/** * @file llfasttimer_class.cpp * @brief Implementation of the fast timer. * * $LicenseInfo:firstyear=2004&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #include "linden_common.h" #include "llfasttimer.h" #include "llmemory.h" #include "llprocessor.h" #include "llsingleton.h" #include "lltreeiterators.h" #include "llsdserialize.h" #include #if LL_WINDOWS #include "lltimer.h" #elif LL_LINUX || LL_SOLARIS #include #include #include "lltimer.h" #elif LL_DARWIN #include #include "lltimer.h" // get_clock_count() #else #error "architecture not supported" #endif ////////////////////////////////////////////////////////////////////////////// // statics S32 LLFastTimer::sCurFrameIndex = -1; S32 LLFastTimer::sLastFrameIndex = -1; U64 LLFastTimer::sLastFrameTime = LLFastTimer::getCPUClockCount64(); bool LLFastTimer::sPauseHistory = 0; bool LLFastTimer::sResetHistory = 0; LLFastTimer::CurTimerData LLFastTimer::sCurTimerData; BOOL LLFastTimer::sLog = FALSE; std::string LLFastTimer::sLogName = ""; BOOL LLFastTimer::sMetricLog = FALSE; LLMutex* LLFastTimer::sLogLock = NULL; std::queue LLFastTimer::sLogQueue; #define USE_RDTSC 0 #if LL_LINUX || LL_SOLARIS U64 LLFastTimer::sClockResolution = 1000000000; // Nanosecond resolution #else U64 LLFastTimer::sClockResolution = 1000000; // Microsecond resolution #endif std::vector* LLFastTimer::sTimerInfos = NULL; // FIXME: move these declarations to the relevant modules // helper functions typedef LLTreeDFSPostIter timer_tree_bottom_up_iterator_t; static timer_tree_bottom_up_iterator_t begin_timer_tree_bottom_up(LLFastTimer::NamedTimer& id) { return timer_tree_bottom_up_iterator_t(&id, boost::bind(boost::mem_fn(&LLFastTimer::NamedTimer::beginChildren), _1), boost::bind(boost::mem_fn(&LLFastTimer::NamedTimer::endChildren), _1)); } static timer_tree_bottom_up_iterator_t end_timer_tree_bottom_up() { return timer_tree_bottom_up_iterator_t(); } typedef LLTreeDFSIter timer_tree_dfs_iterator_t; static timer_tree_dfs_iterator_t begin_timer_tree(LLFastTimer::NamedTimer& id) { return timer_tree_dfs_iterator_t(&id, boost::bind(boost::mem_fn(&LLFastTimer::NamedTimer::beginChildren), _1), boost::bind(boost::mem_fn(&LLFastTimer::NamedTimer::endChildren), _1)); } static timer_tree_dfs_iterator_t end_timer_tree() { return timer_tree_dfs_iterator_t(); } // factory class that creates NamedTimers via static DeclareTimer objects class NamedTimerFactory : public LLSingleton { public: NamedTimerFactory() : mActiveTimerRoot(NULL), mTimerRoot(NULL), mAppTimer(NULL), mRootFrameState(NULL) {} /*virtual */ void initSingleton() { mTimerRoot = new LLFastTimer::NamedTimer("root"); mActiveTimerRoot = new LLFastTimer::NamedTimer("Frame"); mActiveTimerRoot->setCollapsed(false); mRootFrameState = new LLFastTimer::FrameState(mActiveTimerRoot); mRootFrameState->mParent = &mTimerRoot->getFrameState(); mActiveTimerRoot->setParent(mTimerRoot); mAppTimer = new LLFastTimer(mRootFrameState); } ~NamedTimerFactory() { std::for_each(mTimers.begin(), mTimers.end(), DeletePairedPointer()); delete mAppTimer; delete mActiveTimerRoot; delete mTimerRoot; delete mRootFrameState; } LLFastTimer::NamedTimer& createNamedTimer(const std::string& name) { timer_map_t::iterator found_it = mTimers.find(name); if (found_it != mTimers.end()) { return *found_it->second; } LLFastTimer::NamedTimer* timer = new