but the parser doesn't accept the value type // go ahead and make a copy, and splat the value out to its component params // and serialize those params derived_t copy(typed_param); copy.updateBlockFromValue(true); return copy.block_t::serializeBlock(parser, name_stack, predicate_rule, NULL); } else { return block_t::serializeBlock(parser, name_stack, predicate_rule, NULL); } } } return false; } bool inspectBlock(Parser& parser, Parser::name_stack_t name_stack = Parser::name_stack_t(), S32 min_count = 0, S32 max_count = S32_MAX) const { // first, inspect with actual type... parser.inspectValue(name_stack, min_count, max_count, NULL); if (TypeValues::getPossibleValues()) { //...then inspect with possible string values... parser.inspectValue(name_stack, min_count, max_count, TypeValues::getPossibleValues()); } // then recursively inspect contents... return block_t::inspectBlock(parser, name_stack, min_count, max_count); } bool validateBlock(bool emit_errors = true) const { if (mValueAge == VALUE_NEEDS_UPDATE) { if (block_t::validateBlock(emit_errors)) { // clear stale keyword associated with old value TypeValues::clearValueName(); mValueAge = BLOCK_AUTHORITATIVE; static_cast(const_cast(this))->updateValueFromBlock(); return true; } else { //block value incomplete, so not considered provided // will attempt to revalidate on next call to isProvided() return false; } } else { // we have a valid value in hand return true; } } // propagate change status up to enclosing block /*virtual*/ void paramChanged(const Param& changed_param, bool user_provided) { BaseBlock::paramChanged(changed_param, user_provided); if (user_provided) { // a parameter changed, so our value is out of date mValueAge = VALUE_NEEDS_UPDATE; } } void setValue(value_assignment_t val) { derived_t& typed_param = static_cast(*this); // set param version number to be up to date, so we ignore block contents mValueAge = VALUE_AUTHORITATIVE; mValue = val; typed_param.clearValueName(); static_cast(this)->updateBlockFromValue(false); } value_assignment_t getValue() const { validateBlock(true); return mValue; } T& getValue() { validateBlock(true); return mValue; } operator value_assignment_t() const { return getValue(); } value_assignment_t operator()() const { return getValue(); } protected: // use this from within updateValueFromBlock() to set the value without making it authoritative void updateValue(value_assignment_t value) { mValue = value; } bool mergeBlockParam(bool source_provided, bool dst_provided, BlockDescriptor& block_data, const BaseBlock& source, bool overwrite) { bool source_override = source_provided && (overwrite || !dst_provided); const derived_t& src_typed_param = static_cast(source); if (source_override && src_typed_param.mValueAge == VALUE_AUTHORITATIVE) { // copy value over setValue(src_typed_param.getValue()); return true; } // merge individual parameters into destination if (mValueAge == VALUE_AUTHORITATIVE) { static_cast(this)->updateBlockFromValue(dst_provided); } return mergeBlock(block_data, source, overwrite); } bool mergeBlock(BlockDescriptor& block_data, const BaseBlock& source, bool overwrite) { return block_t::mergeBlock(block_data, source, overwrite); } private: mutable T mValue; mutable EValueAge mValueAge; }; } #endif // LL_LLPARAM_H