From bdf4442e216273bb32eeb607857efdad2336ee81 Mon Sep 17 00:00:00 2001 From: Graham Linden Date: Fri, 9 Nov 2018 22:55:41 +0000 Subject: Add missing new shader files. --- .../shaders/class1/deferred/deferredUtil.glsl | 287 +++++++++++++++++++++ 1 file changed, 287 insertions(+) create mode 100644 indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl (limited to 'indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl') diff --git a/indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl b/indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl new file mode 100644 index 0000000000..b810bb4fd1 --- /dev/null +++ b/indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl @@ -0,0 +1,287 @@ +/** + * @file shadowUtil.glsl + * + * $LicenseInfo:firstyear=2007&license=viewerlgpl$ + * Second Life Viewer Source Code + * Copyright (C) 2007, Linden Research, Inc. + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; + * version 2.1 of the License only. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA + * $/LicenseInfo$ + */ + +uniform sampler2DRect normalMap; +uniform sampler2DRect depthMap; +uniform sampler2D noiseMap; +uniform sampler2DShadow shadowMap0; +uniform sampler2DShadow shadowMap1; +uniform sampler2DShadow shadowMap2; +uniform sampler2DShadow shadowMap3; +uniform sampler2DShadow shadowMap4; +uniform sampler2DShadow shadowMap5; + +uniform float ssao_radius; +uniform float ssao_max_radius; +uniform float ssao_factor; +uniform float ssao_factor_inv; + +uniform vec3 sun_dir; +uniform vec2 shadow_res; +uniform vec2 proj_shadow_res; +uniform mat4 shadow_matrix[6]; +uniform vec4 shadow_clip; +uniform float shadow_bias; + +uniform float spot_shadow_bias; +uniform float spot_shadow_offset; + +uniform mat4 inv_proj; +uniform vec2 screen_res; + +vec3 decode_normal(vec2 enc); + +vec2 getScreenCoordinate(vec2 screenpos) +{ + vec2 sc = screenpos.xy * 2.0; + if (screen_res.x > 0 && screen_res.y > 0) + { + sc /= screen_res; + } + return sc - vec2(1.0, 1.0); +} + +vec3 getNorm(vec2 screenpos) +{ + vec2 enc_norm = texture2DRect(normalMap, screenpos.xy).xy; + return decode_normal(enc_norm); +} + +float getDepth(vec2 pos_screen) +{ + float depth = texture2DRect(depthMap, pos_screen).r; + return depth; +} + +vec4 getPosition(vec2 pos_screen) +{ + float depth = getDepth(pos_screen); + vec2 sc = getScreenCoordinate(pos_screen); + vec4 ndc = vec4(sc.x, sc.y, 2.0*depth-1.0, 1.0); + vec4 pos = inv_proj * ndc; + pos /= pos.w; + pos.w = 1.0; + return pos; +} + +vec4 getPositionWithDepth(vec2 pos_screen, float depth) +{ + vec2 sc = getScreenCoordinate(pos_screen); + vec4 ndc = vec4(sc.x, sc.y, 2.0*depth-1.0, 1.0); + vec4 pos = inv_proj * ndc; + pos /= pos.w; + pos.w = 1.0; + return pos; +} + +float pcfShadow(sampler2DShadow shadowMap, vec4 stc, float bias_scale, vec2 pos_screen) +{ + stc.xyz /= stc.w; + stc.z += shadow_bias * bias_scale; + + stc.x = floor(stc.x*pos_screen.x + fract(stc.y*shadow_res.y*12345))/shadow_res.x; // add some chaotic jitter to X sample pos according to Y to disguise the snapping going on here + + float cs = shadow2D(shadowMap, stc.xyz).x; + float shadow = cs; + shadow += shadow2D(shadowMap, stc.xyz+vec3(2.0/shadow_res.x, 1.5/shadow_res.y, 0.0)).x; + shadow += shadow2D(shadowMap, stc.xyz+vec3(1.0/shadow_res.x, -1.5/shadow_res.y, 0.0)).x; + shadow += shadow2D(shadowMap, stc.xyz+vec3(-1.0/shadow_res.x, 1.5/shadow_res.y, 0.0)).x; + shadow += shadow2D(shadowMap, stc.xyz+vec3(-2.0/shadow_res.x, -1.5/shadow_res.y, 0.0)).x; + return shadow*0.2; +} + +float pcfSpotShadow(sampler2DShadow shadowMap, vec4 stc, float bias_scale, vec2 pos_screen) +{ + stc.xyz /= stc.w; + stc.z += spot_shadow_bias * bias_scale; + stc.x = floor(proj_shadow_res.x * stc.x + fract(pos_screen.y*0.666666666)) / proj_shadow_res.x; // snap + + float cs = shadow2D(shadowMap, stc.xyz).x; + float shadow = cs; + + vec2 off = 1.0/proj_shadow_res; + off.y *= 1.5; + + shadow += shadow2D(shadowMap, stc.xyz+vec3(off.x*2.0, off.y, 0.0)).x; + shadow += shadow2D(shadowMap, stc.xyz+vec3(off.x, -off.y, 0.0)).x; + shadow += shadow2D(shadowMap, stc.xyz+vec3(-off.x, off.y, 0.0)).x; + shadow += shadow2D(shadowMap, stc.xyz+vec3(-off.x*2.0, -off.y, 