/** * @file llfasttimer.h * @brief Declaration of a fast timer. * * $LicenseInfo:firstyear=2004&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #ifndef LL_FASTTIMER_H #define LL_FASTTIMER_H #include "llinstancetracker.h" #define FAST_TIMER_ON 1 #define DEBUG_FAST_TIMER_THREADS 1 class LLMutex; #include <queue> #include "llsd.h" #define LL_FASTTIMER_USE_RDTSC 1 LL_COMMON_API void assert_main_thread(); class LL_COMMON_API LLFastTimer { public: class NamedTimer; struct LL_COMMON_API FrameState { FrameState(); void setNamedTimer(NamedTimer* timerp) { mTimer = timerp; } U32 mSelfTimeCounter; U32 mCalls; FrameState* mParent; // info for caller timer FrameState* mLastCaller; // used to bootstrap tree construction NamedTimer* mTimer; U16 mActiveCount; // number of timers with this ID active on stack bool mMoveUpTree; // needs to be moved up the tree of timers at the end of frame }; // stores a "named" timer instance to be reused via multiple LLFastTimer stack instances class LL_COMMON_API NamedTimer : public LLInstanceTracker<NamedTimer> { friend class DeclareTimer; public: ~NamedTimer(); enum { HISTORY_NUM = 300 }; const std::string& getName() const { return mName; } NamedTimer* getParent() const { return mParent; } void setParent(NamedTimer* parent); S32 getDepth(); std::string getToolTip(S32 history_index = -1); typedef std::vector<NamedTimer*>::const_iterator child_const_iter; child_const_iter beginChildren(); child_const_iter endChildren(); std::vector<NamedTimer*>& getChildren(); void setCollapsed(bool collapsed) { mCollapsed = collapsed; } bool getCollapsed() const { return mCollapsed; } U32 getCountAverage() const { return mCountAverage; } U32 getCallAverage() const { return mCallAverage; } U32 getHistoricalCount(S32 history_index = 0) const; U32 getHistoricalCalls(S32 history_index = 0) const; static NamedTimer& getRootNamedTimer(); void setFrameState(FrameState* state) { mFrameState = state; state->setNamedTimer(this); } FrameState& getFrameState() const; private: friend class LLFastTimer; friend class NamedTimerFactory; // // methods // NamedTimer(const std::string& name); // recursive call to gather total time from children static void accumulateTimings(); // updates cumulative times and hierarchy, // can be called multiple times in a frame, at any point static void processTimes(); static void buildHierarchy(); static void resetFrame(); static void reset(); // // members // FrameState* mFrameState; std::string mName; U32 mTotalTimeCounter; U32 mCountAverage; U32 mCallAverage; U32* mCountHistory; U32* mCallHistory; // tree structure NamedTimer* mParent; // NamedTimer of caller(parent) std::vector<NamedTimer*> mChildren; bool mCollapsed; // don't show children bool mNeedsSorting; // sort children whenever child added }; // used to statically declare a new named timer class LL_COMMON_API DeclareTimer : public LLInstanceTracker< DeclareTimer > { friend class LLFastTimer; public: DeclareTimer(const std::string& name, bool open); DeclareTimer(const std::string& name); NamedTimer& getNamedTimer() { return mTimer; } private: FrameState mFrameState; NamedTimer& mTimer; }; public: LLFastTimer(LLFastTimer::FrameState* state); LL_FORCE_INLINE LLFastTimer(LLFastTimer::DeclareTimer& timer) : mFrameState(&timer.mFrameState) { #if FAST_TIMER_ON LLFastTimer::FrameState* frame_state = mFrameState; mStartTime = getCPUClockCount32(); frame_state->mActiveCount++; frame_state->mCalls++; // keep current parent as long as it is active when we are frame_state->mMoveUpTree |= (frame_state->mParent->mActiveCount == 0); LLFastTimer::CurTimerData* cur_timer_data = &LLFastTimer::sCurTimerData; mLastTimerData = *cur_timer_data; cur_timer_data->mCurTimer = this; cur_timer_data->mFrameState = frame_state; cur_timer_data->mChildTime = 0; #endif #if DEBUG_FAST_TIMER_THREADS #if !LL_RELEASE assert_main_thread(); #endif #endif } LL_FORCE_INLINE ~LLFastTimer() { #if FAST_TIMER_ON LLFastTimer::FrameState* frame_state = mFrameState; U32 total_time = getCPUClockCount32() - mStartTime; frame_state->mSelfTimeCounter += total_time - LLFastTimer::sCurTimerData.mChildTime; frame_state->mActiveCount--; // store last caller to bootstrap tree creation // do this in the destructor in case of recursion to get topmost caller frame_state->mLastCaller = mLastTimerData.mFrameState; // we are only tracking self time, so subtract our total time delta from parents