/** * @file llfasttimer.h * @brief Declaration of a fast timer. * * $LicenseInfo:firstyear=2004&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #ifndef LL_FASTTIMER_H #define LL_FASTTIMER_H #include "llinstancetracker.h" #include "lltrace.h" #include "lltreeiterators.h" #if LL_WINDOWS #include #endif #define LL_FAST_TIMER_ON 1 #define LL_FASTTIMER_USE_RDTSC 1 // NOTE: Also see llprofiler.h #if !defined(LL_PROFILER_CONFIGURATION) #define LL_RECORD_BLOCK_TIME(timer_stat) const LLTrace::BlockTimer& LL_GLUE_TOKENS(block_time_recorder, __LINE__)(LLTrace::timeThisBlock(timer_stat)); (void)LL_GLUE_TOKENS(block_time_recorder, __LINE__); #endif // LL_PROFILER_CONFIGURATION namespace LLTrace { // use to create blocktimer rvalue to be captured in a reference so that the BlockTimer lives to the end of the block. class BlockTimer timeThisBlock(class BlockTimerStatHandle& timer); class BlockTimer { public: typedef BlockTimer self_t; typedef class BlockTimerStatHandle DeclareTimer; ~BlockTimer(); F64Seconds getElapsedTime(); ////////////////////////////////////////////////////////////////////////////// // // Important note: These implementations must be FAST! // #if LL_WINDOWS // // Windows implementation of CPU clock // // // NOTE: put back in when we aren't using platform sdk anymore // // because MS has different signatures for these functions in winnt.h // need to rename them to avoid conflicts //#define _interlockedbittestandset _renamed_interlockedbittestandset //#define _interlockedbittestandreset _renamed_interlockedbittestandreset //#include //#undef _interlockedbittestandset //#undef _interlockedbittestandreset //inline U32 getCPUClockCount32() //{ // U64 time_stamp = __rdtsc(); // return (U32)(time_stamp >> 8); //} // //// return full timer value, *not* shifted by 8 bits //inline U64 getCPUClockCount64() //{ // return __rdtsc(); //} // shift off lower 8 bits for lower resolution but longer term timing // on 1Ghz machine, a 32-bit word will hold ~1000 seconds of timing #if LL_FASTTIMER_USE_RDTSC static U32 getCPUClockCount32() { unsigned __int64 val = __rdtsc(); val = val >> 8; return static_cast(val); } // return full timer value, *not* shifted by 8 bits static U64 getCPUClockCount64() { return static_cast( __rdtsc() ); } #else //U64 get_clock_count(); // in lltimer.cpp // These use QueryPerformanceCounter, which is arguably fine and also works on AMD architectures. static U32 getCPUClockCount32() { return (U32)(get_clock_count()>>8); } static U64 getCPUClockCount64() { return get_clock_count(); } #endif #endif #if (LL_LINUX) && !(defined(__i386__) || defined(__amd64__)) // // Linux implementation of CPU clock - non-x86. // This is accurate but SLOW! Only use out of desperation. // // Try to use the MONOTONIC clock if available, this is a constant time counter // with nanosecond resolution (but not necessarily accuracy) and attempts are // made to synchronize this value between cores at kernel start. It should not // be affected by CPU frequency. If not available use the REALTIME clock, but // this may be affected by NTP adjustments or other user activity affecting // the system time. static U64 getCPUClockCount64() { struct timespec tp; #ifdef CLOCK_MONOTONIC // MONOTONIC supported at build-time? if (-1 == clock_gettime(CLOCK_MONOTONIC,&tp)) // if MONOTONIC isn't supported at runtime then ouch, try REALTIME #endif clock_gettime(CLOCK_REALTIME,&tp); return (tp.tv_sec*sClockResolution)+tp.tv_nsec; } static U32 getCPUClockCount32() { return (U32)(getCPUClockCount64() >> 8); } #endif // (LL_LINUX) && !(defined(__i386__) || defined(__amd64__)) #if (LL_LINUX || LL_DARWIN) && (defined(__i386__) || defined(__amd64__)) // // Mac+Linux FAST x86 implementation of CPU clock static U32 getCPUClockCount32() { U32 low(0),high(0); __asm__ volatile (".byte 0x0f, 0x31": "=a"(low), "=d"(high) ); return (low>>8) | (high<<24); } static U64 getCPUClockCount64() { U32 low(0),high(0); __asm__ volatile (".byte 0x0f, 0x31": "=a"(low), "=d"(high) ); return (U64)low | ( ((U64)high) << 32); } #endif static BlockTimerStatHandle& getRootTimeBlock(); static void pushLog(LLSD sd); static void setLogLock(class LLMutex* mutex); static void writeLog(std::ostream& os); static void updateTimes(); static U64 countsPerSecond(); // updates cumulative times and hierarchy, // can be called multiple times in a frame, at any point static void processTimes(); static void bootstrapTimerTree(); static void incrementalUpdateTimerTree(); // call this once a frame to periodically log timers static void logStats(); // dumps current cumulative frame stats to