0.0)).x; + return shadow*0.2; +} + +float sampleDirectionalShadow(vec3 pos, vec3 norm, vec2 pos_screen) +{ + float dp_directional_light = max(0.0, dot(sun_dir.xyz, norm)); + vec3 offset = sun_dir.xyz * (1.0-dp_directional_light); + vec3 shadow_pos = pos.xyz + (offset * shadow_bias); + + float shadow = 0.0f; + vec4 spos = vec4(shadow_pos,1.0); + if (spos.z > -shadow_clip.w) + { + vec4 lpos; + vec4 near_split = shadow_clip*-0.75; + vec4 far_split = shadow_clip*-1.25; + vec4 transition_domain = near_split-far_split; + float weight = 0.0; + + if (spos.z < near_split.z) + { + lpos = shadow_matrix[3]*spos; + + float w = 1.0; + w -= max(spos.z-far_split.z, 0.0)/transition_domain.z; + shadow += pcfShadow(shadowMap3, lpos, 0.5, pos_screen)*w; + weight += w; + shadow += max((pos.z+shadow_clip.z)/(shadow_clip.z-shadow_clip.w)*2.0-1.0, 0.0); + } + + if (spos.z < near_split.y && spos.z > far_split.z) + { + lpos = shadow_matrix[2]*spos; + + float w = 1.0; + w -= max(spos.z-far_split.y, 0.0)/transition_domain.y; + w -= max(near_split.z-spos.z, 0.0)/transition_domain.z; + shadow += pcfShadow(shadowMap2, lpos, 0.75, pos_screen)*w; + weight += w; + } + + if (spos.z < near_split.x && spos.z > far_split.y) + { + lpos = shadow_matrix[1]*spos; + + float w = 1.0; + w -= max(spos.z-far_split.x, 0.0)/transition_domain.x; + w -= max(near_split.y-spos.z, 0.0)/transition_domain.y; + shadow += pcfShadow(shadowMap1, lpos, 0.88, pos_screen)*w; + weight += w; + } + + if (spos.z > far_split.x) + { + lpos = shadow_matrix[0]*spos; + + float w = 1.0; + w -= max(near_split.x-spos.z, 0.0)/transition_domain.x; + + shadow += pcfShadow(shadowMap0, lpos, 1.0, pos_screen)*w; + weight += w; + } + + shadow /= weight; + } + return shadow; +} + +float sampleSpotShadow(vec3 pos, vec3 norm, int index, vec2 pos_screen) +{ + float shadow = 0.0f; + pos += norm * spot_shadow_offset; + + vec4 spos = vec4(pos,1.0); + if (spos.z > -shadow_clip.w) + { + vec4 lpos; + + vec4 near_split = shadow_clip*-0.75; + vec4 far_split = shadow_clip*-1.25; + vec4 transition_domain = near_split-far_split; + float weight = 0.0; + + { + lpos = shadow_matrix[4 + index]*spos; + float w = 1.0; + w -= max(spos.z-far_split.z, 0.0)/transition_domain.z; + + shadow += pcfSpotShadow((index == 0) ? shadowMap4 : shadowMap5, lpos, 0.8, spos.xy)*w; + weight += w; + shadow += max((pos.z+shadow_clip.z)/(shadow_clip.z-shadow_clip.w)*2.0-1.0, 0.0); + } + + shadow /= weight; + } + return shadow; +} + +vec2 getKern(int i) +{ + vec2 kern[8]; + // exponentially (^2) distant occlusion samples spread around origin + kern[0] = vec2(-1.0, 0.0) * 0.125*0.125; + kern[1] = vec2(1.0, 0.0) * 0.250*0.250; + kern[2] = vec2(0.0, 1.0) * 0.375*0.375; + kern[3] = vec2(0.0, -1.0) * 0.500*0.500; + kern[4] = vec2(0.7071, 0.7071) * 0.625*0.625; + kern[5] = vec2(-0.7071, -0.7071) * 0.750*0.750; + kern[6] = vec2(-0.7071, 0.7071) * 0.875*0.875; + kern[7] = vec2(0.7071, -0.7071) * 1.000*1.000; + + return kern[i]; +} + +//calculate decreases in ambient lighting when crowded out (SSAO) +float calcAmbientOcclusion(vec4 pos, vec3 norm, vec2 pos_screen) +{ + float ret = 1.0; + vec3 pos_world = pos.xyz; + vec2 noise_reflect = texture2D(noiseMap, pos_screen.xy/128.0).xy; + + float angle_hidden = 0.0; + float points = 0; + + float scale = min(ssao_radius / -pos_world.z, ssao_max_radius); + + // it was found that keeping # of samples a constant was the fastest, probably due to compiler optimizations (unrolling?) + for (int i = 0; i < 8; i++) + { + vec2 samppos_screen = pos_screen + scale * reflect(getKern(i), noise_reflect); + vec3 samppos_world = getPosition(samppos_screen).xyz; + + vec3 diff = pos_world - samppos_world; + float dist2 = dot(diff, diff); + + // assume each sample corresponds to an occluding sphere with constant radius, constant x-sectional area + // --> solid angle shrinking by the square of distance + //radius is somewhat arbitrary, can approx with just some constant k * 1 / dist^2 + //(k should vary inversely with # of samples, but this is taken care of later) + + float funky_val = (dot((samppos_world - 0.05*norm - pos_world), norm) > 0.0) ? 