LLFastTimer::NamedTimer(name); timer->setParent(mTimerRoot); mTimers.insert(std::make_pair(name, timer)); return *timer; } LLFastTimer::NamedTimer* getTimerByName(const std::string& name) { timer_map_t::iterator found_it = mTimers.find(name); if (found_it != mTimers.end()) { return found_it->second; } return NULL; } LLFastTimer::NamedTimer* getActiveRootTimer() { return mActiveTimerRoot; } LLFastTimer::NamedTimer* getRootTimer() { return mTimerRoot; } const LLFastTimer* getAppTimer() { return mAppTimer; } LLFastTimer::FrameState& getRootFrameState() { return *mRootFrameState; } typedef std::map timer_map_t; timer_map_t::iterator beginTimers() { return mTimers.begin(); } timer_map_t::iterator endTimers() { return mTimers.end(); } S32 timerCount() { return mTimers.size(); } private: timer_map_t mTimers; LLFastTimer::NamedTimer* mActiveTimerRoot; LLFastTimer::NamedTimer* mTimerRoot; LLFastTimer* mAppTimer; LLFastTimer::FrameState* mRootFrameState; }; void update_cached_pointers_if_changed() { // detect when elements have moved and update cached pointers static LLFastTimer::FrameState* sFirstTimerAddress = NULL; if (&*(LLFastTimer::getFrameStateList().begin()) != sFirstTimerAddress) { LLFastTimer::DeclareTimer::updateCachedPointers(); } sFirstTimerAddress = &*(LLFastTimer::getFrameStateList().begin()); } LLFastTimer::DeclareTimer::DeclareTimer(const std::string& name, bool open ) : mTimer(NamedTimerFactory::instance().createNamedTimer(name)) { mTimer.setCollapsed(!open); mFrameState = &mTimer.getFrameState(); update_cached_pointers_if_changed(); } LLFastTimer::DeclareTimer::DeclareTimer(const std::string& name) : mTimer(NamedTimerFactory::instance().createNamedTimer(name)) { mFrameState = &mTimer.getFrameState(); update_cached_pointers_if_changed(); } // static void LLFastTimer::DeclareTimer::updateCachedPointers() { // propagate frame state pointers to timer declarations for (instance_iter it = beginInstances(); it != endInstances(); ++it) { // update cached pointer it->mFrameState = &it->mTimer.getFrameState(); } // also update frame states of timers on stack LLFastTimer* cur_timerp = LLFastTimer::sCurTimerData.mCurTimer; while(cur_timerp->mLastTimerData.mCurTimer != cur_timerp) { cur_timerp->mFrameState = &cur_timerp->mFrameState->mTimer->getFrameState(); cur_timerp = cur_timerp->mLastTimerData.mCurTimer; } } //static #if (LL_DARWIN || LL_LINUX || LL_SOLARIS) && !(defined(__i386__) || defined(__amd64__)) U64 LLFastTimer::countsPerSecond() // counts per second for the *32-bit* timer { return sClockResolution >> 8; } #else // windows or x86-mac or x86-linux or x86-solaris U64 LLFastTimer::countsPerSecond() // counts per second for the *32-bit* timer { #if USE_RDTSC || !LL_WINDOWS //getCPUFrequency returns MHz and sCPUClockFrequency wants to be in Hz static U64 sCPUClockFrequency = U64(LLProcessorInfo().getCPUFrequency()*1000000.0); // we drop the low-order byte in our timers, so report a lower frequency #else // If we're not using RDTSC, each fasttimer tick is just a performance counter tick. // Not redefining the clock frequency itself (in llprocessor.cpp/calculate_cpu_frequency()) // since that would change displayed MHz stats for CPUs static bool firstcall = true; static U64 sCPUClockFrequency; if (firstcall) { QueryPerformanceFrequency((LARGE_INTEGER*)&sCPUClockFrequency); firstcall = false; } #endif return sCPUClockFrequency >> 8; } #endif