mLastTimerData.mChildTime += total_time; LLFastTimer::sCurTimerData = mLastTimerData; #endif } public: static LLMutex* sLogLock; static std::queue<LLSD> sLogQueue; static BOOL sLog; static BOOL sMetricLog; static std::string sLogName; static bool sPauseHistory; static bool sResetHistory; // call this once a frame to reset timers static void nextFrame(); // dumps current cumulative frame stats to log // call nextFrame() to reset timers static void dumpCurTimes(); // call this to reset timer hierarchy, averages, etc. static void reset(); static U64 countsPerSecond(); static S32 getLastFrameIndex() { return sLastFrameIndex; } static S32 getCurFrameIndex() { return sCurFrameIndex; } static void writeLog(std::ostream& os); static const NamedTimer* getTimerByName(const std::string& name); struct CurTimerData { LLFastTimer* mCurTimer; FrameState* mFrameState; U32 mChildTime; }; static CurTimerData sCurTimerData; private: ////////////////////////////////////////////////////////////////////////////// // // Important note: These implementations must be FAST! // #if LL_WINDOWS // // Windows implementation of CPU clock // // // NOTE: put back in when we aren't using platform sdk anymore // // because MS has different signatures for these functions in winnt.h // need to rename them to avoid conflicts //#define _interlockedbittestandset _renamed_interlockedbittestandset //#define _interlockedbittestandreset _renamed_interlockedbittestandreset //#include <intrin.h> //#undef _interlockedbittestandset //#undef _interlockedbittestandreset //inline U32 LLFastTimer::getCPUClockCount32() //{ // U64 time_stamp = __rdtsc(); // return (U32)(time_stamp >> 8); //} // //// return full timer value, *not* shifted by 8 bits //inline U64 LLFastTimer::getCPUClockCount64() //{ // return __rdtsc(); //} // shift off lower 8 bits for lower resolution but longer term timing // on 1Ghz machine, a 32-bit word will hold ~1000 seconds of timing #if LL_FASTTIMER_USE_RDTSC static U32 getCPUClockCount32() { U32 ret_val; __asm { _emit 0x0f _emit 0x31 shr eax,8 shl edx,24 or eax, edx mov dword ptr [ret_val], eax } return ret_val; } // return full timer value, *not* shifted by 8 bits static U64 getCPUClockCount64() { U64 ret_val; __asm { _emit 0x0f _emit 0x31 mov eax,eax mov edx,edx mov dword ptr [ret_val+4], edx mov dword ptr [ret_val], eax } return ret_val; } #else //LL_COMMON_API U64 get_clock_count(); // in lltimer.cpp // These use QueryPerformanceCounter, which is arguably fine and also works on AMD architectures. static U32 getCPUClockCount32() { return (U32)(get_clock_count()>>8); } static U64 getCPUClockCount64() { return get_clock_count(); } #endif #endif #if (LL_LINUX || LL_SOLARIS) && !(defined(__i386__) || defined(__amd64__)) // // Linux and Solaris implementation of CPU clock - non-x86. // This is accurate but SLOW! Only use out of desperation. // // Try to use the MONOTONIC clock if available, this is a constant time counter // with nanosecond resolution (but not necessarily accuracy) and attempts are // made to synchronize this value between cores at kernel start. It should not // be affected by CPU frequency. If not available use the REALTIME clock, but // this may be affected by NTP adjustments or other user activity affecting // the system time. static U64 getCPUClockCount64() { struct timespec tp; #ifdef CLOCK_MONOTONIC // MONOTONIC supported at build-time? if (-1 == clock_gettime(CLOCK_MONOTONIC,&tp)) // if MONOTONIC isn't supported at runtime then ouch, try REALTIME #endif clock_gettime(CLOCK_REALTIME,&tp); return (tp.tv_sec*sClockResolution)+tp.tv_nsec; } static U32 getCPUClockCount32() { return (U32)(getCPUClockCount64() >> 8); } #endif // (LL_LINUX || LL_SOLARIS) && !(defined(__i386__) || defined(__amd64__)) #if (LL_LINUX || LL_SOLARIS || LL_DARWIN) && (defined(__i386__) || defined(__amd64__)) // // Mac+Linux+Solaris FAST x86 implementation of CPU clock static U32 getCPUClockCount32() { U64 x; __asm__ volatile (".byte 0x0f, 0x31": "=A"(x)); return (U32)(x >> 8); } static U64 getCPUClockCount64() { U64 x; __asm__ volatile (".byte 0x0f, 0x31": "=A"(x)); return x; } #endif static U64 sClockResolution; static S32 sCurFrameIndex; static S32 sLastFrameIndex; static U64 sLastFrameTime; U32 mStartTime; LLFastTimer::FrameState* mFrameState; LLFastTimer::CurTimerData mLastTimerData; }; typedef class LLFastTimer LLFastTimer; #endif // LL_LLFASTTIMER_H