/** * @file llfasttimer.cpp * @brief Implementation of the fast timer. * * $LicenseInfo:firstyear=2004&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #include "linden_common.h" #include "llfasttimer.h" #include "llmemory.h" #include "llprocessor.h" #include "llsingleton.h" #include "lltreeiterators.h" #include "llsdserialize.h" #include #if LL_WINDOWS #include "lltimer.h" #elif LL_LINUX || LL_SOLARIS #include #include #include "lltimer.h" #elif LL_DARWIN #include #include "lltimer.h" // get_clock_count() #else #error "architecture not supported" #endif ////////////////////////////////////////////////////////////////////////////// // statics S32 LLFastTimer::sCurFrameIndex = -1; S32 LLFastTimer::sLastFrameIndex = -1; U64 LLFastTimer::sLastFrameTime = LLFastTimer::getCPUClockCount64(); bool LLFastTimer::sPauseHistory = 0; bool LLFastTimer::sResetHistory = 0; LLFastTimer::CurTimerData LLFastTimer::sCurTimerData; BOOL LLFastTimer::sLog = FALSE; std::string LLFastTimer::sLogName = ""; BOOL LLFastTimer::sMetricLog = FALSE; LLMutex* LLFastTimer::sLogLock = NULL; std::queue LLFastTimer::sLogQueue; #if LL_LINUX || LL_SOLARIS U64 LLFastTimer::sClockResolution = 1000000000; // Nanosecond resolution #else U64 LLFastTimer::sClockResolution = 1000000; // Microsecond resolution #endif // FIXME: move these declarations to the relevant modules // helper functions typedef LLTreeDFSPostIter timer_tree_bottom_up_iterator_t; static timer_tree_bottom_up_iterator_t begin_timer_tree_bottom_up(LLFastTimer::NamedTimer& id) { return timer_tree_bottom_up_iterator_t(&id, boost::bind(boost::mem_fn(&LLFastTimer::NamedTimer::beginChildren), _1), boost::bind(boost::mem_fn(&LLFastTimer::NamedTimer::endChildren), _1)); } static timer_tree_bottom_up_iterator_t end_timer_tree_bottom_up() { return timer_tree_bottom_up_iterator_t(); } typedef LLTreeDFSIter timer_tree_dfs_iterator_t; static timer_tree_dfs_iterator_t begin_timer_tree(LLFastTimer::NamedTimer& id) { return timer_tree_dfs_iterator_t(&id, boost::bind(boost::mem_fn(&LLFastTimer::NamedTimer::beginChildren), _1), boost::bind(boost::mem_fn(&LLFastTimer::NamedTimer::endChildren), _1)); } static timer_tree_dfs_iterator_t end_timer_tree() { return timer_tree_dfs_iterator_t(); } // factory class that creates NamedTimers via static DeclareTimer objects class NamedTimerFactory : public LLSingleton { public: NamedTimerFactory() : mTimerRoot(NULL) {} /*virtual */ void initSingleton() { mTimerRoot = new LLFastTimer::NamedTimer("root"); mRootFrameState.setNamedTimer(mTimerRoot); mTimerRoot->setFrameState(&mRootFrameState); mTimerRoot->mParent = mTimerRoot; mTimerRoot->setCollapsed(false); mRootFrameState.mParent = &mRootFrameState; } ~NamedTimerFactory() { std::for_each(mTimers.begin(), mTimers.end(), DeletePairedPointer()); delete mTimerRoot; } LLFastTimer::NamedTimer& createNamedTimer(const std::string& name, LLFastTimer::FrameState* state) { LLFastTimer::NamedTimer* timer = new LLFastTimer::NamedTimer(name); timer->setFrameState(state); timer->setParent(mTimerRoot); mTimers.insert(std::make_pair(name, timer)); return *timer; } LLFastTimer::NamedTimer* getTimerByName(const std::string& name) { timer_map_t::iterator found_it = mTimers.find(name); if (found_it != mTimers.end()) { return found_it->second; } return NULL; } LLFastTimer::NamedTimer* getRootTimer() { return mTimerRoot; } typedef std::multimap timer_map_t; timer_map_t::iterator beginTimers() { return