LLFastTimer::FrameState::FrameState(LLFastTimer::NamedTimer* timerp) : mActiveCount(0), mCalls(0), mSelfTimeCounter(0), mParent(NULL), mLastCaller(NULL), mMoveUpTree(false), mTimer(timerp) {} LLFastTimer::NamedTimer::NamedTimer(const std::string& name) : mName(name), mCollapsed(true), mParent(NULL), mTotalTimeCounter(0), mCountAverage(0), mCallAverage(0), mNeedsSorting(false) { info_list_t& frame_state_list = getFrameStateList(); mFrameStateIndex = frame_state_list.size(); getFrameStateList().push_back(FrameState(this)); mCountHistory = new U32[HISTORY_NUM]; memset(mCountHistory, 0, sizeof(U32) * HISTORY_NUM); mCallHistory = new U32[HISTORY_NUM]; memset(mCallHistory, 0, sizeof(U32) * HISTORY_NUM); } LLFastTimer::NamedTimer::~NamedTimer() { delete[] mCountHistory; delete[] mCallHistory; } std::string LLFastTimer::NamedTimer::getToolTip(S32 history_idx) { F64 ms_multiplier = 1000.0 / (F64)LLFastTimer::countsPerSecond(); if (history_idx < 0) { // by default, show average number of call return llformat("%s (%d ms, %d calls)", getName().c_str(), (S32)(getCountAverage() * ms_multiplier), (S32)getCallAverage()); } else { return llformat("%s (%d ms, %d calls)", getName().c_str(), (S32)(getHistoricalCount(history_idx) * ms_multiplier), (S32)getHistoricalCalls(history_idx)); } } void LLFastTimer::NamedTimer::setParent(NamedTimer* parent) { llassert_always(parent != this); llassert_always(parent != NULL); if (mParent) { // subtract our accumulated from previous parent for (S32 i = 0; i < HISTORY_NUM; i++) { mParent->mCountHistory[i] -= mCountHistory[i]; } // subtract average timing from previous parent mParent->mCountAverage -= mCountAverage; std::vector& children = mParent->getChildren(); std::vector::iterator found_it = std::find(children.begin(), children.end(), this); if (found_it != children.end()) { children.erase(found_it); } } mParent = parent; if (parent) { getFrameState().mParent = &parent->getFrameState(); parent->getChildren().push_back(this); parent->mNeedsSorting = true; } } S32 LLFastTimer::NamedTimer::getDepth() { S32 depth = 0; NamedTimer* timerp = mParent; while(timerp) { depth++; timerp = timerp->mParent; } return depth; } // static void LLFastTimer::NamedTimer::processTimes() { if (sCurFrameIndex < 0) return; buildHierarchy(); accumulateTimings(); } // sort timer info structs by depth first traversal order struct SortTimersDFS { bool operator()(const LLFastTimer::FrameState& i1, const LLFastTimer::FrameState& i2) { return i1.mTimer->getFrameStateIndex() < i2.mTimer->getFrameStateIndex(); } }; // sort child timers by name struct SortTimerByName { bool operator()(const LLFastTimer::NamedTimer* i1, const LLFastTimer::NamedTimer* i2) { return i1->getName() < i2->getName(); } }; //static void LLFastTimer::NamedTimer::buildHierarchy() { if (sCurFrameIndex < 0 ) return; // set up initial tree { for (instance_iter it = beginInstances(); it != endInstances(); ++it) { NamedTimer& timer = *it; if (&timer == NamedTimerFactory::instance().getRootTimer()) continue; // bootstrap tree construction by attaching to last timer to be on stack // when this timer was called if (timer.getFrameState().mLastCaller && timer.mParent == NamedTimerFactory::instance().getRootTimer()) { timer.setParent(timer.getFrameState().mLastCaller->mTimer); // no need to push up tree on first use, flag can be set spuriously timer.getFrameState().mMoveUpTree = false; } } } // bump timers up tree if they've been flagged as being in the wrong place // do this in a bottom up order to promote descendants first before promoting ancestors // this preserves partial order derived from current frame's observations for(timer_tree_bottom_up_iterator_t it = begin_timer_tree_bottom_up(*NamedTimerFactory::instance().getRootTimer()); it != end_timer_tree_bottom_up(); ++it) { NamedTimer* timerp = *it; // skip root timer if (timerp == NamedTimerFactory::instance().getRootTimer()) continue; if (timerp->getFrameState().mMoveUpTree) { // since ancestors have already been visited, reparenting won't affect tree traversal //step up tree, bringing our descendants with us LL_DEBUGS("FastTimers") << "Moving " << timerp->getName() << " from child of " << timerp->getParent()->getName() << " to child of " << timerp->getParent()->getParent()->getName() << LL_ENDL; timerp->setParent(timerp->getParent()->getParent()); timerp->getFrameState().mMoveUpTree = false; // don't bubble up any ancestors until descendants are done bubbling up it.skipAncestors(); } } // sort timers by time last called, so call graph makes sense for(timer_tree_dfs_iterator_t it = begin_timer_tree(*NamedTimerFactory::instance().getRootTimer()); it != end_timer_tree(); ++it) { NamedTimer* timerp = (*it); if (timerp->mNeedsSorting) { std::sort(timerp->getChildren().begin(), timerp->getChildren().end(), SortTimerByName()); } timerp->mNeedsSorting = false; } } //static void LLFastTimer::NamedTimer::accumulateTimings() { U32 cur_time = getCPUClockCount32(); // walk up stack of active timers and accumulate current time while leaving timing structures active LLFastTimer* cur_timer = sCurTimerData.mCurTimer; // root defined by parent pointing to self CurTimerData* cur_data = &sCurTimerData; while(cur_timer->mLastTimerData.mCurTimer != cur_timer) { U32 cumulative_time_delta = cur_time - cur_timer->mStartTime; U32 self_time_delta = cumulative_time_delta - cur_data->mChildTime; cur_data->mChildTime = 0; cur_timer->mFrameState->mSelfTimeCounter += self_time_delta; cur_timer->mStartTime = cur_time; cur_data = &cur_timer->mLastTimerData; cur_data->mChildTime += cumulative_time_delta; cur_timer = cur_timer->mLastTimerData.mCurTimer; } // traverse tree in DFS post order, or bottom up for(timer_tree_bottom_up_iterator_t it = begin_timer_tree_bottom_up(*NamedTimerFactory::instance().getActiveRootTimer()); it != end_timer_tree_bottom_up(); ++it) { NamedTimer* timerp = (*it); timerp->mTotalTimeCounter = timerp->getFrameState().mSelfTimeCounter; for (child_const_iter child_it = timerp->beginChildren(); child_it != timerp->endChildren(); ++child_it) { timerp->mTotalTimeCounter += (*child_it)->mTotalTimeCounter; } S32 cur_frame = sCurFrameIndex; if (cur_frame >= 0) { // update timer history int hidx = cur_frame % HISTORY_NUM; timerp->mCountHistory[hidx] = timerp->mTotalTimeCounter; timerp->mCountAverage = ((U64)timerp->mCountAverage * cur_frame + timerp->mTotalTimeCounter) / (cur_frame+1); timerp->mCallHistory[hidx] = timerp->getFrameState().mCalls; timerp->mCallAverage = ((U64)timerp->mCallAverage * cur_frame + timerp->getFrameState().mCalls) / (cur_frame+1); } } } // static void LLFastTimer::NamedTimer::resetFrame() { if (sLog) { //output current frame counts to performance log static S32 call_count = 0; if (call_count % 100 == 