1.0 : 0.0; + angle_hidden = angle_hidden + funky_val * min(1.0/dist2, ssao_factor_inv); + + // 'blocked' samples (significantly closer to camera relative to pos_world) are "no data", not "no occlusion" + float diffz_val = (diff.z > -1.0) ? 1.0 : 0.0; + points = points + diffz_val; + } + + angle_hidden = min(ssao_factor*angle_hidden/points, 1.0); + + float points_val = (points > 0.0) ? 1.0 : 0.0; + ret = (1.0 - (points_val * angle_hidden)); + + ret = max(ret, 0.0); + return min(ret, 1.0); +} + -- cgit v1.2.3 From c4630a4b15c6297ae669a2030b8fbc4a1490cee4 Mon Sep 17 00:00:00 2001 From: Graham Linden Date: Wed, 14 Nov 2018 19:23:16 -0800 Subject: Work around broken deps on atmospheric vars in the frag-based deferred lighting pipe. --- indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl | 4 ++++ 1 file changed, 4 insertions(+) (limited to 'indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl') diff --git a/indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl b/indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl index b810bb4fd1..43f0034874 100644 --- a/indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl +++ b/indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl @@ -86,6 +86,8 @@ vec4 getPosition(vec2 pos_screen) return pos; } +#if USE_DEFERRED_SHADER_API + vec4 getPositionWithDepth(vec2 pos_screen, float depth) { vec2 sc = getScreenCoordinate(pos_screen); @@ -285,3 +287,5 @@ float calcAmbientOcclusion(vec4 pos, vec3 norm, vec2 pos_screen) return min(ret, 1.0); } +#endif + -- cgit v1.2.3 From b6fa72d3c4d02527f6d118eadc9ba1ac48a297f5 Mon Sep 17 00:00:00 2001 From: Graham Linden Date: Mon, 3 Dec 2018 15:33:15 -0800 Subject: SL-10055 Modify handling of directional light to prefer sun when it is up but use moon dir/color when it is alone in the sky. Modify handling of shader in shaders to get some shadowing of ambient and nighttime shadowing. --- .../shaders/class1/deferred/deferredUtil.glsl | 332 +++++++++++---------- 1 file changed, 169 insertions(+), 163 deletions(-) (limited to 'indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl') diff --git a/indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl b/indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl index 43f0034874..ec05dab57f 100644 --- a/indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl +++ b/indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl @@ -1,5 +1,5 @@ /** - * @file shadowUtil.glsl + * @file class1/deferred/deferredUtil.glsl * * $LicenseInfo:firstyear=2007&license=viewerlgpl$ * Second Life Viewer Source Code @@ -39,6 +39,7 @@ uniform float ssao_factor; uniform float ssao_factor_inv; uniform vec3 sun_dir; +uniform vec3 moon_dir; uniform vec2 shadow_res; uniform vec2 proj_shadow_res; uniform mat4 shadow_matrix[6]; @@ -55,7 +56,7 @@ vec3 decode_normal(vec2 enc); vec2 getScreenCoordinate(vec2 screenpos) { - vec2 sc = screenpos.xy * 2.0; + vec2 sc = screenpos.xy * 2.0; if (screen_res.x > 0 && screen_res.y > 0) { sc /= screen_res; @@ -72,41 +73,41 @@ vec3 getNorm(vec2 screenpos) float getDepth(vec2 pos_screen) { float depth = texture2DRect(depthMap, pos_screen).r; - return depth; + return depth; } vec4 getPosition(vec2 pos_screen) { float depth = getDepth(pos_screen); - vec2 sc = getScreenCoordinate(pos_screen); - vec4 ndc = vec4(sc.x, sc.y, 2.0*depth-1.0, 1.0); - vec4 pos = inv_proj * ndc; - pos /= pos.w; - pos.w = 1.0; - return pos; + vec2 sc = getScreenCoordinate(pos_screen); + vec4 ndc = vec4(sc.x, sc.y, 2.0*depth-1.0, 1.0); + vec4 pos = inv_proj * ndc; + pos /= pos.w; + pos.w = 1.0; + return pos; } #if USE_DEFERRED_SHADER_API vec4 getPositionWithDepth(vec2 pos_screen, float depth) { - vec2 sc = getScreenCoordinate(pos_screen); - vec4 ndc = vec4(sc.x, sc.y, 2.0*depth-1.0, 1.0); - vec4 pos = inv_proj * ndc; - pos /= pos.w; - pos.w = 1.0; - return pos; + vec2 sc = getScreenCoordinate(pos_screen); + vec4 ndc = vec4(sc.x, sc.y, 2.0*depth-1.0, 1.0); + vec4 pos = inv_proj * ndc; + pos /= pos.w; + pos.w = 1.0; + return pos; } float pcfShadow(sampler2DShadow shadowMap, vec4 stc, float bias_scale, vec2 pos_screen) { - stc.xyz /= stc.w; - stc.z += shadow_bias * bias_scale; - - stc.x = floor(stc.x*pos_screen.x + fract(stc.y*shadow_res.y*12345))/shadow_res.x; // add some chaotic jitter to X sample pos according to Y to disguise the snapping going on here - - float cs = shadow2D(shadowMap, stc.xyz).x; - float shadow = cs; + stc.xyz /= stc.w; + stc.z += shadow_bias * bias_scale; + + stc.x = floor(stc.x*pos_screen.x + fract(stc.y*shadow_res.y*12345))/shadow_res.x; // add some chaotic jitter to X sample pos according to Y to disguise the snapping going on here + + float cs = shadow2D(shadowMap, stc.xyz).x; + float shadow = cs; shadow += shadow2D(shadowMap, stc.xyz+vec3(2.0/shadow_res.x, 1.5/shadow_res.y, 0.0)).x; shadow += shadow2D(shadowMap, stc.xyz+vec3(1.0/shadow_res.x, -1.5/shadow_res.y, 0.0)).x; shadow += shadow2D(shadowMap, stc.xyz+vec3(-1.0/shadow_res.x, 1.5/shadow_res.y, 0.0)).x; @@ -116,85 +117,90 @@ float pcfShadow(sampler2DShadow shadowMap, vec4 stc, float bias_scale, vec2 pos_ float pcfSpotShadow(sampler2DShadow shadowMap, vec4 stc, float bias_scale, vec2 pos_screen) { - stc.xyz /= stc.w; - stc.z += spot_shadow_bias * bias_scale; - stc.x = floor(proj_shadow_res.x * stc.x + fract(pos_screen.y*0.666666666)) / proj_shadow_res.x; // snap - - float cs = shadow2D(shadowMap, stc.xyz).x; - float shadow = cs; - - vec2 off = 1.0/proj_shadow_res; - off.y *= 1.5; - - shadow += shadow2D(shadowMap, stc.xyz+vec3(off.x*2.0, off.y, 0.0)).x; - shadow += shadow2D(shadowMap, stc.xyz+vec3(off.x, -off.y, 0.0)).x; - shadow += shadow2D(shadowMap, stc.xyz+vec3(-off.x, off.y, 0.0)).x; - shadow += shadow2D(shadowMap, stc.xyz+vec3(-off.x*2.0, -off.y, 0.0)).x; + stc.xyz /= stc.w; + stc.z += spot_shadow_bias * bias_scale; + stc.x = floor(proj_shadow_res.x * stc.x + fract(pos_screen.y*0.666666666)) / proj_shadow_res.x; // snap + + float cs = shadow2D(shadowMap, stc.xyz).x; + float shadow = cs; + + vec2 off = 1.0/proj_shadow_res; + off.y *= 1.5; + + shadow += shadow2D(shadowMap, stc.xyz+vec3(off.x*2.0, off.y, 0.0)).x; + shadow += shadow2D(shadowMap, stc.xyz+vec3(off.x, -off.y, 0.0)).x; + shadow += shadow2D(shadowMap, stc.xyz+vec3(-off.x, off.y, 0.0)).x; + shadow += shadow2D(shadowMap, stc.xyz+vec3(-off.x*2.0, -off.y, 0.0)).x; return shadow*0.2; } float sampleDirectionalShadow(vec3 pos, vec3 norm, vec2 pos_screen) { - float dp_directional_light = max(0.0, dot(sun_dir.xyz, norm)); - vec3 offset = sun_dir.xyz * (1.0-dp_directional_light); - vec3 shadow_pos = pos.xyz + (offset * shadow_bias); + float dp_sun = max(0.0, dot(sun_dir.xyz, norm)); + float dp_moon = max(0.0, dot(moon_dir.xyz, norm)); + float dp_directional_light = max(dp_sun,dp_moon); + dp_directional_light = clamp(dp_directional_light, 0.0, 1.0); + + vec3 light_dir = (dp_moon > dp_sun) ? moon_dir : sun_dir; + vec3 offset = light_dir * (1.0-dp_directional_light); + vec3 shadow_pos = pos.xyz + (offset * shadow_bias); float shadow = 0.0f; - vec4 spos = vec4(shadow_pos,1.0); - if (spos.z > -shadow_clip.w) - { - vec4 lpos; - vec4 near_split = shadow_clip*-0.75; - vec4 far_split = shadow_clip*-1.25; - vec4 transition_domain = near_split-far_split; - float weight = 0.0; - - if (spos.z < near_split.z) - { - lpos = shadow_matrix[3]*spos; - - float w = 1.0; - w -= max(spos.z-far_split.z, 0.0)/transition_domain.z; - shadow += pcfShadow(shadowMap3, lpos, 0.5, pos_screen)*w; - weight += w; - shadow += max((pos.z+shadow_clip.z)/(shadow_clip.z-shadow_clip.w)*2.0-1.0, 0.0); - } - - if (spos.z < near_split.y && spos.z > far_split.z) - { - lpos = shadow_matrix[2]*spos; - - float w = 1.0; - w -= max(spos.z-far_split.y, 0.0)/transition_domain.y; - w -= max(near_split.z-spos.z, 0.0)/transition_domain.z; - shadow += pcfShadow(shadowMap2, lpos, 0.75, pos_screen)*w; - weight += w; - } - - if (spos.z < near_split.x && spos.z > far_split.y) - { - lpos = shadow_matrix[1]*spos; - - float w = 1.0; - w -= max(spos.z-far_split.x, 0.0)/transition_domain.x; - w -= max(near_split.y-spos.z, 0.0)/transition_domain.y; - shadow += pcfShadow(shadowMap1, lpos, 0.88, pos_screen)*w; - weight += w; - } - - if (spos.z > far_split.x) - { - lpos = shadow_matrix[0]*spos; - - float w = 1.0; - w -= max(near_split.x-spos.z, 0.0)/transition_domain.x; - - shadow += pcfShadow(shadowMap0, lpos, 1.0, pos_screen)*w; - weight += w; - } - - shadow /= weight; - } + vec4 spos = vec4(shadow_pos,1.0); + if (spos.z > -shadow_clip.w) + { + vec4 lpos; + vec4 near_split = shadow_clip*-0.75; + vec4 far_split = shadow_clip*-1.25; + vec4 transition_domain = near_split-far_split; + float weight = 0.0; + + if (spos.z < near_split.z) + { + lpos = shadow_matrix[3]*spos; + + float w = 1.0; + w -= max(spos.z-far_split.z, 0.0)/transition_domain.z; + shadow += pcfShadow(shadowMap3, lpos, 0.5, pos_screen)*w; + weight += w; + shadow += max((pos.z+shadow_clip.z)/(shadow_clip.z-shadow_clip.w)*2.0-1.0, 0.0); + } + + if (spos.z < near_split.y && spos.z > far_split.z) + { + lpos = shadow_matrix[2]*spos; + + float w = 1.0; + w -= max(spos.z-far_split.y, 0.0)/transition_domain.y; + w -= max(near_split.z-spos.z, 0.0)/transition_domain.z; + shadow += pcfShadow(shadowMap2, lpos, 0.75, pos_screen)*w; + weight += w; + } + + if (spos.z < near_split.x && spos.z > far_split.y) + { + lpos = shadow_matrix[1]*spos; + + float w = 1.0; + w -= max(spos.z-far_split.x, 0.0)/transition_domain.x; + w -= max(near_split.y-spos.z, 0.0)/transition_domain.y; + shadow += pcfShadow(shadowMap1, lpos, 0.88, pos_screen)*w; + weight += w; + } + + if (spos.z > far_split.x) + { + lpos = shadow_matrix[0]*spos; + + float w = 1.0; + w -= max(near_split.x-spos.z, 0.0)/transition_domain.x; + + shadow += pcfShadow(shadowMap0, lpos, 1.0, pos_screen)*w; + weight += w; + } + + shadow /= weight; + } return shadow; } @@ -203,88 +209,88 @@ float sampleSpotShadow(vec3 pos, vec3 norm, int index, vec2 pos_screen) float shadow = 0.0f; pos += norm * spot_shadow_offset; - vec4 spos = vec4(pos,1.0); - if (spos.z > -shadow_clip.w) - { - vec4 lpos; - - vec4 near_split = shadow_clip*-0.75; - vec4 far_split = shadow_clip*-1.25; - vec4 transition_domain = near_split-far_split; - float weight = 0.0; + vec4 spos = vec4(pos,1.0); + if (spos.z > -shadow_clip.w) + { + vec4 lpos; + + vec4 near_split = shadow_clip*-0.75; + vec4 far_split = shadow_clip*-1.25; + vec4 transition_domain = near_split-far_split; + float weight = 0.0; { - lpos = shadow_matrix[4 + index]*spos; - float w = 1.0; - w -= max(spos.z-far_split.z, 0.0)/transition_domain.z; - - shadow += pcfSpotShadow((index == 0) ? shadowMap4 : shadowMap5, lpos, 0.8, spos.xy)*w; - weight += w; - shadow += max((pos.z+shadow_clip.z)/(shadow_clip.z-shadow_clip.w)*2.0-1.0, 0.0); - } - - shadow /= weight; - } + lpos = shadow_matrix[4 + index]*spos; + float w = 1.0; + w -= max(spos.z-far_split.z, 0.0)/transition_domain.z; + + shadow += pcfSpotShadow((index == 0) ? shadowMap4 : shadowMap5, lpos, 0.8, spos.xy)*w; + weight += w; + shadow += max((pos.z+shadow_clip.z)/(shadow_clip.z-shadow_clip.w)*2.0-1.0, 0.0); + } + + shadow /= weight; + } return shadow; } vec2 getKern(int i) { - vec2 kern[8]; - // exponentially (^2) distant occlusion samples spread around origin - kern[0] = vec2(-1.0, 0.0) * 0.125*0.125; - kern[1] = vec2(1.0, 0.0) * 0.250*0.250; - kern[2] = vec2(0.0, 1.0) * 0.375*0.375; - kern[3] = vec2(0.0, -1.0) * 0.500*0.500; - kern[4] = vec2(0.7071, 0.7071) * 0.625*0.625; - kern[5] = vec2(-0.7071, -0.7071) * 0.750*0.750; - kern[6] = vec2(-0.7071, 0.7071) * 0.875*0.875; - kern[7] = vec2(0.7071, -0.7071) * 1.000*1.000; + vec2 kern[8]; + // exponentially (^2) distant occlusion samples spread around origin + kern[0] = vec2(-1.0, 0.0) * 0.125*0.125; + kern[1] = vec2(1.0, 0.0) * 0.250*0.250; + kern[2] = vec2(0.0, 1.0) * 0.375*0.375; + kern[3] = vec2(0.0, -1.0) * 0.500*0.500; + kern[4] = vec2(0.7071, 0.7071) * 0.625*0.625; + kern[5] = vec2(-0.7071, -0.7071) * 0.750*0.750; + kern[6] = vec2(-0.7071, 0.7071) * 0.875*0.875; + kern[7] = vec2(0.7071, -0.7071) * 1.000*1.000; - return kern[i]; + return kern[i]; } //calculate decreases in ambient lighting when crowded out (SSAO) float calcAmbientOcclusion(vec4 pos, vec3 norm, vec2 pos_screen) { - float ret = 1.0; - vec3 pos_world = pos.xyz; - vec2 noise_reflect = texture2D(noiseMap, pos_screen.xy/128.0).xy; - - float angle_hidden = 0.0; - float points = 0; - - float scale = min(ssao_radius / -pos_world.z, ssao_max_radius); - - // it was found that keeping # of samples a constant was the fastest, probably due