/** * @file llfasttimer.cpp * @brief Implementation of the fast timer. * * $LicenseInfo:firstyear=2004&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #include "linden_common.h" #include "llfasttimer.h" #include "llmemory.h" #include "llprocessor.h" #include "llsingleton.h" #include "lltreeiterators.h" #include "llsdserialize.h" #include "llunits.h" #include "llsd.h" #include "lltracerecording.h" #include "lltracethreadrecorder.h" #include <boost/bind.hpp> #include <queue> #if LL_WINDOWS #include "lltimer.h" #elif LL_LINUX #include <sys/time.h> #include <sched.h> #include "lltimer.h" #elif LL_DARWIN #include <sys/time.h> #include "lltimer.h" // get_clock_count() #else #error "architecture not supported" #endif namespace LLTrace { ////////////////////////////////////////////////////////////////////////////// // statics bool BlockTimer::sLog = false; std::string BlockTimer::sLogName = ""; bool BlockTimer::sMetricLog = false; #if LL_LINUX U64 BlockTimer::sClockResolution = 1000000000; // Nanosecond resolution #else U64 BlockTimer::sClockResolution = 1000000; // Microsecond resolution #endif static LLMutex* sLogLock = NULL; static std::queue<LLSD> sLogQueue; block_timer_tree_df_iterator_t begin_block_timer_tree_df(BlockTimerStatHandle& id) { return block_timer_tree_df_iterator_t(&id, boost::bind(boost::mem_fn(&BlockTimerStatHandle::beginChildren), _1), boost::bind(boost::mem_fn(&BlockTimerStatHandle::endChildren), _1)); } block_timer_tree_df_iterator_t end_block_timer_tree_df() { return block_timer_tree_df_iterator_t(); } block_timer_tree_df_post_iterator_t begin_block_timer_tree_df_post(BlockTimerStatHandle& id) { return block_timer_tree_df_post_iterator_t(&id, boost::bind(boost::mem_fn(&BlockTimerStatHandle::beginChildren), _1), boost::bind(boost::mem_fn(&BlockTimerStatHandle::endChildren), _1)); } block_timer_tree_df_post_iterator_t end_block_timer_tree_df_post() { return block_timer_tree_df_post_iterator_t(); } block_timer_tree_bf_iterator_t begin_block_timer_tree_bf(BlockTimerStatHandle& id) { return block_timer_tree_bf_iterator_t(&id, boost::bind(boost::mem_fn(&BlockTimerStatHandle::beginChildren), _1), boost::bind(boost::mem_fn(&BlockTimerStatHandle::endChildren), _1)); } block_timer_tree_bf_iterator_t end_block_timer_tree_bf() { return block_timer_tree_bf_iterator_t(); } block_timer_tree_df_iterator_t begin_timer_tree(BlockTimerStatHandle& id) { return block_timer_tree_df_iterator_t(&id, boost::bind(boost::mem_fn(&BlockTimerStatHandle::beginChildren), _1), boost::bind(boost::mem_fn(&BlockTimerStatHandle::endChildren), _1)); } block_timer_tree_df_iterator_t end_timer_tree() { return block_timer_tree_df_iterator_t(); } // sort child timers by name struct SortTimerByName { bool operator()(const BlockTimerStatHandle* i1, const BlockTimerStatHandle* i2) { return i1->getName() < i2->getName(); } }; static BlockTimerStatHandle sRootTimer("root", NULL); BlockTimerStatHandle& BlockTimer::getRootTimeBlock() { return sRootTimer; } void BlockTimer::pushLog(LLSD log) { LLMutexLock lock(sLogLock); sLogQueue.push(log); } void BlockTimer::setLogLock(LLMutex* lock) { sLogLock = lock; } //static #if (LL_DARWIN || LL_LINUX) && !(defined(__i386__) || defined(__amd64__)) U64 BlockTimer::countsPerSecond() { return sClockResolution; } #else // windows or x86-mac or x86-linux U64 BlockTimer::countsPerSecond() { #if LL_FASTTIMER_USE_RDTSC || !LL_WINDOWS //getCPUFrequency returns MHz and sCPUClockFrequency wants to be in Hz static LLUnit<U64, LLUnits::Hertz> sCPUClockFrequency = LLProcessorInfo().getCPUFrequency(); return sCPUClockFrequency.value(); #else // If we're not using RDTSC, each fasttimer tick is just a performance counter tick. // Not redefining the clock frequency itself (in llprocessor.cpp/calculate_cpu_frequency()) // since that would change displayed MHz stats for CPUs static bool firstcall = true; static U64 sCPUClockFrequency; if (firstcall) { QueryPerformanceFrequency((LARGE_INTEGER*)&sCPUClockFrequency); firstcall = false; } return sCPUClockFrequency.value(); #endif } #endif BlockTimerStatHandle::BlockTimerStatHandle(const char* name, const char* description) : StatType<TimeBlockAccumulator>(name, description) {} TimeBlockTreeNode& BlockTimerStatHandle::getTreeNode() const { TimeBlockTreeNode* nodep = LLTrace::get_thread_recorder()->getTimeBlockTreeNode(getIndex()); llassert(nodep); return *nodep; } void BlockTimer::bootstrapTimerTree() { for (auto& base : BlockTimerStatHandle::instance_snapshot()) { // because of indirect derivation from LLInstanceTracker, have to downcast BlockTimerStatHandle& timer = static_cast<BlockTimerStatHandle&>(base); if (&timer == &BlockTimer::getRootTimeBlock()) continue; // bootstrap tree construction by attaching to last timer to be on stack // when this timer was called if (timer.getParent() == &BlockTimer::getRootTimeBlock()) { TimeBlockAccumulator& accumulator = timer.getCurrentAccumulator(); if (accumulator.mLastCaller) { timer.setParent(accumulator.mLastCaller); accumulator.mParent = accumulator.mLastCaller; } // no need to push up tree on first use, flag can be set spuriously accumulator.mMoveUpTree = false; } } } // bump timers up tree if they have been flagged as being in the wrong place // do this in a bottom up order to promote descendants first before promoting ancestors // this preserves partial order derived from current frame's observations void BlockTimer::incrementalUpdateTimerTree() { LL_PROFILE_ZONE_SCOPED_CATEGORY_STATS; for(block_timer_tree_df_post_iterator_t it = begin_block_timer_tree_df_post(BlockTimer::getRootTimeBlock()); it != end_block_timer_tree_df_post(); ++it) { BlockTimerStatHandle* timerp = *it; // sort timers by time last called, so call graph makes sense TimeBlockTreeNode& tree_node = timerp->getTreeNode(); if (tree_node.mNeedsSorting) { std::sort(tree_node.mChildren.begin(), tree_node.mChildren.end(), SortTimerByName()); } // skip root timer if (timerp != &BlockTimer::getRootTimeBlock()) { TimeBlockAccumulator& accumulator = timerp->getCurrentAccumulator(); if (accumulator.mMoveUpTree) { // since ancestors have already been visited, re-parenting won't affect tree traversal //step up tree, bringing our descendants with us LL_DEBUGS("FastTimers") << "Moving " << timerp->getName() << " from child of " << timerp->getParent()->getName() << " to child of " << timerp->getParent()->getParent()->getName() << LL_ENDL; timerp->setParent(timerp->getParent()->getParent()); accumulator.mParent = timerp->getParent(); accumulator.mMoveUpTree = false; // don't bubble up any ancestors until descendants are done bubbling up // as ancestors may call this timer only on certain paths, so we want to resolve // child-most block locations before their parents it.skipAncestors(); } } } } void BlockTimer::updateTimes() { LL_PROFILE_ZONE_SCOPED_CATEGORY_STATS; // walk up stack of active timers and accumulate current time while leaving timing structures active BlockTimerStackRecord* stack_record = LLThreadLocalSingletonPointer<BlockTimerStackRecord>::getInstance(); if (!stack_record) return; U64 cur_time = getCPUClockCount64(); BlockTimer* cur_timer = stack_record->mActiveTimer; TimeBlockAccumulator* accumulator = &stack_record->mTimeBlock->getCurrentAccumulator(); while(cur_timer && cur_timer->mParentTimerData.mActiveTimer != cur_timer) // root defined by parent pointing to self { U64 cumulative_time_delta = cur_time - cur_timer->mStartTime; cur_timer->mStartTime = cur_time; accumulator->mTotalTimeCounter += cumulative_time_delta; accumulator->mSelfTimeCounter += cumulative_time_delta - stack_record->mChildTime; stack_record->mChildTime = 0; stack_record = &cur_timer->mParentTimerData; accumulator = &stack_record->mTimeBlock->getCurrentAccumulator(); cur_timer = stack_record->mActiveTimer; stack_record->mChildTime += cumulative_time_delta; } } static LLTrace::BlockTimerStatHandle FTM_PROCESS_TIMES("Process FastTimer Times"); // not thread safe, so only call on main thread //static void BlockTimer::processTimes() { #if LL_TRACE_ENABLED LL_RECORD_BLOCK_TIME(FTM_PROCESS_TIMES); get_clock_count(); // good place to calculate clock frequency // set up initial tree bootstrapTimerTree(); incrementalUpdateTimerTree(); updateTimes(); // reset for next frame for (auto& base : BlockTimerStatHandle::instance_snapshot()) { // because of indirect derivation from LLInstanceTracker, have to downcast BlockTimerStatHandle& timer = static_cast<BlockTimerStatHandle&>(base); TimeBlockAccumulator& accumulator = timer.getCurrentAccumulator(); accumulator.mLastCaller = NULL; accumulator.mMoveUpTree = false; } #endif } std::vector<BlockTimerStatHandle*>::iterator BlockTimerStatHandle::beginChildren() { return getTreeNode().mChildren.begin(); } std::vector<BlockTimerStatHandle*>::iterator BlockTimerStatHandle::endChildren() { return