/** * @file llfasttimer.h * @brief Declaration of a fast timer. * * $LicenseInfo:firstyear=2004&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #ifndef LL_FASTTIMER_H #define LL_FASTTIMER_H #include "llinstancetracker.h" #include "lltrace.h" #define FAST_TIMER_ON 1 #define LL_FASTTIMER_USE_RDTSC 1 class LLMutex; namespace LLTrace { struct BlockTimerStackRecord { class BlockTimer* mActiveTimer; class TimeBlock* mTimeBlock; U64 mChildTime; }; class ThreadTimerStack : public BlockTimerStackRecord, public LLThreadLocalSingleton { friend class LLThreadLocalSingleton; ThreadTimerStack() {} public: ThreadTimerStack& operator=(const BlockTimerStackRecord& other) { BlockTimerStackRecord::operator=(other); return *this; } }; class BlockTimer { public: friend class TimeBlock; typedef BlockTimer self_t; typedef class TimeBlock DeclareTimer; BlockTimer(TimeBlock& timer); ~BlockTimer(); LLUnit getElapsedTime(); private: U64 mStartTime; U64 mBlockStartTotalTimeCounter; BlockTimerStackRecord mParentTimerData; }; // stores a "named" timer instance to be reused via multiple BlockTimer stack instances class TimeBlock : public TraceType, public LLInstanceTracker { public: TimeBlock(const char* name, bool open = false, TimeBlock* parent = &getRootTimeBlock()); TimeBlockTreeNode& getTreeNode() const; TimeBlock* getParent() const { return getTreeNode().getParent(); } void setParent(TimeBlock* parent) { getTreeNode().setParent(parent); } typedef std::vector::iterator child_iter; typedef std::vector::const_iterator child_const_iter; child_iter beginChildren(); child_iter endChildren(); std::vector& getChildren(); void setCollapsed(bool collapsed) { mCollapsed = collapsed; } bool getCollapsed() const { return mCollapsed; } TraceType& callCount() { return static_cast&>(*(TraceType*)this); } TraceType& selfTime() { return static_cast&>(*(TraceType*)this); } static TimeBlock& getRootTimeBlock(); static void pushLog(LLSD sd); static void setLogLock(LLMutex* mutex); static void writeLog(std::ostream& os); // dumps current cumulative frame stats to log // call nextFrame() to reset timers static void dumpCurTimes(); ////////////////////////////////////////////////////////////////////////////// // // Important note: These implementations must be FAST! // #if LL_WINDOWS // // Windows implementation of CPU clock // // // NOTE: put back in when we aren't using platform sdk anymore // // because MS has different signatures for these functions in winnt.h // need to rename them to avoid conflicts //#define _interlockedbittestandset _renamed_interlockedbittestandset //#define _interlockedbittestandreset _renamed_interlockedbittestandreset //#include //#undef _interlockedbittestandset //#undef _interlockedbittestandreset //inline U32 TimeBlock::getCPUClockCount32() //{ // U64 time_stamp = __rdtsc(); // return (U32)(time_stamp >> 8); //} // //// return full timer value, *not* shifted by 8 bits //inline U64 TimeBlock::getCPUClockCount64() //{ // return __rdtsc(); //} // shift off lower 8 bits for lower resolution but longer term timing // on 1Ghz machine, a 32-bit word will hold ~1000 seconds of timing #if LL_FASTTIMER_USE_RDTSC static U32 getCPUClockCount32() { U32 ret_val; __asm { _emit 0x0f _emit 0x31 shr eax,8 shl edx,24 or eax, edx mov dword ptr [ret_val], eax } return ret_val; } // return full timer value, *not* shifted by 8 bits static U64 getCPUClockCount64() { U64 ret_val; __asm { _emit 0x0f _emit 0x31 mov eax,eax mov edx,edx mov dword ptr [ret_val+4], edx mov dword ptr [ret_val], eax } return ret_val; } #else //U64 get_clock_count(); // in lltimer.cpp // These use QueryPerformanceCounter, which is arguably fine and also works on AMD architectures. static U32 getCPUClockCount32() { return (U32)(get_clock_count()>>8); } static U64 getCPUClockCount64() { return get_clock_count(); } #endif #endif #if (LL_LINUX || LL_SOLARIS) && !