mTimers.begin(); } timer_map_t::iterator endTimers() { return mTimers.end(); } S32 timerCount() { return mTimers.size(); } private: timer_map_t mTimers; LLFastTimer::NamedTimer* mTimerRoot; LLFastTimer::FrameState mRootFrameState; }; LLFastTimer::DeclareTimer::DeclareTimer(const std::string& name, bool open ) : mTimer(NamedTimerFactory::instance().createNamedTimer(name, &mFrameState)) { mTimer.setCollapsed(!open); } LLFastTimer::DeclareTimer::DeclareTimer(const std::string& name) : mTimer(NamedTimerFactory::instance().createNamedTimer(name, &mFrameState)) { } //static #if (LL_DARWIN || LL_LINUX || LL_SOLARIS) && !(defined(__i386__) || defined(__amd64__)) U64 LLFastTimer::countsPerSecond() // counts per second for the *32-bit* timer { return sClockResolution >> 8; } #else // windows or x86-mac or x86-linux or x86-solaris U64 LLFastTimer::countsPerSecond() // counts per second for the *32-bit* timer { #if LL_FASTTIMER_USE_RDTSC || !LL_WINDOWS //getCPUFrequency returns MHz and sCPUClockFrequency wants to be in Hz static U64 sCPUClockFrequency = U64(LLProcessorInfo().getCPUFrequency()*1000000.0); // we drop the low-order byte in our timers, so report a lower frequency #else // If we're not using RDTSC, each fasttimer tick is just a performance counter tick. // Not redefining the clock frequency itself (in llprocessor.cpp/calculate_cpu_frequency()) // since that would change displayed MHz stats for CPUs static bool firstcall = true; static U64 sCPUClockFrequency; if (firstcall) { QueryPerformanceFrequency((LARGE_INTEGER*)&sCPUClockFrequency); firstcall = false; } #endif return sCPUClockFrequency >> 8; } #endif LLFastTimer::FrameState::FrameState() : mActiveCount(0), mCalls(0), mSelfTimeCounter(0), mParent(NULL), mLastCaller(NULL), mMoveUpTree(false) {} LLFastTimer::NamedTimer::NamedTimer(const std::string& name) : mName(name), mCollapsed(true), mParent(NULL), mTreeTimeCounter(0), mCountAverage(0), mCallAverage(0), mNeedsSorting(false), mFrameState(NULL) { mCountHistory = new U32[HISTORY_NUM]; memset(mCountHistory, 0, sizeof(U32) * HISTORY_NUM); mCallHistory = new U32[HISTORY_NUM]; memset(mCallHistory, 0, sizeof(U32) * HISTORY_NUM); } LLFastTimer::NamedTimer::~NamedTimer() { delete[] mCountHistory; delete[] mCallHistory; } std::string LLFastTimer::NamedTimer::getToolTip(S32 history_idx) { F64 ms_multiplier = 1000.0 / (F64)LLFastTimer::countsPerSecond(); if (history_idx < 0) { // by default, show average number of call return llformat("%s (%d ms, %d calls)", getName().c_str(), (S32)(getCountAverage() * ms_multiplier), (S32)getCallAverage()); } else { return llformat("%s (%d ms, %d calls)", getName().c_str(), (S32)(getHistoricalCount(history_idx) * ms_multiplier), (S32)getHistoricalCalls(history_idx)); } } void LLFastTimer::NamedTimer::setParent(NamedTimer* parent) { llassert_always(parent != this); llassert_always(parent != NULL); if (mParent) { // subtract our accumulated from previous parent for (S32 i = 0; i < HISTORY_NUM; i++) { mParent->mCountHistory[i] -= mCountHistory[i]; } // subtract average timing from previous parent mParent->mCountAverage -= mCountAverage; std::vector& children = mParent->getChildren(); std::vector::iterator found_it = std::find(children.begin(), children.end(), this); if (found_it != children.end()) { children.erase(found_it); } } mParent = parent; if (parent) { getFrameState().mParent = &parent->getFrameState(); parent->getChildren().push_back(this); parent->mNeedsSorting = true; } } S32 LLFastTimer::NamedTimer::getDepth() { S32 depth = 0; NamedTimer* timerp = mParent; while(timerp) { depth++; if (timerp->getParent() == timerp) break; timerp = timerp->mParent; } return depth; } // static void LLFastTimer::NamedTimer::processTimes() { if (sCurFrameIndex < 0) return; buildHierarchy(); accumulateTimings(); } // sort child timers by name struct SortTimerByName { bool operator()(const LLFastTimer::NamedTimer* i1, const LLFastTimer::NamedTimer* i2) { return i1->getName() < i2->getName(); } }; //static void LLFastTimer::NamedTimer::buildHierarchy() { if (sCurFrameIndex < 0 ) return; // set up initial tree { for (instance_iter it = beginInstances(); it != endInstances(); ++it) { NamedTimer& timer = *it; if (&timer == NamedTimerFactory::instance().getRootTimer()) continue; // bootstrap tree construction by attaching to last timer to be on stack // when this timer was called if (timer.getFrameState().mLastCaller && timer.mParent == NamedTimerFactory::instance().getRootTimer()) { timer.setParent(timer.getFrameState().mLastCaller->mTimer); // no need to push up tree on first use, flag can be set spuriously timer.getFrameState().mMoveUpTree = false; } } } // bump timers up tree if they've been flagged as being in the wrong place // do this in a bottom up order to promote descendants first before promoting ancestors // this preserves partial order derived from current frame's observations for(timer_tree_bottom_up_iterator_t it = begin_timer_tree_bottom_up(*NamedTimerFactory::instance().getRootTimer()); it != end_timer_tree_bottom_up(); ++it) { NamedTimer* timerp = *it; // skip root timer if (timerp == NamedTimerFactory::instance().getRootTimer()) continue; if (timerp->getFrameState().mMoveUpTree) { // since ancestors have already been visited, reparenting won't affect tree traversal //step up tree, bringing our descendants with us LL_DEBUGS("FastTimers") << "Moving " << timerp->getName() << " from child of " << timerp->getParent()->getName() << " to child of " << timerp->getParent()->getParent()->getName() << LL_ENDL; timerp->setParent(timerp->getParent()->getParent()); timerp->getFrameState().mMoveUpTree = false; // don't bubble up any ancestors until descendants are done bubbling up it.skipAncestors(); } } // sort timers by time last called, so call graph makes sense for(timer_tree_dfs_iterator_t it = begin_timer_tree(*NamedTimerFactory::instance().getRootTimer()); it != end_timer_tree(); ++it) { NamedTimer* timerp = (*it); if (timerp->mNeedsSorting) { std::sort(timerp->getChildren().begin(), timerp->getChildren().end(), SortTimerByName()); } timerp->mNeedsSorting = false; } } //static void LLFastTimer::NamedTimer::accumulateTimings() { U32 cur_time = getCPUClockCount32(); // walk up stack of active timers and accumulate current time while leaving timing structures active LLFastTimer* cur_timer = sCurTimerData.mCurTimer; // root defined by parent pointing to self CurTimerData* cur_data = &sCurTimerData; while(cur_timer && cur_timer->mLastTimerData.mCurTimer != cur_timer) { U32 cumulative_time_delta = cur_time - cur_timer->mStartTime; U32 self_time_delta = cumulative_time_delta - cur_data->mChildTime; cur_data->mChildTime = 0; cur_data->mFrameState->mSelfTimeCounter += self_time_delta; cur_data->mFrameState->mTotalTimeCounter += cumulative_time_delta; cur_timer->mStartTime = cur_time; cur_data = &cur_timer->mLastTimerData; cur_data->mChildTime += cumulative_time_delta; cur_timer = cur_timer->mLastTimerData.mCurTimer; } // traverse tree in DFS post order, or bottom up for(timer_tree_bottom_up_iterator_t it = begin_timer_tree_bottom_up(*NamedTimerFactory::instance().getRootTimer()); it != end_timer_tree_bottom_up(); ++it) { NamedTimer* timerp = (*it); timerp->mTreeTimeCounter = timerp->getFrameState().mSelfTimeCounter; for (child_const_iter child_it = timerp->beginChildren(); child_it != timerp->endChildren(); ++child_it) { timerp->mTreeTimeCounter += (*child_it)->mTreeTimeCounter; } S32 cur_frame = sCurFrameIndex; if (cur_frame >= 0) { // update timer history int hidx = cur_frame % HISTORY_NUM; timerp->mCountHistory[hidx] = timerp->mTreeTimeCounter; timerp->mCountAverage = ((U64)timerp->mCountAverage * cur_frame + timerp->mTreeTimeCounter) / (cur_frame+1); timerp->mCallHistory[hidx] = timerp->getFrameState().mCalls; timerp->mCallAverage = ((U64)timerp->mCallAverage * cur_frame + timerp->getFrameState().mCalls) / (cur_frame+1); } } } // static void LLFastTimer::NamedTimer::resetFrame() { if (sLog) { //output current frame counts to performance log static S32 call_count = 0; if (call_count % 100 == 0) { LL_DEBUGS("FastTimers") << "countsPerSecond (32 bit): " << countsPerSecond() << LL_ENDL; LL_DEBUGS("FastTimers") << "get_clock_count (64 bit): " << get_clock_count() << llendl; LL_DEBUGS("FastTimers") << "LLProcessorInfo().getCPUFrequency() " << LLProcessorInfo().getCPUFrequency() << LL_ENDL; LL_DEBUGS("FastTimers") << "getCPUClockCount32() " << getCPUClockCount32() << LL_ENDL; LL_DEBUGS("FastTimers") << "getCPUClockCount64() " << getCPUClockCount64() << LL_ENDL; LL_DEBUGS("FastTimers") << "elapsed sec " << ((F64)getCPUClockCount64())/((F64)LLProcessorInfo().getCPUFrequency()*1000000.0) << LL_ENDL; } call_count++; F64 iclock_freq = 1000.0 / countsPerSecond(); // good place to calculate clock frequency F64 total_time = 0; LLSD sd; { for (instance_iter it = beginInstances(); it != endInstances(); ++it) { NamedTimer& timer = *it; FrameState& info = timer.getFrameState(); sd[timer.getName()]["Time"] = (LLSD::Real) (info.mSelfTimeCounter*iclock_freq); sd[timer.getName()]["Calls"] = (LLSD::Integer) info.mCalls; // computing total time here because getting the root timer's getCountHistory // doesn't work correctly on the first frame total_time = total_time + info.mSelfTimeCounter * iclock_freq; } } sd["Total"]["Time"] = (LLSD::Real) total_time; sd["Total"]["Calls"] = (LLSD::Integer) 1; { LLMutexLock lock(sLogLock); sLogQueue.push(sd); } } // reset for next frame for (instance_iter it = beginInstances(); it != endInstances(); ++it) { NamedTimer& timer = *it; FrameState& info = timer.getFrameState(); info.mSelfTimeCounter = 0; info.mCalls = 0; info.mLastCaller = NULL; info.mMoveUpTree = false; // update parent pointer in timer state struct if (timer.mParent) { info.mParent = &timer.mParent->getFrameState(); } } } //static void LLFastTimer::NamedTimer::reset() { resetFrame(); // reset frame data // walk up stack of active timers and reset start times to current time // effectively zeroing out any accumulated time U32 cur_time = getCPUClockCount32(); // root defined by parent pointing to self CurTimerData* cur_data = &sCurTimerData; LLFastTimer* cur_timer = cur_data->mCurTimer; while(cur_timer && cur_timer->mLastTimerData.mCurTimer != cur_timer) { cur_timer->mStartTime = cur_time; cur_data->mChildTime = 0; cur_data = &cur_timer->mLastTimerData; cur_timer = cur_data->mCurTimer; } // reset all history { for (instance_iter it = beginInstances(); it != endInstances(); ++it) { NamedTimer& timer = *it; if (&timer != NamedTimerFactory::instance().getRootTimer()) { timer.setParent(NamedTimerFactory::instance().getRootTimer()); } timer.mCountAverage = 0; timer.mCallAverage = 0; memset(timer.mCountHistory, 0, sizeof(U32) * HISTORY_NUM); memset(timer.mCallHistory, 0, sizeof(U32) * HISTORY_NUM); } } sLastFrameIndex = 0; sCurFrameIndex = 0; } U32 LLFastTimer::NamedTimer::getHistoricalCount(S32 history_index) const { S32 history_idx = (getLastFrameIndex() + history_index) % LLFastTimer::NamedTimer::HISTORY_NUM; return mCountHistory[history_idx]; } U32 LLFastTimer::NamedTimer::getHistoricalCalls(S32 history_index ) const { S32 history_idx = (getLastFrameIndex() + history_index) % LLFastTimer::NamedTimer::HISTORY_NUM; return mCallHistory[history_idx]; } LLFastTimer::FrameState& LLFastTimer::NamedTimer::getFrameState() const { return *mFrameState; } std::vector::const_iterator LLFastTimer::NamedTimer::beginChildren() { return mChildren.begin(); } std::vector::const_iterator LLFastTimer::NamedTimer::endChildren() { return mChildren.end(); } std::vector& LLFastTimer::NamedTimer::getChildren() { return mChildren; } //static void LLFastTimer::nextFrame() { countsPerSecond(); // good place to calculate clock frequency U64 frame_time = getCPUClockCount64(); if ((frame_time - sLastFrameTime) >> 8 > 0xffffffff) { llinfos << "Slow frame, fast timers inaccurate" << llendl; } if (!sPauseHistory) { NamedTimer::processTimes(); sLastFrameIndex = sCurFrameIndex++; } // get ready for next frame NamedTimer::resetFrame(); sLastFrameTime = frame_time; } //static void LLFastTimer::dumpCurTimes() { // accumulate timings, etc. NamedTimer::processTimes(); F64 clock_freq = (F64)countsPerSecond(); F64 iclock_freq = 1000.0 / clock_freq; // clock_ticks -> milliseconds // walk over timers in depth order and output timings for(timer_tree_dfs_iterator_t it = begin_timer_tree(*NamedTimerFactory::instance().getRootTimer()); it != end_timer_tree(); ++it) { NamedTimer* timerp = (*it); F64 total_time_ms = ((F64)timerp->getHistoricalCount(0) * iclock_freq); // Don't bother with really brief times, keep output concise if (total_time_ms < 0.1) continue; std::ostringstream out_str; for (S32 i = 0; i < timerp->getDepth(); i++) { out_str << "\t"; } out_str << timerp->getName() << " " << std::setprecision(3) << total_time_ms << " ms, " << timerp->getHistoricalCalls(0) << " calls"; llinfos << out_str.str() << llendl; } } //static void LLFastTimer::reset() { NamedTimer::reset(); } //static void LLFastTimer::writeLog(std::ostream& os) { while (!sLogQueue.empty()) { LLSD& sd = sLogQueue.front(); LLSDSerialize::toXML(sd, os); LLMutexLock lock(sLogLock); sLogQueue.pop(); } } //static const LLFastTimer::NamedTimer* LLFastTimer::getTimerByName(const std::string& name) { return NamedTimerFactory::instance().getTimerByName(name); } //LLFastTimer::LLFastTimer(LLFastTimer::FrameState* state) //: mFrameState(state) //{ // U32 start_time = getCPUClockCount32(); // mStartTime = start_time; // mFrameState->mActiveCount++; // LLFastTimer::sCurTimerData.mCurTimer = this; // LLFastTimer::sCurTimerData.mFrameState = mFrameState; // LLFastTimer::sCurTimerData.mChildTime = 0; // mLastTimerData = LLFastTimer::sCurTimerData; //}