From c7d0fab7b9279c5f6a57ee3de103b8fb142fb747 Mon Sep 17 00:00:00 2001 From: Loren Shih Date: Tue, 1 Feb 2011 12:33:39 -0500 Subject: Fixes for merge up from viewer-development to mesh-development. Backed out SH-659 since merge was messy; this will be merged in manually later. --- indra/llmath/llvolume.cpp | 6557 ++++++++++++++++++++++++++--------------- indra/llmath/llvolume.h | 2212 +++++++------- indra/llmath/llvolumeoctree.h | 70 +- 3 files changed, 5280 insertions(+), 3559 deletions(-) diff --git a/indra/llmath/llvolume.cpp b/indra/llmath/llvolume.cpp index 316eed679d..617a8b4ca3 100644 --- a/indra/llmath/llvolume.cpp +++ b/indra/llmath/llvolume.cpp @@ -1,4 +1,5 @@ /** + * @file llvolume.cpp * * $LicenseInfo:firstyear=2002&license=viewerlgpl$ @@ -24,9 +25,13 @@ */ #include "linden_common.h" +#include "llmemory.h" #include "llmath.h" #include +#if !LL_WINDOWS +#include +#endif #include "llerror.h" #include "llmemtype.h" @@ -37,9 +42,15 @@ #include "v4math.h" #include "m4math.h" #include "m3math.h" +#include "llmatrix3a.h" +#include "lloctree.h" #include "lldarray.h" #include "llvolume.h" +#include "llvolumeoctree.h" #include "llstl.h" +#include "llsdserialize.h" +#include "llvector4a.h" +#include "llmatrix4a.h" #define DEBUG_SILHOUETTE_BINORMALS 0 #define DEBUG_SILHOUETTE_NORMALS 0 // TomY: Use this to display normals using the silhouette @@ -80,7 +91,18 @@ const F32 SKEW_MAX = 0.95f; const F32 SCULPT_MIN_AREA = 0.002f; const S32 SCULPT_MIN_AREA_DETAIL = 1; -#define GEN_TRI_STRIP 0 +extern BOOL gDebugGL; + +void assert_aligned(void* ptr, uintptr_t alignment) +{ +#if 0 + uintptr_t t = (uintptr_t) ptr; + if (t%alignment != 0) + { + llerrs << "WTF?" << llendl; + } +#endif +} BOOL check_same_clock_dir( const LLVector3& pt1, const LLVector3& pt2, const LLVector3& pt3, const LLVector3& norm) { @@ -99,128 +121,262 @@ BOOL check_same_clock_dir( const LLVector3& pt1, const LLVector3& pt2, const LLV BOOL LLLineSegmentBoxIntersect(const LLVector3& start, const LLVector3& end, const LLVector3& center, const LLVector3& size) { - float fAWdU[3]; - LLVector3 dir; - LLVector3 diff; + return LLLineSegmentBoxIntersect(start.mV, end.mV, center.mV, size.mV); +} + +BOOL LLLineSegmentBoxIntersect(const F32* start, const F32* end, const F32* center, const F32* size) +{ + F32 fAWdU[3]; + F32 dir[3]; + F32 diff[3]; for (U32 i = 0; i < 3; i++) { - dir.mV[i] = 0.5f * (end.mV[i] - start.mV[i]); - diff.mV[i] = (0.5f * (end.mV[i] + start.mV[i])) - center.mV[i]; - fAWdU[i] = fabsf(dir.mV[i]); - if(fabsf(diff.mV[i])>size.mV[i] + fAWdU[i]) return false; + dir[i] = 0.5f * (end[i] - start[i]); + diff[i] = (0.5f * (end[i] + start[i])) - center[i]; + fAWdU[i] = fabsf(dir[i]); + if(fabsf(diff[i])>size[i] + fAWdU[i]) return false; } float f; - f = dir.mV[1] * diff.mV[2] - dir.mV[2] * diff.mV[1]; if(fabsf(f)>size.mV[1]*fAWdU[2] + size.mV[2]*fAWdU[1]) return false; - f = dir.mV[2] * diff.mV[0] - dir.mV[0] * diff.mV[2]; if(fabsf(f)>size.mV[0]*fAWdU[2] + size.mV[2]*fAWdU[0]) return false; - f = dir.mV[0] * diff.mV[1] - dir.mV[1] * diff.mV[0]; if(fabsf(f)>size.mV[0]*fAWdU[1] + size.mV[1]*fAWdU[0]) return false; + f = dir[1] * diff[2] - dir[2] * diff[1]; if(fabsf(f)>size[1]*fAWdU[2] + size[2]*fAWdU[1]) return false; + f = dir[2] * diff[0] - dir[0] * diff[2]; if(fabsf(f)>size[0]*fAWdU[2] + size[2]*fAWdU[0]) return false; + f = dir[0] * diff[1] - dir[1] * diff[0]; if(fabsf(f)>size[0]*fAWdU[1] + size[1]*fAWdU[0]) return false; return true; } + // intersect test between triangle vert0, vert1, vert2 and a ray from orig in direction dir. // returns TRUE if intersecting and returns barycentric coordinates in intersection_a, intersection_b, // and returns the intersection point along dir in intersection_t. // Moller-Trumbore algorithm -BOOL LLTriangleRayIntersect(const LLVector3& vert0, const LLVector3& vert1, const LLVector3& vert2, const LLVector3& orig, const LLVector3& dir, - F32* intersection_a, F32* intersection_b, F32* intersection_t, BOOL two_sided) +BOOL LLTriangleRayIntersect(const LLVector4a& vert0, const LLVector4a& vert1, const LLVector4a& vert2, const LLVector4a& orig, const LLVector4a& dir, + F32& intersection_a, F32& intersection_b, F32& intersection_t) { - F32 u, v, t; /* find vectors for two edges sharing vert0 */ - LLVector3 edge1 = vert1 - vert0; + LLVector4a edge1; + edge1.setSub(vert1, vert0); - LLVector3 edge2 = vert2 - vert0;; + LLVector4a edge2; + edge2.setSub(vert2, vert0); /* begin calculating determinant - also used to calculate U parameter */ - LLVector3 pvec = dir % edge2; - - /* if determinant is near zero, ray lies in plane of triangle */ - F32 det = edge1 * pvec; + LLVector4a pvec; + pvec.setCross3(dir, edge2); - if (!two_sided) + /* if determinant is near zero, ray lies in plane of triangle */ + LLVector4a det; + det.setAllDot3(edge1, pvec); + + if (det.greaterEqual(LLVector4a::getEpsilon()).getGatheredBits() & 0x7) { - if (det < F_APPROXIMATELY_ZERO) - { - return FALSE; - } - /* calculate distance from vert0 to ray origin */ - LLVector3 tvec = orig - vert0; + LLVector4a tvec; + tvec.setSub(orig, vert0); /* calculate U parameter and test bounds */ - u = tvec * pvec; + LLVector4a u; + u.setAllDot3(tvec,pvec); - if (u < 0.f || u > det) + if ((u.greaterEqual(LLVector4a::getZero()).getGatheredBits() & 0x7) && + (u.lessEqual(det).getGatheredBits() & 0x7)) { - return FALSE; + /* prepare to test V parameter */ + LLVector4a qvec; + qvec.setCross3(tvec, edge1); + + /* calculate V parameter and test bounds */ + LLVector4a v; + v.setAllDot3(dir, qvec); + + + //if (!(v < 0.f || u + v > det)) + + LLVector4a sum_uv; + sum_uv.setAdd(u, v); + + S32 v_gequal = v.greaterEqual(LLVector4a::getZero()).getGatheredBits() & 0x7; + S32 sum_lequal = sum_uv.lessEqual(det).getGatheredBits() & 0x7; + + if (v_gequal && sum_lequal) + { + /* calculate t, scale parameters, ray intersects triangle */ + LLVector4a t; + t.setAllDot3(edge2,qvec); + + t.div(det); + u.div(det); + v.div(det); + + intersection_a = u[0]; + intersection_b = v[0]; + intersection_t = t[0]; + return TRUE; + } } - - /* prepare to test V parameter */ - LLVector3 qvec = tvec % edge1; + } - /* calculate V parameter and test bounds */ - v = dir * qvec; - if (v < 0.f || u + v > det) - { - return FALSE; - } + return FALSE; +} - /* calculate t, scale parameters, ray intersects triangle */ - t = edge2 * qvec; - F32 inv_det = 1.0 / det; - t *= inv_det; - u *= inv_det; - v *= inv_det; - } +BOOL LLTriangleRayIntersectTwoSided(const LLVector4a& vert0, const LLVector4a& vert1, const LLVector4a& vert2, const LLVector4a& orig, const LLVector4a& dir, + F32& intersection_a, F32& intersection_b, F32& intersection_t) +{ + F32 u, v, t; - else // two sided - { - if (det > -F_APPROXIMATELY_ZERO && det < F_APPROXIMATELY_ZERO) - { - return FALSE; - } - F32 inv_det = 1.0 / det; + /* find vectors for two edges sharing vert0 */ + LLVector4a edge1; + edge1.setSub(vert1, vert0); + + + LLVector4a edge2; + edge2.setSub(vert2, vert0); - /* calculate distance from vert0 to ray origin */ - LLVector3 tvec = orig - vert0; - - /* calculate U parameter and test bounds */ - u = (tvec * pvec) * inv_det; - if (u < 0.f || u > 1.f) - { - return FALSE; - } + /* begin calculating determinant - also used to calculate U parameter */ + LLVector4a pvec; + pvec.setCross3(dir, edge2); - /* prepare to test V parameter */ - LLVector3 qvec = tvec - edge1; - - /* calculate V parameter and test bounds */ - v = (dir * qvec) * inv_det; - - if (v < 0.f || u + v > 1.f) - { - return FALSE; - } + /* if determinant is near zero, ray lies in plane of triangle */ + F32 det = edge1.dot3(pvec).getF32(); - /* calculate t, ray intersects triangle */ - t = (edge2 * qvec) * inv_det; + + if (det > -F_APPROXIMATELY_ZERO && det < F_APPROXIMATELY_ZERO) + { + return FALSE; + } + + F32 inv_det = 1.f / det; + + /* calculate distance from vert0 to ray origin */ + LLVector4a tvec; + tvec.setSub(orig, vert0); + + /* calculate U parameter and test bounds */ + u = (tvec.dot3(pvec).getF32()) * inv_det; + if (u < 0.f || u > 1.f) + { + return FALSE; + } + + /* prepare to test V parameter */ + tvec.sub(edge1); + + /* calculate V parameter and test bounds */ + v = (dir.dot3(tvec).getF32()) * inv_det; + + if (v < 0.f || u + v > 1.f) + { + return FALSE; } + + /* calculate t, ray intersects triangle */ + t = (edge2.dot3(tvec).getF32()) * inv_det; - if (intersection_a != NULL) - *intersection_a = u; - if (intersection_b != NULL) - *intersection_b = v; - if (intersection_t != NULL) - *intersection_t = t; + intersection_a = u; + intersection_b = v; + intersection_t = t; return TRUE; } +//helper for non-aligned vectors +BOOL LLTriangleRayIntersect(const LLVector3& vert0, const LLVector3& vert1, const LLVector3& vert2, const LLVector3& orig, const LLVector3& dir, + F32& intersection_a, F32& intersection_b, F32& intersection_t, BOOL two_sided) +{ + LLVector4a vert0a, vert1a, vert2a, origa, dira; + vert0a.load3(vert0.mV); + vert1a.load3(vert1.mV); + vert2a.load3(vert2.mV); + origa.load3(orig.mV); + dira.load3(dir.mV); + + if (two_sided) + { + return