(defined(__i386__) || defined(__amd64__)) // // Linux and Solaris implementation of CPU clock - non-x86. // This is accurate but SLOW! Only use out of desperation. // // Try to use the MONOTONIC clock if available, this is a constant time counter // with nanosecond resolution (but not necessarily accuracy) and attempts are // made to synchronize this value between cores at kernel start. It should not // be affected by CPU frequency. If not available use the REALTIME clock, but // this may be affected by NTP adjustments or other user activity affecting // the system time. static U64 getCPUClockCount64() { struct timespec tp; #ifdef CLOCK_MONOTONIC // MONOTONIC supported at build-time? if (-1 == clock_gettime(CLOCK_MONOTONIC,&tp)) // if MONOTONIC isn't supported at runtime then ouch, try REALTIME #endif clock_gettime(CLOCK_REALTIME,&tp); return (tp.tv_sec*sClockResolution)+tp.tv_nsec; } static U32 getCPUClockCount32() { return (U32)(getCPUClockCount64() >> 8); } #endif // (LL_LINUX || LL_SOLARIS) && !(defined(__i386__) || defined(__amd64__)) #if (LL_LINUX || LL_SOLARIS || LL_DARWIN) && (defined(__i386__) || defined(__amd64__)) // // Mac+Linux+Solaris FAST x86 implementation of CPU clock static U32 getCPUClockCount32() { U64 x; __asm__ volatile (".byte 0x0f, 0x31": "=A"(x)); return (U32)(x >> 8); } static U64 getCPUClockCount64() { U64 x; __asm__ volatile (".byte 0x0f, 0x31": "=A"(x)); return x; } #endif static U64 countsPerSecond(); // updates cumulative times and hierarchy, // can be called multiple times in a frame, at any point static void processTimes(); // call this once a frame to periodically log timers static void logStats(); bool mCollapsed; // don't show children // statics static std::string sLogName; static bool sMetricLog, sLog; static U64 sClockResolution; }; LL_FORCE_INLINE BlockTimer::BlockTimer(TimeBlock& timer) { #if FAST_TIMER_ON mStartTime = TimeBlock::getCPUClockCount64(); BlockTimerStackRecord* cur_timer_data = ThreadTimerStack::getIfExists(); TimeBlockAccumulator* accumulator = timer.getPrimaryAccumulator(); accumulator->mActiveCount++; mBlockStartTotalTimeCounter = accumulator->mTotalTimeCounter; // keep current parent as long as it is active when we are accumulator->mMoveUpTree |= (accumulator->mParent->getPrimaryAccumulator()->mActiveCount == 0); // store top of stack mParentTimerData = *cur_timer_data; // push new information cur_timer_data->mActiveTimer = this; cur_timer_data->mTimeBlock = &timer; cur_timer_data->mChildTime = 0; #endif } LL_FORCE_INLINE BlockTimer::~BlockTimer() { #if FAST_TIMER_ON U64 total_time = TimeBlock::getCPUClockCount64() - mStartTime; BlockTimerStackRecord* cur_timer_data = ThreadTimerStack::getIfExists(); TimeBlockAccumulator* accumulator = cur_timer_data->mTimeBlock->getPrimaryAccumulator(); accumulator->mCalls++; accumulator->mTotalTimeCounter += total_time - (accumulator->mTotalTimeCounter - mBlockStartTotalTimeCounter); accumulator->mSelfTimeCounter += total_time - cur_timer_data->mChildTime; accumulator->mActiveCount--; // store last caller to bootstrap tree creation // do this in the destructor in case of recursion to get topmost caller accumulator->mLastCaller = mParentTimerData.mTimeBlock; // we are only tracking self time, so subtract our total time delta from parents mParentTimerData.mChildTime += total_time; //pop stack *cur_timer_data = mParentTimerData; #endif } } typedef LLTrace::BlockTimer LLFastTimer; #endif // LL_LLFASTTIMER_H