/** * @file llfasttimer.cpp * @brief Implementation of the fast timer. * * $LicenseInfo:firstyear=2004&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #include "linden_common.h" #include "llfasttimer.h" #include "llmemory.h" #include "llprocessor.h" #include "llsingleton.h" #include "lltreeiterators.h" #include "llsdserialize.h" #include "llunit.h" #include "llsd.h" #include "lltracerecording.h" #include #include #if LL_WINDOWS #include "lltimer.h" #elif LL_LINUX || LL_SOLARIS #include #include #include "lltimer.h" #elif LL_DARWIN #include #include "lltimer.h" // get_clock_count() #else #error "architecture not supported" #endif namespace LLTrace { ////////////////////////////////////////////////////////////////////////////// // statics S32 TimeBlock::sCurFrameIndex = -1; S32 TimeBlock::sLastFrameIndex = -1; U64 TimeBlock::sLastFrameTime = TimeBlock::getCPUClockCount64(); bool TimeBlock::sPauseHistory = 0; bool TimeBlock::sResetHistory = 0; bool TimeBlock::sLog = false; std::string TimeBlock::sLogName = ""; bool TimeBlock::sMetricLog = false; #if LL_LINUX || LL_SOLARIS U64 TimeBlock::sClockResolution = 1000000000; // Nanosecond resolution #else U64 TimeBlock::sClockResolution = 1000000; // Microsecond resolution #endif LLThreadLocalPointer TimeBlock::sCurTimerData; static LLMutex* sLogLock = NULL; static std::queue sLogQueue; // FIXME: move these declarations to the relevant modules // helper functions typedef LLTreeDFSPostIter timer_tree_bottom_up_iterator_t; static timer_tree_bottom_up_iterator_t begin_timer_tree_bottom_up(TimeBlock& id) { return timer_tree_bottom_up_iterator_t(&id, boost::bind(boost::mem_fn(&TimeBlock::beginChildren), _1), boost::bind(boost::mem_fn(&TimeBlock::endChildren), _1)); } static timer_tree_bottom_up_iterator_t end_timer_tree_bottom_up() { return timer_tree_bottom_up_iterator_t(); } typedef LLTreeDFSIter timer_tree_dfs_iterator_t; static timer_tree_dfs_iterator_t begin_timer_tree(TimeBlock& id) { return timer_tree_dfs_iterator_t(&id, boost::bind(boost::mem_fn(&TimeBlock::beginChildren), _1), boost::bind(boost::mem_fn(&TimeBlock::endChildren), _1)); } static timer_tree_dfs_iterator_t end_timer_tree() { return timer_tree_dfs_iterator_t(); } // sort child timers by name struct SortTimerByName { bool operator()(const TimeBlock* i1, const TimeBlock* i2) { return i1->getName() < i2->getName(); } }; TimeBlock& TimeBlock::getRootTimer() { static TimeBlock root_timer("root", true, NULL); return root_timer; } void TimeBlock::pushLog(LLSD log) { LLMutexLock lock(sLogLock); sLogQueue.push(log); } void TimeBlock::setLogLock(LLMutex* lock) { sLogLock = lock; } //static #if (LL_DARWIN || LL_LINUX || LL_SOLARIS) && !(defined(__i386__) || defined(__amd64__)) U64 TimeBlock::countsPerSecond() // counts per second for the *64-bit* timer { return sClockResolution; } #else // windows or x86-mac or x86-linux or x86-solaris U64 TimeBlock::countsPerSecond() // counts per second for the *64-bit* timer { #if LL_FASTTIMER_USE_RDTSC || !LL_WINDOWS //getCPUFrequency returns MHz and sCPUClockFrequency wants to be in Hz static LLUnit sCPUClockFrequency = LLProcessorInfo().getCPUFrequency(); #else // If we're not using RDTSC, each fast timer tick is just a performance counter tick. // Not redefining the clock frequency itself (in llprocessor.cpp/calculate_cpu_frequency()) // since that would change displayed MHz stats for CPUs static bool firstcall = true; static U64 sCPUClockFrequency; if (firstcall) { QueryPerformanceFrequency((LARGE_INTEGER*)&sCPUClockFrequency); firstcall = false; } #endif return sCPUClockFrequency.value(); } #endif TimeBlock::TimeBlock(const char* name, bool open, TimeBlock* parent) : TraceType(name), mCollapsed(true), mParent(NULL), mNeedsSorting(false) { setCollapsed(!open); if (parent) { setParent(parent); } else { mParent = this; } } void TimeBlock::setParent(TimeBlock* parent) { llassert_always(parent != this); llassert_always(parent != NULL); if (mParent) { //// subtract our accumulated from previous parent //for (S32 i = 0; i < HISTORY_NUM; i++) //{ // mParent->mCountHistory[i] -= mCountHistory[i]; //} //// subtract average timing from previous parent //mParent->mCountAverage -= mCountAverage; std::vector& children = mParent->getChildren(); std::vector::iterator found_it = std::find(children.begin(), children.end(), this); if (found_it != children.end()) { children.erase(found_it); } } mParent = parent; if (parent) { parent->getChildren().push_back(this); parent->mNeedsSorting = true; } } S32 TimeBlock::getDepth() { S32 depth = 0; TimeBlock* timerp = mParent; while(timerp) { depth++; if (timerp->getParent() == timerp) break; timerp = timerp->mParent; } return depth; } // static void TimeBlock::processTimes() { //void TimeBlock::buildHierarchy() { // set up initial tree { for (LLInstanceTracker::instance_iter it = LLInstanceTracker::beginInstances(), end_it = LLInstanceTracker::endInstances(); it != end_it; ++it) { TimeBlock& timer = *it; if (&timer == &TimeBlock::getRootTimer()) continue; // bootstrap tree construction by attaching to last timer to be on stack // when this timer was called if (timer.mParent == &TimeBlock::getRootTimer()) { TimeBlockTreeNode& tree_node = sCurTimerData->mTimerTreeData[timer.getIndex()]; if (tree_node.mLastCaller) { timer.setParent(tree_node.mLastCaller); } // no need to push up tree on first use, flag can be set spuriously tree_node.mMoveUpTree = false; } } } // bump timers up tree if they have been flagged as being in the wrong place // do this in a bottom up order to promote descendants first before promoting ancestors // this preserves partial order derived from current frame's observations for(timer_tree_bottom_up_iterator_t it = begin_timer_tree_bottom_up(TimeBlock::getRootTimer()); it != end_timer_tree_bottom_up(); ++it) { TimeBlock* timerp = *it; // skip root timer if (timerp == &TimeBlock::getRootTimer()) continue; TimeBlockTreeNode& tree_node = sCurTimerData->mTimerTreeData[timerp->getIndex()]; if (tree_node.mMoveUpTree) { // since ancestors have already been visited, re-parenting won't affect tree traversal //step up tree, bringing our descendants with us LL_DEBUGS("FastTimers") << "Moving " << timerp->getName() << " from child of " << timerp->getParent()->getName() << " to child of " << timerp->getParent()->getParent()->getName() << LL_ENDL; timerp->setParent(timerp->getParent()->getParent()); tree_node.mMoveUpTree = false; // don't bubble up any ancestors until descendants are done bubbling up it.skipAncestors(); } } // sort timers by time last called, so call graph makes sense for(timer_tree_dfs_iterator_t it = begin_timer_tree(TimeBlock::getRootTimer()); it != end_timer_tree(); ++it) { TimeBlock* timerp = (*it); if (timerp->mNeedsSorting) { std::sort(timerp->getChildren().begin(), timerp->getChildren().end(), SortTimerByName()); } timerp->mNeedsSorting = false; } } //void TimeBlock::accumulateTimings() { U64 cur_time = getCPUClockCount64(); // root defined by parent pointing to self CurTimerData* cur_data = sCurTimerData.get(); // walk up stack of active timers and accumulate current time while leaving timing structures active BlockTimer* cur_timer = cur_data->mCurTimer; TimeBlockAccumulator& accumulator = cur_data->mTimerData->getPrimaryAccumulator(); while(cur_timer && cur_timer->mLastTimerData.mCurTimer != cur_timer) { U64 cumulative_time_delta = cur_time - cur_timer->mStartTime; U64 self_time_delta = cumulative_time_delta - cur_data->mChildTime; cur_data->mChildTime = 0; accumulator.mSelfTimeCounter += self_time_delta; accumulator.mTotalTimeCounter += cumulative_time_delta; cur_timer->mStartTime = cur_time; cur_data = &cur_timer->mLastTimerData; cur_data->mChildTime += cumulative_time_delta; if (cur_data->mTimerData) { accumulator = cur_data->mTimerData->getPrimaryAccumulator(); } cur_timer = cur_timer->mLastTimerData.mCurTimer; } // traverse tree in DFS post order, or bottom up //for(timer_tree_bottom_up_iterator_t it = begin_timer_tree_bottom_up(TimeBlock::getRootTimer()); // it != end_timer_tree_bottom_up(); // ++it) //{ // TimeBlock* timerp = (*it); // TimeBlockAccumulator& accumulator = timerp->getPrimaryAccumulator(); // timerp->mTreeTimeCounter = accumulator.mSelfTimeCounter; // for (child_const_iter child_it = timerp->beginChildren(); child_it != timerp->endChildren(); ++child_it) // { // timerp->mTreeTimeCounter += (*child_it)->mTreeTimeCounter; // } //S32 cur_frame = getCurFrameIndex(); //if (cur_frame >= 0) //{ // // update timer history // int hidx = getCurFrameIndex() % HISTORY_NUM; // timerp->mCountHistory[hidx] = timerp->mTreeTimeCounter; // timerp->mCountAverage = ((U64)timerp->mCountAverage * cur_frame + timerp->mTreeTimeCounter) / (cur_frame+1); // timerp->mCallHistory[hidx] = accumulator.mCalls; // timerp->mCallAverage = ((U64)timerp->mCallAverage * cur_frame + accumulator.mCalls) / (cur_frame+1); //} //} } } std::vector::const_iterator TimeBlock::beginChildren() { return mChildren.begin(); } std::vector::const_iterator TimeBlock::endChildren() { return mChildren.end(); } std::vector& TimeBlock::getChildren() { return mChildren; } //static void TimeBlock::nextFrame() { get_clock_count(); // good place to calculate clock frequency U64 frame_time = TimeBlock::getCPUClockCount64(); if ((frame_time - sLastFrameTime) >> 8 > 0xffffffff) { llinfos << "Slow frame, fast timers inaccurate" << llendl; } if (!sPauseHistory) { TimeBlock::processTimes(); sLastFrameIndex = sCurFrameIndex++; } // get ready for next frame //void TimeBlock::resetFrame() { if (sLog) { //output current frame counts to performance log static S32 call_count = 0; if (call_count % 100 == 0) { LL_DEBUGS("FastTimers") << "countsPerSecond: " << countsPerSecond() << LL_ENDL; LL_DEBUGS("FastTimers") << "LLProcessorInfo().getCPUFrequency() " << LLProcessorInfo().getCPUFrequency() << LL_ENDL; LL_DEBUGS("FastTimers") << "getCPUClockCount32() " << getCPUClockCount32() << LL_ENDL; LL_DEBUGS("FastTimers") << "getCPUClockCount64() " << getCPUClockCount64() << LL_ENDL; LL_DEBUGS("FastTimers") << "elapsed sec " << ((F64)getCPUClockCount64()) / (LLUnit(LLProcessorInfo().getCPUFrequency())) << LL_ENDL; } call_count++; LLUnit total_time(0); LLSD sd; { for (LLInstanceTracker::instance_iter it = LLInstanceTracker::beginInstances(), end_it = LLInstanceTracker::endInstances(); it != end_it; ++it) { TimeBlock& timer = *it; LLTrace::PeriodicRecording& frame_recording = LLTrace::get_frame_recording(); sd[timer.getName()]["Time"] = (LLSD::Real) (frame_recording.getLastRecordingPeriod().getSum(timer).value()); sd[timer.getName()]["Calls"] = (LLSD::Integer) (frame_recording.getLastRecordingPeriod().getSum(timer.callCount())); // computing total time here because getting the root timer's getCountHistory // doesn't work correctly on the first frame total_time += frame_recording.getLastRecordingPeriod().getSum(timer); } } sd["Total"]["Time"] = (LLSD::Real) total_time.value(); sd["Total"]["Calls"] = (LLSD::Integer) 1; { LLMutexLock lock(sLogLock); sLogQueue.push(sd); } } // reset for next frame for (LLInstanceTracker::instance_iter it = LLInstanceTracker::beginInstances(), end_it = LLInstanceTracker::endInstances(); it != end_it; ++it) { TimeBlock& timer = *it; TimeBlockTreeNode& tree_node = sCurTimerData->mTimerTreeData[timer.getIndex()]; tree_node.mLastCaller = NULL; tree_node.mMoveUpTree = false; } } sLastFrameTime = frame_time; } //static void TimeBlock::dumpCurTimes() { // accumulate timings, etc. processTimes(); // walk over timers in depth order and output timings for(timer_tree_dfs_iterator_t it = begin_timer_tree(TimeBlock::getRootTimer()); it != end_timer_tree(); ++it) { LLTrace::PeriodicRecording& frame_recording = LLTrace::get_frame_recording(); TimeBlock* timerp = (*it); LLUnit total_time_ms = frame_recording.getLastRecordingPeriod().getSum(*timerp); U32 num_calls = frame_recording.getLastRecordingPeriod().getSum(timerp->callCount()); // Don't bother with really brief times, keep output concise if (total_time_ms < 0.1) continue; std::ostringstream out_str; for (S32 i = 0; i < timerp->getDepth(); i++) { out_str << "\t"; } out_str << timerp->getName() << " " << std::setprecision(3) << total_time_ms.as().value() << " ms, " << num_calls << " calls"; llinfos << out_str.str() << llendl; } } //static void TimeBlock::writeLog(std::ostream& os) { while (!sLogQueue.empty()) { LLSD& sd = sLogQueue.front(); LLSDSerialize::toXML(sd, os); LLMutexLock lock(sLogLock); sLogQueue.pop(); } } ////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // TimeBlockAccumulator ////////////////////////////////////////////////////////////////////////////////////////////////////////////////// TimeBlockAccumulator::TimeBlockAccumulator() : mSelfTimeCounter(0), mTotalTimeCounter(0), mCalls(0) {} void TimeBlockAccumulator::addSamples( const TimeBlockAccumulator& other ) { mSelfTimeCounter += other.mSelfTimeCounter; mTotalTimeCounter += other.mTotalTimeCounter; mCalls += other.mCalls; } void TimeBlockAccumulator::reset( const TimeBlockAccumulator* other ) { mTotalTimeCounter = 0; mSelfTimeCounter = 0; mCalls = 0; } TimeBlockTreeNode::TimeBlockTreeNode() : mLastCaller(NULL), mActiveCount(0), mMoveUpTree(false) {} } // namespace LLTrace