0) { LL_DEBUGS("FastTimers") << "countsPerSecond (32 bit): " << countsPerSecond() << LL_ENDL; LL_DEBUGS("FastTimers") << "get_clock_count (64 bit): " << get_clock_count() << llendl; LL_DEBUGS("FastTimers") << "LLProcessorInfo().getCPUFrequency() " << LLProcessorInfo().getCPUFrequency() << LL_ENDL; LL_DEBUGS("FastTimers") << "getCPUClockCount32() " << getCPUClockCount32() << LL_ENDL; LL_DEBUGS("FastTimers") << "getCPUClockCount64() " << getCPUClockCount64() << LL_ENDL; LL_DEBUGS("FastTimers") << "elapsed sec " << ((F64)getCPUClockCount64())/((F64)LLProcessorInfo().getCPUFrequency()*1000000.0) << LL_ENDL; } call_count++; F64 iclock_freq = 1000.0 / countsPerSecond(); // good place to calculate clock frequency F64 total_time = 0; LLSD sd; { for (instance_iter it = beginInstances(); it != endInstances(); ++it) { NamedTimer& timer = *it; FrameState& info = timer.getFrameState(); sd[timer.getName()]["Time"] = (LLSD::Real) (info.mSelfTimeCounter*iclock_freq); sd[timer.getName()]["Calls"] = (LLSD::Integer) info.mCalls; // computing total time here because getting the root timer's getCountHistory // doesn't work correctly on the first frame total_time = total_time + info.mSelfTimeCounter * iclock_freq; } } sd["Total"]["Time"] = (LLSD::Real) total_time; sd["Total"]["Calls"] = (LLSD::Integer) 1; { LLMutexLock lock(sLogLock); sLogQueue.push(sd); } } // tag timers by position in depth first traversal of tree S32 index = 0; for(timer_tree_dfs_iterator_t it = begin_timer_tree(*NamedTimerFactory::instance().getRootTimer()); it != end_timer_tree(); ++it) { NamedTimer* timerp = (*it); timerp->mFrameStateIndex = index; index++; llassert_always(timerp->mFrameStateIndex < (S32)getFrameStateList().size()); } // sort timers by DFS traversal order to improve cache coherency std::sort(getFrameStateList().begin(), getFrameStateList().end(), SortTimersDFS()); // update pointers into framestatelist now that we've sorted it DeclareTimer::updateCachedPointers(); // reset for next frame for (instance_iter it = beginInstances(); it != endInstances(); ++it) { NamedTimer& timer = *it; FrameState& info = timer.getFrameState(); info.mSelfTimeCounter = 0; info.mCalls = 0; info.mLastCaller = NULL; info.mMoveUpTree = false; // update parent pointer in timer state struct if (timer.mParent) { info.mParent = &timer.mParent->getFrameState(); } } } //static void LLFastTimer::NamedTimer::reset() { resetFrame(); // reset frame data // walk up stack of active timers and reset start times to current time // effectively zeroing out any accumulated time U32 cur_time = getCPUClockCount32(); // root defined by parent pointing to self CurTimerData* cur_data = &sCurTimerData; LLFastTimer* cur_timer = cur_data->mCurTimer; while(cur_timer->mLastTimerData.mCurTimer != cur_timer) { cur_timer->mStartTime = cur_time; cur_data->mChildTime = 0; cur_data = &cur_timer->mLastTimerData; cur_timer = cur_data->mCurTimer; } // reset all history { for (instance_iter it = beginInstances(); it != endInstances(); ++it) { NamedTimer& timer = *it; if (&timer != NamedTimerFactory::instance().getRootTimer()) { timer.setParent(NamedTimerFactory::instance().getRootTimer()); } timer.mCountAverage = 0; timer.mCallAverage = 0; memset(timer.mCountHistory, 0, sizeof(U32) * HISTORY_NUM); memset(timer.mCallHistory, 0, sizeof(U32) * HISTORY_NUM); } } sLastFrameIndex = 0; sCurFrameIndex = 0; } //static