LLTriangleRayIntersectTwoSided(vert0a, vert1a, vert2a, origa, dira, + intersection_a, intersection_b, intersection_t); + } + else + { + return LLTriangleRayIntersect(vert0a, vert1a, vert2a, origa, dira, + intersection_a, intersection_b, intersection_t); + } +} + +class LLVolumeOctreeRebound : public LLOctreeTravelerDepthFirst +{ +public: + const LLVolumeFace* mFace; + + LLVolumeOctreeRebound(const LLVolumeFace* face) + { + mFace = face; + } + + virtual void visit(const LLOctreeNode* branch) + { //this is a depth first traversal, so it's safe to assum all children have complete + //bounding data + + LLVolumeOctreeListener* node = (LLVolumeOctreeListener*) branch->getListener(0); + + LLVector4a& min = node->mExtents[0]; + LLVector4a& max = node->mExtents[1]; + + if (!branch->getData().empty()) + { //node has data, find AABB that binds data set + const LLVolumeTriangle* tri = *(branch->getData().begin()); + + //initialize min/max to first available vertex + min = *(tri->mV[0]); + max = *(tri->mV[0]); + + for (LLOctreeNode::const_element_iter iter = + branch->getData().begin(); iter != branch->getData().end(); ++iter) + { //for each triangle in node + + //stretch by triangles in node + tri = *iter; + + min.setMin(min, *tri->mV[0]); + min.setMin(min, *tri->mV[1]); + min.setMin(min, *tri->mV[2]); + + max.setMax(max, *tri->mV[0]); + max.setMax(max, *tri->mV[1]); + max.setMax(max, *tri->mV[2]); + } + } + else if (!branch->getChildren().empty()) + { //no data, but child nodes exist + LLVolumeOctreeListener* child = (LLVolumeOctreeListener*) branch->getChild(0)->getListener(0); + + //initialize min/max to extents of first child + min = child->mExtents[0]; + max = child->mExtents[1]; + } + else + { + llerrs << "WTF? Empty leaf" << llendl; + } + + for (S32 i = 0; i < branch->getChildCount(); ++i) + { //stretch by child extents + LLVolumeOctreeListener* child = (LLVolumeOctreeListener*) branch->getChild(i)->getListener(0); + min.setMin(min, child->mExtents[0]); + max.setMax(max, child->mExtents[1]); + } + + node->mBounds[0].setAdd(min, max); + node->mBounds[0].mul(0.5f); + + node->mBounds[1].setSub(max,min); + node->mBounds[1].mul(0.5f); + } +}; //------------------------------------------------------------------- // statics @@ -1669,7 +1825,13 @@ LLVolume::LLVolume(const LLVolumeParams ¶ms, const F32 detail, const BOOL ge mFaceMask = 0x0; mDetail = detail; mSculptLevel = -2; - + mIsTetrahedron = FALSE; + mLODScaleBias.setVec(1,1,1); + mHullPoints = NULL; + mHullIndices = NULL; + mNumHullPoints = 0; + mNumHullIndices = 0; + // set defaults if (mParams.getPathParams().getCurveType() == LL_PCODE_PATH_FLEXIBLE) { @@ -1684,7 +1846,8 @@ LLVolume::LLVolume(const LLVolumeParams ¶ms, const F32 detail, const BOOL ge mGenerateSingleFace = generate_single_face; generate(); - if (mParams.getSculptID().isNull() && params.getSculptType() == LL_SCULPT_TYPE_NONE) + + if (mParams.getSculptID().isNull() && mParams.getSculptType() == LL_SCULPT_TYPE_NONE) { createVolumeFaces(); } @@ -1719,6 +1882,11 @@ LLVolume::~LLVolume() mPathp = NULL; mProfilep = NULL; mVolumeFaces.clear(); + + free(mHullPoints); + mHullPoints = NULL; + free(mHullIndices); + mHullIndices = NULL; } BOOL LLVolume::generate() @@ -1835,815 +2003,1435 @@ BOOL LLVolume::generate() return FALSE; } - -void LLVolume::createVolumeFaces() +void LLVolumeFace::VertexData::init() { - LLMemType m1(LLMemType::MTYPE_VOLUME); - - if (mGenerateSingleFace) + if (!mData) { - // do nothing + mData = (LLVector4a*) malloc(sizeof(LLVector4a)*2); } - else - { - S32 num_faces = getNumFaces(); - BOOL partial_build = TRUE; - if (num_faces != mVolumeFaces.size()) - { - partial_build = FALSE; - mVolumeFaces.resize(num_faces); - } - // Initialize volume faces with parameter data - for (S32 i = 0; i < (S32)mVolumeFaces.size(); i++) - { - LLVolumeFace& vf = mVolumeFaces[i]; - LLProfile::Face& face = mProfilep->mFaces[i]; - vf.mBeginS = face.mIndex; - vf.mNumS = face.mCount; - if (vf.mNumS < 0) - { - llerrs << "Volume face corruption detected." << llendl; - } - - vf.mBeginT = 0; - vf.mNumT= getPath().mPath.size(); - vf.mID = i; +} - // Set the type mask bits correctly - if (mParams.getProfileParams().getHollow() > 0) - { - vf.mTypeMask |= LLVolumeFace::HOLLOW_MASK; - } - if (mProfilep->isOpen()) - { - vf.mTypeMask |= LLVolumeFace::OPEN_MASK; - } - if (face.mCap) - { - vf.mTypeMask |= LLVolumeFace::CAP_MASK; - if (face.mFaceID == LL_FACE_PATH_BEGIN) - { - vf.mTypeMask |= LLVolumeFace::TOP_MASK; - } - else - { - llassert(face.mFaceID == LL_FACE_PATH_END); - vf.mTypeMask |= LLVolumeFace::BOTTOM_MASK; - } - } - else if (face.mFaceID & (LL_FACE_PROFILE_BEGIN | LL_FACE_PROFILE_END)) - { - vf.mTypeMask |= LLVolumeFace::FLAT_MASK | LLVolumeFace::END_MASK; - } - else - { - vf.mTypeMask |= LLVolumeFace::SIDE_MASK; - if (face.mFlat) - { - vf.mTypeMask |= LLVolumeFace::FLAT_MASK; - } - if (face.mFaceID & LL_FACE_INNER_SIDE) - { - vf.mTypeMask |= LLVolumeFace::INNER_MASK; - if (face.mFlat && vf.mNumS > 2) - { //flat inner faces have to copy vert normals - vf.mNumS = vf.mNumS*2; - if (vf.mNumS < 0) - { - llerrs << "Volume face corruption detected." << llendl; - } - } - } - else - { - vf.mTypeMask |= LLVolumeFace::OUTER_MASK; - } - } - } +LLVolumeFace::VertexData::VertexData() +{ + mData = NULL; + init(); +} + +LLVolumeFace::VertexData::VertexData(const VertexData& rhs) +{ + mData = NULL; + *this = rhs; +} - for (face_list_t::iterator iter = mVolumeFaces.begin(); - iter != mVolumeFaces.end(); ++iter) - { - (*iter).create(this, partial_build); - } +const LLVolumeFace::VertexData& LLVolumeFace::VertexData::operator=(const LLVolumeFace::VertexData& rhs) +{ + if (this != &rhs) + { + init(); + LLVector4a::memcpyNonAliased16((F32*) mData, (F32*) rhs.mData, 2*sizeof(LLVector4a)); + mTexCoord = rhs.mTexCoord; } + return *this; } - -inline LLVector3 sculpt_rgb_to_vector(U8 r, U8 g, U8 b) +LLVolumeFace::VertexData::~VertexData() { - // maps RGB values to vector values [0..255] -> [-0.5..0.5] - LLVector3 value; - value.mV[VX] = r / 255.f - 0.5f; - value.mV[VY] = g / 255.f - 0.5f; - value.mV[VZ] = b / 255.f - 0.5f; - - return value; + free(mData); + mData = NULL; } -inline U32 sculpt_xy_to_index(U32 x, U32 y, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components) +LLVector4a& LLVolumeFace::VertexData::getPosition() { - U32 index = (x + y * sculpt_width) * sculpt_components; - return index; + return mData[POSITION]; } +LLVector4a& LLVolumeFace::VertexData::getNormal() +{ + return mData[NORMAL]; +} -inline U32 sculpt_st_to_index(S32 s, S32 t, S32 size_s, S32 size_t, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components) +const LLVector4a& LLVolumeFace::VertexData::getPosition() const { - U32 x = (U32) ((F32)s/(size_s) * (F32) sculpt_width); - U32 y = (U32) ((F32)t/(size_t) * (F32) sculpt_height); + return mData[POSITION]; +} - return sculpt_xy_to_index(x, y, sculpt_width, sculpt_height, sculpt_components); +const LLVector4a& LLVolumeFace::VertexData::getNormal() const +{ + return mData[NORMAL]; } -inline LLVector3 sculpt_index_to_vector(U32 index, const U8* sculpt_data) +void LLVolumeFace::VertexData::setPosition(const LLVector4a& pos) { - LLVector3 v = sculpt_rgb_to_vector(sculpt_data[index], sculpt_data[index+1], sculpt_data[index+2]); - - return v; + mData[POSITION] = pos; } -inline LLVector3 sculpt_st_to_vector(S32 s, S32 t, S32 size_s, S32 size_t, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data) +void LLVolumeFace::VertexData::setNormal(const LLVector4a& norm) { - U32 index = sculpt_st_to_index(s, t, size_s, size_t, sculpt_width, sculpt_height, sculpt_components); - - return sculpt_index_to_vector(index, sculpt_data); + mData[NORMAL] = norm; } -inline LLVector3 sculpt_xy_to_vector(U32 x, U32 y, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data) +bool LLVolumeFace::VertexData::operator<(const LLVolumeFace::VertexData& rhs)const { - U32 index = sculpt_xy_to_index(x, y, sculpt_width, sculpt_height, sculpt_components); + const F32* lp = this->getPosition().getF32ptr(); + const F32* rp = rhs.getPosition().getF32ptr(); - return sculpt_index_to_vector(index, sculpt_data); -} + if (lp[0] != rp[0]) + { + return lp[0] < rp[0]; + } + if (rp[1] != lp[1]) + { + return lp[1] < rp[1]; + } -F32 LLVolume::sculptGetSurfaceArea() -{ - // test to see if image has enough variation to create non-degenerate geometry + if (rp[2] != lp[2]) + { + return lp[2] < rp[2]; + } - F32 area = 0; + lp = getNormal().getF32ptr(); + rp = rhs.getNormal().getF32ptr(); - S32 sizeS = mPathp->mPath.size(); - S32 sizeT = mProfilep->mProfile.size(); - - for (S32 s = 0; s < sizeS-1; s++) + if (lp[0] != rp[0]) { - for (S32 t = 0; t < sizeT-1; t++) - { - // get four corners of quad - LLVector3 p1 = mMesh[(s )*sizeT + (t )].mPos; - LLVector3 p2 = mMesh[(s+1)*sizeT + (t )].mPos; - LLVector3 p3 = mMesh[(s )*sizeT + (t+1)].mPos; - LLVector3 p4 = mMesh[(s+1)*sizeT + (t+1)].mPos; + return lp[0] < rp[0]; + } - // compute the area of the quad by taking the length of the cross product of the two triangles - LLVector3 cross1 = (p1 - p2) % (p1 - p3); - LLVector3 cross2 = (p4 - p2) % (p4 - p3); - area += (cross1.magVec() + cross2.magVec()) / 2.0; + if (rp[1] != lp[1]) + { + return lp[1] < rp[1]; + } + + if (rp[2] != lp[2]) + { + return lp[2] < rp[2]; + } + + if (mTexCoord.mV[0] != rhs.mTexCoord.mV[0]) + { + return mTexCoord.mV[0] < rhs.mTexCoord.mV[0]; + } + + return mTexCoord.mV[1] < rhs.mTexCoord.mV[1]; +} + +bool LLVolumeFace::VertexData::operator==(const LLVolumeFace::VertexData& rhs)const +{ + return mData[POSITION].equals3(rhs.getPosition()) && + mData[NORMAL].equals3(rhs.getNormal()) && + mTexCoord == rhs.mTexCoord; +} + +bool LLVolumeFace::VertexData::compareNormal(const LLVolumeFace::VertexData& rhs, F32 angle_cutoff) const +{ + bool retval = false; + if (rhs.mData[POSITION].equals3(mData[POSITION]) && rhs.mTexCoord == mTexCoord) + { + if (angle_cutoff > 1.f) + { + retval = (mData[NORMAL].equals3(rhs.mData[NORMAL])); + } + else + { + F32 cur_angle = rhs.mData[NORMAL].dot3(mData[NORMAL]).getF32(); + retval = cur_angle > angle_cutoff; } } - return area; + return retval; } -// create placeholder shape -void LLVolume::sculptGeneratePlaceholder() +BOOL LLVolume::createVolumeFacesFromFile(const std::string& file_name) { - LLMemType m1(LLMemType::MTYPE_VOLUME); + std::ifstream is; - S32 sizeS = mPathp->mPath.size(); - S32 sizeT = mProfilep->mProfile.size(); + is.open(file_name.c_str(), std::ifstream::in | std::ifstream::binary); + + BOOL success = createVolumeFacesFromStream(is); - S32 line = 0; + is.close(); - // for now, this is a sphere. - for (S32 s = 0; s < sizeS; s++) + return success; +} + +BOOL LLVolume::createVolumeFacesFromStream(std::istream& is) +{ + mSculptLevel = -1; // default is an error occured + + LLSD header; { - for (S32 t = 0; t < sizeT; t++) + if (!LLSDSerialize::deserialize(header, is, 1024*1024*1024)) { - S32 i = t + line; - Point& pt = mMesh[i]; + llwarns << "Mesh header parse error. Not a valid mesh asset!" << llendl; + return FALSE; + } + } + + std::string nm[] = + { + "lowest_lod", + "low_lod", + "medium_lod", + "high_lod" + }; - - F32 u = (F32)s/(sizeS-1); - F32 v = (F32)t/(sizeT-1); + S32 lod = llclamp((S32) mDetail, 0, 3); - const F32 RADIUS = (F32) 0.3; - - pt.mPos.mV[0] = (F32)(sin(F_PI * v) * cos(2.0 * F_PI * u) * RADIUS); - pt.mPos.mV[1] = (F32)(sin(F_PI * v) * sin(2.0 * F_PI * u) * RADIUS); - pt.mPos.mV[2] = (F32)(cos(F_PI * v) * RADIUS); + while (lod < 4 && + (header[nm[lod]]["offset"].asInteger() == -1 || + header[nm[lod]]["size"].asInteger() == 0 )) + { + ++lod; + } + + if (lod >= 4) + { + lod = llclamp((S32) mDetail, 0, 3); + while (lod >= 0 && + (header[nm[lod]]["offset"].asInteger() == -1 || + header[nm[lod]]["size"].asInteger() == 0) ) + { + --lod; + } + + if (lod < 0) + { + llwarns << "Mesh header missing LOD offsets. Not a valid mesh asset!" << llendl; + return FALSE; } - line += sizeT; } + + is.seekg(header[nm[lod]]["offset"].asInteger(), std::ios_base::cur); + + return unpackVolumeFaces(is, header[nm[lod]]["size"].asInteger()); } -// create the vertices from the map -void LLVolume::sculptGenerateMapVertices(U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data, U8 sculpt_type) +bool LLVolume::unpackVolumeFaces(std::istream& is, S32 size) { - U8 sculpt_stitching = sculpt_type & LL_SCULPT_TYPE_MASK; - BOOL sculpt_invert = sculpt_type & LL_SCULPT_FLAG_INVERT; - BOOL sculpt_mirror = sculpt_type & LL_SCULPT_FLAG_MIRROR; - BOOL reverse_horizontal = (sculpt_invert ? !sculpt_mirror : sculpt_mirror); // XOR - - - LLMemType m1(LLMemType::MTYPE_VOLUME); - - S32 sizeS = mPathp->mPath.size(); - S32 sizeT = mProfilep->mProfile.size(); + //input stream is now pointing at a zlib compressed block of LLSD + //decompress block + LLSD mdl; + if (!unzip_llsd(mdl, is, size)) + { + llwarns << "not a valid mesh asset!" << llendl; + return false; + } - S32 line = 0; - for (S32 s = 0; s < sizeS; s++) { - // Run along the profile. - for (S32 t = 0; t < sizeT; t++) + U32 face_count = mdl.size(); + + if (face_count == 0) { - S32 i = t + line; - Point& pt = mMesh[i]; + llerrs << "WTF?" << llendl; + } - S32 reversed_t = t; + mVolumeFaces.resize(face_count); - if (reverse_horizontal) - { - reversed_t = sizeT - t - 1; - } - - U32 x = (U32) ((F32)reversed_t/(sizeT-1) * (F32) sculpt_width); - U32 y = (U32) ((F32)s/(sizeS-1) * (F32) sculpt_height); + for (U32 i = 0; i < face_count; ++i) + { + LLSD::Binary pos = mdl[i]["Position"]; + LLSD::Binary norm = mdl[i]["Normal"]; + LLSD::Binary tc = mdl[i]["TexCoord0"]; + LLSD::Binary idx = mdl[i]["TriangleList"]; + + LLVolumeFace& face = mVolumeFaces[i]; + //copy out indices + face.resizeIndices(idx.size()/2); - if (y == 0) // top row stitching + if (idx.empty() || face.mNumIndices < 3) + { //why is there an empty index list? + llerrs <<"WTF?" << llendl; + continue; + } + + U16* indices = (U16*) &(idx[0]); + for (U32 j = 0; j < idx.size()/2; ++j) { - // pinch? - if (sculpt_stitching == LL_SCULPT_TYPE_SPHERE) - { - x = sculpt_width / 2; - } + face.mIndices[j] = indices[j]; } - if (y == sculpt_height) // bottom row stitching + //copy out vertices + U32 num_verts = pos.size()/(3*2); + face.resizeVertices(num_verts); + + if (mdl[i].has("Weights")) { - // wrap? - if (sculpt_stitching == LL_SCULPT_TYPE_TORUS) + face.allocateWeights(num_verts); + + LLSD::Binary weights = mdl[i]["Weights"]; + + U32 idx = 0; + + U32 cur_vertex = 0; + while (idx < weights.size() && cur_vertex < num_verts) { - y = 0; + const U8 END_INFLUENCES = 0xFF; + U8 joint = weights[idx++]; + + U32 cur_influence = 0; + LLVector4 wght(0,0,0,0); + + while (joint != END_INFLUENCES && idx < weights.size()) + { + U16 influence = weights[idx++]; + influence |= ((U16) weights[idx++] << 8); + + F32 w = llclamp((F32) influence / 65535.f, 0.f, 0.99999f); + wght.mV[cur_influence++] = (F32) joint + w; + + if (cur_influence >= 4) + { + joint = END_INFLUENCES; + } + else + { + joint = weights[idx++]; + } + } + + face.mWeights[cur_vertex].loadua(wght.mV); + + cur_vertex++; } - else + + if (cur_vertex != num_verts || idx != weights.size()) { - y = sculpt_height - 1; + llwarns << "Vertex weight count does not match vertex count!" << llendl; } + + } - // pinch? - if (sculpt_stitching == LL_SCULPT_TYPE_SPHERE) + LLVector3 minp; + LLVector3 maxp; + LLVector2 min_tc; + LLVector2 max_tc; + + minp.setValue(mdl[i]["PositionDomain"]["Min"]); + maxp.setValue(mdl[i]["PositionDomain"]["Max"]); + LLVector4a min_pos, max_pos; + min_pos.load3(minp.mV); + max_pos.load3(maxp.mV); + + min_tc.setValue(mdl[i]["TexCoord0Domain"]["Min"]); + max_tc.setValue(mdl[i]["TexCoord0Domain"]["Max"]); + + LLVector4a pos_range; + pos_range.setSub(max_pos, min_pos); + LLVector2 tc_range = max_tc - min_tc; + + LLVector4a* pos_out = face.mPositions; + LLVector4a* norm_out = face.mNormals; + LLVector2* tc_out = face.mTexCoords; + + for (U32 j = 0; j < num_verts; ++j) + { + U16* v = (U16*) &(pos[j*3*2]); + + pos_out->set((F32) v[0], (F32) v[1], (F32) v[2]); + pos_out->div(65535.f); + pos_out->mul(pos_range); + pos_out->add(min_pos); + + pos_out++; + + U16* n = (U16*) &(norm[j*3*2]); + + norm_out->set((F32) n[0], (F32) n[1], (F32) n[2]); + norm_out->div(65535.f); + norm_out->mul(2.f); + norm_out->sub(1.f); + norm_out++; + + U16* t = (U16*) &(tc[j*2*2]); + + tc_out->mV[0] = (F32) t[0] / 65535.f * tc_range.mV[0] + min_tc.mV[0]; + tc_out->mV[1] = (F32) t[1] / 65535.f * tc_range.mV[1] + min_tc.mV[1]; + + tc_out++; + } + + + // modifier flags? + bool do_mirror = (mParams.getSculptType() & LL_SCULPT_FLAG_MIRROR); + bool do_invert = (mParams.getSculptType() &LL_SCULPT_FLAG_INVERT); + + + // translate to actions: + bool do_reflect_x = false; + bool do_reverse_triangles = false; + bool do_invert_normals = false; + + if (do_mirror) + { + do_reflect_x = true; + do_reverse_triangles = !do_reverse_triangles; + } + + if (do_invert) + { + do_invert_normals = true; + do_reverse_triangles = !do_reverse_triangles; + } + + // now do the work + + if (do_reflect_x) + { + LLVector4a* p = (LLVector4a*) face.mPositions; + LLVector4a* n = (LLVector4a*) face.mNormals; + + for (S32 i = 0; i < face.mNumVertices; i++) { - x = sculpt_width / 2; + p[i].mul(-1.0f); + n[i].mul(-1.0f); } } - if (x == sculpt_width) // side stitching + if (do_invert_normals) { - // wrap? - if ((sculpt_stitching == LL_SCULPT_TYPE_SPHERE) || - (sculpt_stitching == LL_SCULPT_TYPE_TORUS) || - (sculpt_stitching == LL_SCULPT_TYPE_CYLINDER)) + LLVector4a* n = (LLVector4a*) face.mNormals; + + for (S32 i = 0; i < face.mNumVertices; i++) { - x = 0; + n[i].mul(-1.0f); } - - else + } + + if (do_reverse_triangles) + { + for (U32 j = 0; j < face.mNumIndices; j += 3) { - x = sculpt_width - 1; + // swap the 2nd and 3rd index + S32 swap = face.mIndices[j+1]; + face.mIndices[j+1] = face.mIndices[j+2]; + face.mIndices[j+2] = swap; } } - pt.mPos = sculpt_xy_to_vector(x, y, sculpt_width, sculpt_height, sculpt_components, sculpt_data); + //calculate bounding box + LLVector4a& min = face.mExtents[0]; + LLVector4a& max = face.mExtents[1]; - if (sculpt_mirror) + min.clear(); + max.clear(); + min = max = face.mPositions[0]; + + for (S32 i = 1; i < face.mNumVertices; ++i) { - pt.mPos.mV[VX] *= -1.f; + min.setMin(min, face.mPositions[i]); + max.setMax(max, face.mPositions[i]); } } - - line += sizeT; } + + mSculptLevel = 0; // success! + + cacheOptimize(); + + return true; } +void tetrahedron_set_normal(LLVolumeFace::VertexData* cv) +{ + LLVector4a v0; + v0.setSub(cv[1].getPosition(), cv[0].getNormal()); + LLVector4a v1; + v1.setSub(cv[2].getNormal(), cv[0].getPosition()); + + cv[0].getNormal().setCross3(v0,v1); + cv[0].getNormal().normalize3fast(); + cv[1].setNormal(cv[0].getNormal()); + cv[2].setNormal(cv[1].getNormal()); +} -const S32 SCULPT_REZ_1 = 6; // changed from 4 to 6 - 6 looks round whereas 4 looks square -const S32 SCULPT_REZ_2 = 8; -const S32 SCULPT_REZ_3 = 16; -const S32 SCULPT_REZ_4 = 32; +BOOL LLVolume::isTetrahedron() +{ + return mIsTetrahedron; +} -S32 sculpt_sides(F32 detail) +void LLVolume::makeTetrahedron() { + mVolumeFaces.clear(); - // detail is usually one of: 1, 1.5, 2.5, 4.0. + LLVolumeFace face; + + F32 x = 0.25f; + LLVector4a p[] = + { //unit tetrahedron corners + LLVector4a(x,x,x), + LLVector4a(-x,-x,x), + LLVector4a(-x,x,-x), + LLVector4a(x,-x,-x) + }; + + face.mExtents[0].splat(-x); + face.mExtents[1].splat(x); - if (detail <= 1.0) - { - return SCULPT_REZ_1; - } - if (detail <= 2.0) + LLVolumeFace::VertexData cv[3]; + + //set texture coordinates + cv[0].mTexCoord = LLVector2(0,0); + cv[1].mTexCoord = LLVector2(1,0); + cv[2].mTexCoord = LLVector2(0.5f, 0.5f*F_SQRT3); + + + //side 1 + cv[0].setPosition(p[1]); + cv[1].setPosition(p[0]); + cv[2].setPosition(p[2]); + + tetrahedron_set_normal(cv); + + face.resizeVertices(12); + face.resizeIndices(12); + + LLVector4a* v = (LLVector4a*) face.mPositions; + LLVector4a* n = (LLVector4a*) face.mNormals; + LLVector2* tc = (LLVector2*) face.mTexCoords; + + v[0] = cv[0].getPosition(); + v[1] = cv[1].getPosition(); + v[2] = cv[2].getPosition(); + v += 3; + + n[0] = cv[0].getNormal(); + n[1] = cv[1].getNormal(); + n[2] = cv[2].getNormal(); + n += 3; + + tc[0] = cv[0].mTexCoord; + tc[1] = cv[1].mTexCoord; + tc[2] = cv[2].mTexCoord; + tc += 3; + + + //side 2 + cv[0].setPosition(p[3]); + cv[1].setPosition(p[0]); + cv[2].setPosition(p[1]); + + tetrahedron_set_normal(cv); + + v[0] = cv[0].getPosition(); + v[1] = cv[1].getPosition(); + v[2] = cv[2].getPosition(); + v += 3; + + n[0] = cv[0].getNormal(); + n[1] = cv[1].getNormal(); + n[2] = cv[2].getNormal(); + n += 3; + + tc[0] = cv[0].mTexCoord; + tc[1] = cv[1].mTexCoord; + tc[2] = cv[2].mTexCoord; + tc += 3; + + //side 3 + cv[0].setPosition(p[3]); + cv[1].setPosition(p[1]); + cv[2].setPosition(p[2]); + + tetrahedron_set_normal(cv); + + v[0] = cv[0].getPosition(); + v[1] = cv[1].getPosition(); + v[2] = cv[2].getPosition(); + v += 3; + + n[0] = cv[0].getNormal(); + n[1] = cv[1].getNormal(); + n[2] = cv[2].getNormal(); + n += 3; + + tc[0] = cv[0].mTexCoord; + tc[1] = cv[1].mTexCoord; + tc[2] = cv[2].mTexCoord; + tc += 3; + + //side 4 + cv[0].setPosition(p[2]); + cv[1].setPosition(p[0]); + cv[2].setPosition(p[3]); + + tetrahedron_set_normal(cv); + + v[0] = cv[0].getPosition(); + v[1] = cv[1].getPosition(); + v[2] = cv[2].getPosition(); + v += 3; + + n[0] = cv[0].getNormal(); + n[1] = cv[1].getNormal(); + n[2] = cv[2].getNormal(); + n += 3; + + tc[0] = cv[0].mTexCoord; + tc[1] = cv[1].mTexCoord; + tc[2] = cv[2].mTexCoord; + tc += 3; + + //set index buffer + for (U16 i = 0; i < 12; i++) { - return SCULPT_REZ_2; + face.mIndices[i] = i; } - if (detail <= 3.0) + + mVolumeFaces.push_back(face); + mSculptLevel = 0; + mIsTetrahedron = TRUE; +} + +void LLVolume::copyVolumeFaces(const LLVolume* volume) +{ + mVolumeFaces = volume->mVolumeFaces; + mSculptLevel = 0; + mIsTetrahedron = FALSE; +} + +void LLVolume::cacheOptimize() +{ + for (S32 i = 0; i < mVolumeFaces.size(); ++i) { - return SCULPT_REZ_3; + mVolumeFaces[i].cacheOptimize(); } - else +} + + +S32 LLVolume::getNumFaces() const +{ + U8 sculpt_type = (mParams.getSculptType() & LL_SCULPT_TYPE_MASK); + + if (sculpt_type == LL_SCULPT_TYPE_MESH) { - return SCULPT_REZ_4; + return LL_SCULPT_MESH_MAX_FACES; } -} + return (S32)mProfilep->mFaces.size(); +} -// determine the number of vertices in both s and t direction for this sculpt -void sculpt_calc_mesh_resolution(U16 width, U16 height, U8 type, F32 detail, S32& s, S32& t) -{ - // this code has the following properties: - // 1) the aspect ratio of the mesh is as close as possible to the ratio of the map - // while still using all available verts - // 2) the mesh cannot have more