getTreeNode().mChildren.end(); } std::vector<BlockTimerStatHandle*>& BlockTimerStatHandle::getChildren() { return getTreeNode().mChildren; } bool BlockTimerStatHandle::hasChildren() { return ! getTreeNode().mChildren.empty(); } // static void BlockTimer::logStats() { // get ready for next frame if (sLog) { //output current frame counts to performance log static S32 call_count = 0; if (call_count % 100 == 0) { LL_DEBUGS("FastTimers") << "countsPerSecond: " << countsPerSecond() << LL_ENDL; LL_DEBUGS("FastTimers") << "LLProcessorInfo().getCPUFrequency() " << LLProcessorInfo().getCPUFrequency() << LL_ENDL; LL_DEBUGS("FastTimers") << "getCPUClockCount32() " << getCPUClockCount32() << LL_ENDL; LL_DEBUGS("FastTimers") << "getCPUClockCount64() " << getCPUClockCount64() << LL_ENDL; LL_DEBUGS("FastTimers") << "elapsed sec " << ((F64)getCPUClockCount64() / (F64HertzImplicit)LLProcessorInfo().getCPUFrequency()) << LL_ENDL; } call_count++; F64Seconds total_time(0); LLSD sd; { for (auto& base : BlockTimerStatHandle::instance_snapshot()) { // because of indirect derivation from LLInstanceTracker, have to downcast BlockTimerStatHandle& timer = static_cast<BlockTimerStatHandle&>(base); LLTrace::PeriodicRecording& frame_recording = LLTrace::get_frame_recording(); sd[timer.getName()]["Time"] = (LLSD::Real) (frame_recording.getLastRecording().getSum(timer).value()); sd[timer.getName()]["Calls"] = (LLSD::Integer) (frame_recording.getLastRecording().getSum(timer.callCount())); // computing total time here because getting the root timer's getCountHistory // doesn't work correctly on the first frame total_time += frame_recording.getLastRecording().getSum(timer); } } sd["Total"]["Time"] = (LLSD::Real) total_time.value(); sd["Total"]["Calls"] = (LLSD::Integer) 1; { LLMutexLock lock(sLogLock); sLogQueue.push(sd); } } } //static void BlockTimer::dumpCurTimes() { LLTrace::PeriodicRecording& frame_recording = LLTrace::get_frame_recording(); LLTrace::Recording& last_frame_recording = frame_recording.getLastRecording(); // walk over timers in depth order and output timings for(block_timer_tree_df_iterator_t it = begin_timer_tree(BlockTimer::getRootTimeBlock()); it != end_timer_tree(); ++it) { BlockTimerStatHandle* timerp = (*it); F64Seconds total_time = last_frame_recording.getSum(*timerp); U32 num_calls = last_frame_recording.getSum(timerp->callCount()); // Don't bother with really brief times, keep output concise if (total_time < F32Milliseconds(0.1f)) continue; std::ostringstream out_str; BlockTimerStatHandle* parent_timerp = timerp; while(parent_timerp && parent_timerp != parent_timerp->getParent()) { out_str << "\t"; parent_timerp = parent_timerp->getParent(); } out_str << timerp->getName() << " " << std::setprecision(3) << total_time.valueInUnits<LLUnits::Milliseconds>() << " ms, " << num_calls << " calls"; LL_INFOS() << out_str.str() << LL_ENDL; } } //static void BlockTimer::writeLog(std::ostream& os) { while (!sLogQueue.empty()) { LLSD& sd = sLogQueue.front(); LLSDSerialize::toXML(sd, os); LLMutexLock lock(sLogLock); sLogQueue.pop(); } } ////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // TimeBlockAccumulator ////////////////////////////////////////////////////////////////////////////////////////////////////////////////// TimeBlockAccumulator::TimeBlockAccumulator() : mTotalTimeCounter(0), mSelfTimeCounter(0), mCalls(0), mLastCaller(NULL), mActiveCount(0), mMoveUpTree(false), mParent(NULL) {} void TimeBlockAccumulator::addSamples( const TimeBlockAccumulator& other, EBufferAppendType append_type ) { #if LL_TRACE_ENABLED // we can't merge two unrelated time block samples, as that will screw with the nested timings // due to the call hierarchy of each thread llassert(append_type == SEQUENTIAL); mTotalTimeCounter += other.mTotalTimeCounter; mSelfTimeCounter += other.mSelfTimeCounter; mCalls += other.mCalls; mLastCaller = other.mLastCaller; mActiveCount = other.mActiveCount; mMoveUpTree = other.mMoveUpTree; mParent = other.mParent; #endif } void TimeBlockAccumulator::reset( const TimeBlockAccumulator* other ) { mCalls = 0; mSelfTimeCounter = 0; mTotalTimeCounter = 0; if (other) { mLastCaller = other->mLastCaller; mActiveCount = other->mActiveCount; mMoveUpTree = other->mMoveUpTree; mParent = other->mParent; } } F64Seconds BlockTimer::getElapsedTime() { U64 total_time = getCPUClockCount64() - mStartTime; return F64Seconds((F64)total_time / (F64)BlockTimer::countsPerSecond()); } } // namespace LLTrace