LLFastTimer::info_list_t& LLFastTimer::getFrameStateList() { if (!sTimerInfos) { sTimerInfos = new info_list_t(); } return *sTimerInfos; } U32 LLFastTimer::NamedTimer::getHistoricalCount(S32 history_index) const { S32 history_idx = (getLastFrameIndex() + history_index) % LLFastTimer::NamedTimer::HISTORY_NUM; return mCountHistory[history_idx]; } U32 LLFastTimer::NamedTimer::getHistoricalCalls(S32 history_index ) const { S32 history_idx = (getLastFrameIndex() + history_index) % LLFastTimer::NamedTimer::HISTORY_NUM; return mCallHistory[history_idx]; } LLFastTimer::FrameState& LLFastTimer::NamedTimer::getFrameState() const { llassert_always(mFrameStateIndex >= 0); if (this == NamedTimerFactory::instance().getActiveRootTimer()) { return NamedTimerFactory::instance().getRootFrameState(); } return getFrameStateList()[mFrameStateIndex]; } // static LLFastTimer::NamedTimer& LLFastTimer::NamedTimer::getRootNamedTimer() { return *NamedTimerFactory::instance().getActiveRootTimer(); } std::vector::const_iterator LLFastTimer::NamedTimer::beginChildren() { return mChildren.begin(); } std::vector::const_iterator LLFastTimer::NamedTimer::endChildren() { return mChildren.end(); } std::vector& LLFastTimer::NamedTimer::getChildren() { return mChildren; } //static void LLFastTimer::nextFrame() { countsPerSecond(); // good place to calculate clock frequency U64 frame_time = getCPUClockCount64(); if ((frame_time - sLastFrameTime) >> 8 > 0xffffffff) { llinfos << "Slow frame, fast timers inaccurate" << llendl; } if (!sPauseHistory) { NamedTimer::processTimes(); sLastFrameIndex = sCurFrameIndex++; } // get ready for next frame NamedTimer::resetFrame(); sLastFrameTime = frame_time; } //static void LLFastTimer::dumpCurTimes() { // accumulate timings, etc. NamedTimer::processTimes(); F64 clock_freq = (F64)countsPerSecond(); F64 iclock_freq = 1000.0 / clock_freq; // clock_ticks -> milliseconds // walk over timers in depth order and output timings for(timer_tree_dfs_iterator_t it = begin_timer_tree(*NamedTimerFactory::instance().getRootTimer()); it != end_timer_tree(); ++it) { NamedTimer* timerp = (*it); F64 total_time_ms = ((F64)timerp->getHistoricalCount(0) * iclock_freq); // Don't bother with really brief times, keep output concise if (total_time_ms < 0.1) continue; std::ostringstream out_str; for (S32 i = 0; i < timerp->getDepth(); i++) { out_str << "\t"; } out_str << timerp->getName() << " " << std::setprecision(3) << total_time_ms << " ms, " << timerp->getHistoricalCalls(0) << " calls"; llinfos << out_str.str() << llendl; } } //static void LLFastTimer::reset() { NamedTimer::reset(); } //static void LLFastTimer::writeLog(std::ostream& os) { while (!sLogQueue.empty()) { LLSD& sd = sLogQueue.front(); LLSDSerialize::toXML(sd, os); LLMutexLock lock(sLogLock); sLogQueue.pop(); } } //static const LLFastTimer::NamedTimer* LLFastTimer::getTimerByName(const std::string& name) { return NamedTimerFactory::instance().getTimerByName(name); } LLFastTimer::LLFastTimer(LLFastTimer::FrameState* state) : mFrameState(state) { U32 start_time = getCPUClockCount32(); mStartTime = start_time; mFrameState->mActiveCount++; LLFastTimer::sCurTimerData.mCurTimer = this; LLFastTimer::sCurTimerData.mFrameState = mFrameState; LLFastTimer::sCurTimerData.mChildTime = 0; mLastTimerData = LLFastTimer::sCurTimerData; } ////////////////////////////////////////////////////////////////////////////// // // Important