to compiler optimizations (unrolling?) - for (int i = 0; i < 8; i++) - { - vec2 samppos_screen = pos_screen + scale * reflect(getKern(i), noise_reflect); - vec3 samppos_world = getPosition(samppos_screen).xyz; - - vec3 diff = pos_world - samppos_world; - float dist2 = dot(diff, diff); - - // assume each sample corresponds to an occluding sphere with constant radius, constant x-sectional area - // --> solid angle shrinking by the square of distance - //radius is somewhat arbitrary, can approx with just some constant k * 1 / dist^2 - //(k should vary inversely with # of samples, but this is taken care of later) - - float funky_val = (dot((samppos_world - 0.05*norm - pos_world), norm) > 0.0) ? 1.0 : 0.0; - angle_hidden = angle_hidden + funky_val * min(1.0/dist2, ssao_factor_inv); - - // 'blocked' samples (significantly closer to camera relative to pos_world) are "no data", not "no occlusion" - float diffz_val = (diff.z > -1.0) ? 1.0 : 0.0; - points = points + diffz_val; - } - - angle_hidden = min(ssao_factor*angle_hidden/points, 1.0); - - float points_val = (points > 0.0) ? 1.0 : 0.0; - ret = (1.0 - (points_val * angle_hidden)); - - ret = max(ret, 0.0); - return min(ret, 1.0); + float ret = 1.0; + vec3 pos_world = pos.xyz; + vec2 noise_reflect = texture2D(noiseMap, pos_screen.xy/128.0).xy; + + float angle_hidden = 0.0; + float points = 0; + + float scale = min(ssao_radius / -pos_world.z, ssao_max_radius); + + // it was found that keeping # of samples a constant was the fastest, probably due to compiler optimizations (unrolling?) + for (int i = 0; i < 8; i++) + { + vec2 samppos_screen = pos_screen + scale * reflect(getKern(i), noise_reflect); + vec3 samppos_world = getPosition(samppos_screen).xyz; + + vec3 diff = pos_world - samppos_world; + float dist2 = dot(diff, diff); + + // assume each sample corresponds to an occluding sphere with constant radius, constant x-sectional area + // --> solid angle shrinking by the square of distance + //radius is somewhat arbitrary, can approx with just some constant k * 1 / dist^2 + //(k should vary inversely with # of samples, but this is taken care of later) + + float funky_val = (dot((samppos_world - 0.05*norm - pos_world), norm) > 0.0) ? 1.0 : 0.0; + angle_hidden = angle_hidden + funky_val * min(1.0/dist2, ssao_factor_inv); + + // 'blocked' samples (significantly closer to camera relative to pos_world) are "no data", not "no occlusion" + float diffz_val = (diff.z > -1.0) ? 1.0 : 0.0; + points = points + diffz_val; + } + + angle_hidden = min(ssao_factor*angle_hidden/points, 1.0); + + float points_val = (points > 0.0) ? 1.0 : 0.0; + ret = (1.0 - (points_val * angle_hidden)); + + ret = max(ret, 0.0); + return min(ret, 1.0); } #endif -- cgit v1.2.3 From 7e9033821a96a9d6e80b58fafb4c7da63807b9d4 Mon Sep 17 00:00:00 2001 From: Graham Linden Date: Thu, 6 Dec 2018 10:59:11 -0800 Subject: De-duplicate deferred gbuffer access for getPosition/getNorm. De-duplicate ambient occlusion shader code and move to new aoUtil.glsl Split shared shadow tap funcs into shadowUtil.glsl --- .../shaders/class1/deferred/deferredUtil.glsl | 222 --------------------- 1 file changed, 222 deletions(-) (limited to 'indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl') diff --git a/indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl b/indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl index ec05dab57f..9d7a7f6556 100644 --- a/indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl +++ b/indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl @@ -25,29 +25,6 @@ uniform sampler2DRect normalMap; uniform sampler2DRect depthMap; -uniform sampler2D noiseMap; -uniform sampler2DShadow shadowMap0; -uniform sampler2DShadow shadowMap1; -uniform sampler2DShadow shadowMap2; -uniform sampler2DShadow shadowMap3; -uniform sampler2DShadow shadowMap4; -uniform sampler2DShadow shadowMap5; - -uniform float ssao_radius; -uniform float ssao_max_radius; -uniform float ssao_factor; -uniform float ssao_factor_inv; - -uniform vec3 sun_dir; -uniform vec3 moon_dir; -uniform vec2 shadow_res; -uniform vec2 proj_shadow_res; -uniform mat4 shadow_matrix[6]; -uniform vec4 shadow_clip; -uniform