log // call nextFrame() to reset timers static void dumpCurTimes(); private: friend class BlockTimerStatHandle; // FIXME: this friendship exists so that each thread can instantiate a root timer, // which could be a derived class with a public constructor instead, possibly friend class ThreadRecorder; friend BlockTimer timeThisBlock(BlockTimerStatHandle&); BlockTimer(BlockTimerStatHandle& timer); // no-copy BlockTimer(const BlockTimer& other); BlockTimer& operator=(const BlockTimer& other); private: U64 mStartTime; BlockTimerStackRecord mParentTimerData{}; public: // statics static std::string sLogName; static bool sMetricLog, sLog; static U64 sClockResolution; }; // this dummy function assists in allocating a block timer with stack-based lifetime. // this is done by capturing the return value in a stack-allocated const reference variable. // (This is most easily done using the macro LL_RECORD_BLOCK_TIME) // Otherwise, it would be possible to store a BlockTimer on the heap, resulting in non-nested lifetimes, // which would break the invariants of the timing hierarchy logic LL_FORCE_INLINE class BlockTimer timeThisBlock(class BlockTimerStatHandle& timer) { return BlockTimer(timer); } // stores a "named" timer instance to be reused via multiple BlockTimer stack instances class BlockTimerStatHandle : public StatType { public: BlockTimerStatHandle(const char* name, const char* description = ""); TimeBlockTreeNode& getTreeNode() const; BlockTimerStatHandle* getParent() const { return getTreeNode().getParent(); } void setParent(BlockTimerStatHandle* parent) { getTreeNode().setParent(parent); } typedef std::vector::iterator child_iter; typedef std::vector::const_iterator child_const_iter; child_iter beginChildren(); child_iter endChildren(); bool hasChildren(); std::vector& getChildren(); StatType& callCount() { return static_cast&>(*(StatType*)this); } StatType& selfTime() { return static_cast&>(*(StatType*)this); } bool mCollapsed; // don't show children }; // iterators and helper functions for walking the call hierarchy of block timers in different ways typedef LLTreeDFSIter block_timer_tree_df_iterator_t; typedef LLTreeDFSPostIter block_timer_tree_df_post_iterator_t; typedef LLTreeBFSIter block_timer_tree_bf_iterator_t; block_timer_tree_df_iterator_t begin_block_timer_tree_df(BlockTimerStatHandle& id); block_timer_tree_df_iterator_t end_block_timer_tree_df(); block_timer_tree_df_post_iterator_t begin_block_timer_tree_df_post(BlockTimerStatHandle& id); block_timer_tree_df_post_iterator_t end_block_timer_tree_df_post(); block_timer_tree_bf_iterator_t begin_block_timer_tree_bf(BlockTimerStatHandle& id); block_timer_tree_bf_iterator_t end_block_timer_tree_bf(); LL_FORCE_INLINE BlockTimer::BlockTimer(BlockTimerStatHandle& timer) { #if LL_FAST_TIMER_ON BlockTimerStackRecord* cur_timer_data = LLThreadLocalSingletonPointer::getInstance(); if (!cur_timer_data) { // How likely is it that // LLThreadLocalSingletonPointer::getInstance() will return NULL? // Even without researching, what we can say is that if we exit // without setting mStartTime at all, gcc 4.7 produces (fatal) // warnings about a possibly-uninitialized data member. mStartTime = 0; return; } TimeBlockAccumulator& accumulator = timer.getCurrentAccumulator(); accumulator.mActiveCount++; // keep current parent as long as it is active when we are accumulator.mMoveUpTree |= (accumulator.mParent->getCurrentAccumulator().mActiveCount == 0); // store top of stack mParentTimerData = *cur_timer_data; // push new information cur_timer_data->mActiveTimer = this; cur_timer_data->mTimeBlock = &timer; cur_timer_data->mChildTime = 0; mStartTime = getCPUClockCount64(); #endif } LL_FORCE_INLINE BlockTimer::~BlockTimer() { #if LL_FAST_TIMER_ON U64 total_time = getCPUClockCount64() - mStartTime; BlockTimerStackRecord* cur_timer_data = LLThreadLocalSingletonPointer::getInstance(); if (!cur_timer_data) return; TimeBlockAccumulator& accumulator = cur_timer_data->mTimeBlock->getCurrentAccumulator(); accumulator.mCalls++; accumulator.mTotalTimeCounter += total_time; accumulator.mSelfTimeCounter += total_time - cur_timer_data->mChildTime; accumulator.mActiveCount--; // store last caller to bootstrap tree creation // do this in the destructor in case of recursion to get topmost caller accumulator.mLastCaller = mParentTimerData.mTimeBlock; // we are only tracking self time, so subtract our total time delta from parents mParentTimerData.mChildTime += total_time; //pop stack *cur_timer_data = mParentTimerData; #endif } } typedef LLTrace::BlockTimer LLFastTimer; #endif // LL_LLFASTTIMER_H