note: These implementations must be FAST! // #if LL_WINDOWS // // Windows implementation of CPU clock // // // NOTE: put back in when we aren't using platform sdk anymore // // because MS has different signatures for these functions in winnt.h // need to rename them to avoid conflicts //#define _interlockedbittestandset _renamed_interlockedbittestandset //#define _interlockedbittestandreset _renamed_interlockedbittestandreset //#include //#undef _interlockedbittestandset //#undef _interlockedbittestandreset //inline U32 LLFastTimer::getCPUClockCount32() //{ // U64 time_stamp = __rdtsc(); // return (U32)(time_stamp >> 8); //} // //// return full timer value, *not* shifted by 8 bits //inline U64 LLFastTimer::getCPUClockCount64() //{ // return __rdtsc(); //} // shift off lower 8 bits for lower resolution but longer term timing // on 1Ghz machine, a 32-bit word will hold ~1000 seconds of timing #if USE_RDTSC U32 LLFastTimer::getCPUClockCount32() { U32 ret_val; __asm { _emit 0x0f _emit 0x31 shr eax,8 shl edx,24 or eax, edx mov dword ptr [ret_val], eax } return ret_val; } // return full timer value, *not* shifted by 8 bits U64 LLFastTimer::getCPUClockCount64() { U64 ret_val; __asm { _emit 0x0f _emit 0x31 mov eax,eax mov edx,edx mov dword ptr [ret_val+4], edx mov dword ptr [ret_val], eax } return ret_val; } std::string LLFastTimer::sClockType = "rdtsc"; #else //LL_COMMON_API U64 get_clock_count(); // in lltimer.cpp // These use QueryPerformanceCounter, which is arguably fine and also works on AMD architectures. U32 LLFastTimer::getCPUClockCount32() { return (U32)(get_clock_count()>>8); } U64 LLFastTimer::getCPUClockCount64() { return get_clock_count(); } std::string LLFastTimer::sClockType = "QueryPerformanceCounter"; #endif #endif #if (LL_LINUX || LL_SOLARIS) && !(defined(__i386__) || defined(__amd64__)) // // Linux and Solaris implementation of CPU clock - non-x86. // This is accurate but SLOW! Only use out of desperation. // // Try to use the MONOTONIC clock if available, this is a constant time counter // with nanosecond resolution (but not necessarily accuracy) and attempts are // made to synchronize this value between cores at kernel start. It should not // be affected by CPU frequency. If not available use the REALTIME clock, but // this may be affected by NTP adjustments or other user activity affecting // the system time. U64 LLFastTimer::getCPUClockCount64() { struct timespec tp; #ifdef CLOCK_MONOTONIC // MONOTONIC supported at build-time? if (-1 == clock_gettime(CLOCK_MONOTONIC,&tp)) // if MONOTONIC isn't supported at runtime then ouch, try REALTIME #endif clock_gettime(CLOCK_REALTIME,&tp); return (tp.tv_sec*LLFastTimer::sClockResolution)+tp.tv_nsec; } U32 LLFastTimer::getCPUClockCount32() { return (U32)(LLFastTimer::getCPUClockCount64() >> 8); } std::string LLFastTimer::sClockType = "clock_gettime"; #endif // (LL_LINUX || LL_SOLARIS) && !(defined(__i386__) || defined(__amd64__)) #if (LL_LINUX || LL_SOLARIS || LL_DARWIN) && (defined(__i386__) || defined(__amd64__)) // // Mac+Linux+Solaris FAST x86 implementation of CPU clock U32 LLFastTimer::getCPUClockCount32() { U64 x; __asm__ volatile (".byte 0x0f, 0x31": "=A"(x)); return (U32)(x >> 8); } U64 LLFastTimer::getCPUClockCount64() { U64 x; __asm__ volatile (".byte 0x0f, 0x31": "=A"(x)); return x; } std::string LLFastTimer::sClockType = "rdtsc"; #endif