float shadow_bias; - -uniform float spot_shadow_bias; -uniform float spot_shadow_offset; uniform mat4 inv_proj; uniform vec2 screen_res; @@ -87,8 +64,6 @@ vec4 getPosition(vec2 pos_screen) return pos; } -#if USE_DEFERRED_SHADER_API - vec4 getPositionWithDepth(vec2 pos_screen, float depth) { vec2 sc = getScreenCoordinate(pos_screen); @@ -98,200 +73,3 @@ vec4 getPositionWithDepth(vec2 pos_screen, float depth) pos.w = 1.0; return pos; } - -float pcfShadow(sampler2DShadow shadowMap, vec4 stc, float bias_scale, vec2 pos_screen) -{ - stc.xyz /= stc.w; - stc.z += shadow_bias * bias_scale; - - stc.x = floor(stc.x*pos_screen.x + fract(stc.y*shadow_res.y*12345))/shadow_res.x; // add some chaotic jitter to X sample pos according to Y to disguise the snapping going on here - - float cs = shadow2D(shadowMap, stc.xyz).x; - float shadow = cs; - shadow += shadow2D(shadowMap, stc.xyz+vec3(2.0/shadow_res.x, 1.5/shadow_res.y, 0.0)).x; - shadow += shadow2D(shadowMap, stc.xyz+vec3(1.0/shadow_res.x, -1.5/shadow_res.y, 0.0)).x; - shadow += shadow2D(shadowMap, stc.xyz+vec3(-1.0/shadow_res.x, 1.5/shadow_res.y, 0.0)).x; - shadow += shadow2D(shadowMap, stc.xyz+vec3(-2.0/shadow_res.x, -1.5/shadow_res.y, 0.0)).x; - return shadow*0.2; -} - -float pcfSpotShadow(sampler2DShadow shadowMap, vec4 stc, float bias_scale, vec2 pos_screen) -{ - stc.xyz /= stc.w; - stc.z += spot_shadow_bias * bias_scale; - stc.x = floor(proj_shadow_res.x * stc.x + fract(pos_screen.y*0.666666666)) / proj_shadow_res.x; // snap - - float cs = shadow2D(shadowMap, stc.xyz).x; - float shadow = cs; - - vec2 off = 1.0/proj_shadow_res; - off.y *= 1.5; - - shadow += shadow2D(shadowMap, stc.xyz+vec3(off.x*2.0, off.y, 0.0)).x; - shadow += shadow2D(shadowMap, stc.xyz+vec3(off.x, -off.y, 0.0)).x; - shadow += shadow2D(shadowMap, stc.xyz+vec3(-off.x, off.y, 0.0)).x; - shadow += shadow2D(shadowMap, stc.xyz+vec3(-off.x*2.0, -off.y, 0.0)).x; - return shadow*0.2; -} - -float sampleDirectionalShadow(vec3 pos, vec3 norm, vec2 pos_screen) -{ - float dp_sun = max(0.0, dot(sun_dir.xyz, norm)); - float dp_moon = max(0.0, dot(moon_dir.xyz, norm)); - float dp_directional_light = max(dp_sun,dp_moon); - dp_directional_light = clamp(dp_directional_light, 0.0, 1.0); - - vec3 light_dir = (dp_moon > dp_sun) ? moon_dir : sun_dir; - vec3 offset = light_dir * (1.0-dp_directional_light); - vec3 shadow_pos = pos.xyz + (offset * shadow_bias); - - float shadow = 0.0f; - vec4 spos = vec4(shadow_pos,1.0); - if (spos.z > -shadow_clip.w) - { - vec4 lpos; - vec4 near_split = shadow_clip*-0.75; - vec4 far_split = shadow_clip*-1.25; - vec4 transition_domain = near_split-far_split; - float weight = 0.0; - - if (spos.z < near_split.z) - { - lpos = shadow_matrix[3]*spos; - - float w = 1.0; - w -= max(spos.z-far_split.z, 0.0)/transition_domain.z; - shadow += pcfShadow(shadowMap3, lpos, 0.5, pos_screen)*w; - weight += w; - shadow += max((pos.z+shadow_clip.z)/(shadow_clip.z-shadow_clip.w)*2.0-1.0, 0.0); - } - - if (spos.z < near_split.y && spos.z > far_split.z) - { - lpos = shadow_matrix[2]*spos; - - float w = 1.0; - w -= max(spos.z-far_split.y, 0.0)/transition_domain.y; - w -= max(near_split.z-spos.z, 0.0)/transition_domain.z; - shadow += pcfShadow(shadowMap2, lpos, 0.75, pos_screen)*w; - weight += w; - } - - if (spos.z < near_split.x && spos.z > far_split.y) - { - lpos = shadow_matrix[1]*spos; - - float w = 1.0; - w -= max(spos.z-far_split.x, 0.0)/transition_domain.x; - w -= max(near_split.y-spos.z, 0.0)/transition_domain.y; - shadow += pcfShadow(shadowMap1, lpos, 0.88, pos_screen)*w; - weight += w; - } - - if (spos.z > far_split.x) - { - lpos = shadow_matrix[0]*spos; - - float w = 1.0; - w -= max(near_split.x-spos.z, 0.0)/transition_domain.x; - - shadow += pcfShadow(shadowMap0, lpos, 1.0, pos_screen)*w; - weight += w; - } - - shadow /= weight; - } - return shadow; -} - -float sampleSpotShadow(vec3 pos, vec3 norm, int index, vec2 pos_screen) -{ - float shadow = 0.0f; - pos += norm * spot_shadow_offset; - - vec4 spos = vec4(pos,1.0); - if (spos.z > -shadow_clip.w) - { - vec4 lpos; - - vec4 near_split = shadow_clip*-0.75; - vec4 far_split = shadow_clip*-1.25; - vec4 transition_domain = near_split-far_split; - float weight = 0.0; - - { - lpos = shadow_matrix[4 + index]*spos; - float w = 1.0; - w -= max(spos.z-far_split.z, 0.0)/transition_domain.z; - - shadow += pcfSpotShadow((index == 0) ? shadowMap4 : shadowMap5, lpos, 0.8, spos.xy)*w; - weight += w; - shadow += max((pos.z+shadow_clip.z)/(shadow_clip.z-shadow_clip.w)*2.0-1.0, 0.0); - } - - shadow /= weight; - } - return shadow; -} - -vec2 getKern(int i) -{ - vec2 kern[8]; - // exponentially (^2) distant occlusion samples spread around origin - kern[0] = vec2(-1.0, 0.0) * 0.125*0.125; - kern[1] = vec2(1.0, 0.0) * 0.250*0.250; - kern[2] = vec2(0.0, 1.0) * 0.375*0.375; - kern[3] = vec2(0.0, -1.0) * 0.500*0.500; - kern[4] = vec2(0.7071, 0.7071) * 0.625*0.625; - kern[5] = vec2(-0.7071, -0.7071) * 0.750*0.750; - kern[6] = vec2(-0.7071, 0.7071) * 0.875*0.875; - kern[7] = vec2(0.7071, -0.7071) * 1.000*1.000; - - return kern[i]; -} - -//calculate decreases in ambient lighting when crowded out (SSAO) -float calcAmbientOcclusion(vec4 pos, vec3 norm, vec2 pos_screen) -{ - float ret = 1.0; - vec3 pos_world = pos.xyz; - vec2 noise_reflect = texture2D(noiseMap, pos_screen.xy/128.0).xy; - - float angle_hidden = 0.0; - float points = 0; - - float scale = min(ssao_radius / -pos_world.z, ssao_max_radius); - - // it was found that keeping # of samples a constant was the fastest, probably due to compiler optimizations (unrolling?) - for (int i = 0; i < 8; i++) - { - vec2 samppos_screen = pos_screen + scale * reflect(getKern(i), noise_reflect); - vec3 samppos_world = getPosition(samppos_screen).xyz; - - vec3 diff = pos_world - samppos_world; - float dist2 = dot(diff, diff); - - // assume each sample corresponds to an occluding sphere with constant radius, constant x-sectional area - // --> solid angle shrinking by the square of distance - //radius is somewhat arbitrary, can approx with just some constant k * 1 / dist^2 - //(k should vary inversely with # of samples, but this is taken care of later) - - float funky_val = (dot((samppos_world - 0.05*norm - pos_world), norm) > 0.0) ? 1.0 : 0.0; - angle_hidden = angle_hidden + funky_val * min(1.0/dist2, ssao_factor_inv); - - // 'blocked' samples (significantly closer to camera relative to pos_world) are "no data", not "no occlusion" - float diffz_val = (diff.z > -1.0) ? 1.0 : 0.0; - points = points + diffz_val; - } - - angle_hidden = min(ssao_factor*angle_hidden/points, 1.0); - - float points_val = (points > 0.0) ? 1.0 : 0.0; - ret = (1.0 - (points_val * angle_hidden)); - - ret = max(ret, 0.0); - return min(ret, 1.0); -} - -#endif - -- cgit v1.2.3 From acbc7f4cddd6ad999c2bc7690c10b85a414a8102 Mon Sep 17 00:00:00 2001 From: Graham Linden Date: Wed, 30 Jan 2019 08:37:07 -0800 Subject: SL-10415, SL-10434 Further tweaking of directional shadow sampling to balance between peter-panning and shadow acne. Move stars to just this side of the sky some to reduce parallax. Remove decodeNormF and uses of decode_normal in favor of unified use of getNorm (try to help the Intel HD x000 compiler learn to link correctly). --- .../app_settings/shaders/class1/deferred/deferredUtil.glsl | 12 ++++++++---- 1 file changed, 8 insertions(+), 4 deletions(-) (limited to 'indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl') diff --git a/indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl b/indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl index 9d7a7f6556..e27bbce094 100644 --- a/indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl +++ b/indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl @@ -29,8 +29,6 @@ uniform sampler2DRect depthMap; uniform mat4 inv_proj; uniform vec2 screen_res; -vec3 decode_normal(vec2 enc); - vec2 getScreenCoordinate(vec2 screenpos) { vec2 sc = screenpos.xy * 2.0; @@ -43,8 +41,14 @@ vec2 getScreenCoordinate(vec2 screenpos) vec3 getNorm(vec2 screenpos) { - vec2 enc_norm = texture2DRect(normalMap, screenpos.xy).xy; - return decode_normal(enc_norm); + vec2 enc = texture2DRect(normalMap, screenpos.xy).xy; + vec2 fenc = enc*4-2; + float f = dot(fenc,fenc); + float g = sqrt(1-f/4); + vec3 n; + n.xy = fenc*g; + n.z = 1-f/2; + return n; } float getDepth(vec2 pos_screen) -- cgit v1.2.3