verts than is allowed by LOD - // 3) the mesh cannot have more verts than is allowed by the map - - S32 max_vertices_lod = (S32)pow((double)sculpt_sides(detail), 2.0); - S32 max_vertices_map = width * height / 4; - - S32 vertices; - if (max_vertices_map > 0) - vertices = llmin(max_vertices_lod, max_vertices_map); - else - vertices = max_vertices_lod; - - - F32 ratio; - if ((width == 0) || (height == 0)) - ratio = 1.f; - else - ratio = (F32) width / (F32) height; - - - s = (S32)fsqrtf(((F32)vertices / ratio)); - - s = llmax(s, 4); // no degenerate sizes, please - t = vertices / s; - - t = llmax(t, 4); // no degenerate sizes, please - s = vertices / t; -} - -// sculpt replaces generate() for sculpted surfaces -void LLVolume::sculpt(U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data, S32 sculpt_level) +void LLVolume::createVolumeFaces() { LLMemType m1(LLMemType::MTYPE_VOLUME); - U8 sculpt_type = mParams.getSculptType(); - - BOOL data_is_empty = FALSE; - if (sculpt_width == 0 || sculpt_height == 0 || sculpt_components < 3 || sculpt_data == NULL) + if (mGenerateSingleFace) { - sculpt_level = -1; - data_is_empty = TRUE; + // do nothing } - - S32 requested_sizeS = 0; - S32 requested_sizeT = 0; - - sculpt_calc_mesh_resolution(sculpt_width, sculpt_height, sculpt_type, mDetail, requested_sizeS, requested_sizeT); - - mPathp->generate(mParams.getPathParams(), mDetail, 0, TRUE, requested_sizeS); - mProfilep->generate(mParams.getProfileParams(), mPathp->isOpen(), mDetail, 0, TRUE, requested_sizeT); - - S32 sizeS = mPathp->mPath.size(); // we requested a specific size, now see what we really got - S32 sizeT = mProfilep->mProfile.size(); // we requested a specific size, now see what we really got - - // weird crash bug - DEV-11158 - trying to collect more data: - if ((sizeS == 0) || (sizeT == 0)) + else { - llwarns << "sculpt bad mesh size " << sizeS << " " << sizeT << llendl; - } - - sNumMeshPoints -= mMesh.size(); - mMesh.resize(sizeS * sizeT); - sNumMeshPoints += mMesh.size(); + S32 num_faces = getNumFaces(); + BOOL partial_build = TRUE; + if (num_faces != mVolumeFaces.size()) + { + partial_build = FALSE; + mVolumeFaces.resize(num_faces); + } + // Initialize volume faces with parameter data + for (S32 i = 0; i < (S32)mVolumeFaces.size(); i++) + { + LLVolumeFace& vf = mVolumeFaces[i]; + LLProfile::Face& face = mProfilep->mFaces[i]; + vf.mBeginS = face.mIndex; + vf.mNumS = face.mCount; + if (vf.mNumS < 0) + { + llerrs << "Volume face corruption detected." << llendl; + } - //generate vertex positions - if (!data_is_empty) - { - sculptGenerateMapVertices(sculpt_width, sculpt_height, sculpt_components, sculpt_data, sculpt_type); + vf.mBeginT = 0; + vf.mNumT= getPath().mPath.size(); + vf.mID = i; - // don't test lowest LOD to support legacy content DEV-33670 - if (mDetail > SCULPT_MIN_AREA_DETAIL) - { - if (sculptGetSurfaceArea() < SCULPT_MIN_AREA) + // Set the type mask bits correctly + if (mParams.getProfileParams().getHollow() > 0) { - data_is_empty = TRUE; + vf.mTypeMask |= LLVolumeFace::HOLLOW_MASK; + } + if (mProfilep->isOpen()) + { + vf.mTypeMask |= LLVolumeFace::OPEN_MASK; + } + if (face.mCap) + { + vf.mTypeMask |= LLVolumeFace::CAP_MASK; + if (face.mFaceID == LL_FACE_PATH_BEGIN) + { + vf.mTypeMask |= LLVolumeFace::TOP_MASK; + } + else + { + llassert(face.mFaceID == LL_FACE_PATH_END); + vf.mTypeMask |= LLVolumeFace::BOTTOM_MASK; + } + } + else if (face.mFaceID & (LL_FACE_PROFILE_BEGIN | LL_FACE_PROFILE_END)) + { + vf.mTypeMask |= LLVolumeFace::FLAT_MASK | LLVolumeFace::END_MASK; + } + else + { + vf.mTypeMask |= LLVolumeFace::SIDE_MASK; + if (face.mFlat) + { + vf.mTypeMask |= LLVolumeFace::FLAT_MASK; + } + if (face.mFaceID & LL_FACE_INNER_SIDE) + { + vf.mTypeMask |= LLVolumeFace::INNER_MASK; + if (face.mFlat && vf.mNumS > 2) + { //flat inner faces have to copy vert normals + vf.mNumS = vf.mNumS*2; + if (vf.mNumS < 0) + { + llerrs << "Volume face corruption detected." << llendl; + } + } + } + else + { + vf.mTypeMask |= LLVolumeFace::OUTER_MASK; + } } } - } - if (data_is_empty) - { - sculptGeneratePlaceholder(); + for (face_list_t::iterator iter = mVolumeFaces.begin(); + iter != mVolumeFaces.end(); ++iter) + { + (*iter).create(this, partial_build); + } } +} - - for (S32 i = 0; i < (S32)mProfilep->mFaces.size(); i++) - { - mFaceMask |= mProfilep->mFaces[i].mFaceID; - } - - mSculptLevel = sculpt_level; +inline LLVector3 sculpt_rgb_to_vector(U8 r, U8 g, U8 b) +{ + // maps RGB values to vector values [0..255] -> [-0.5..0.5] + LLVector3 value; + value.mV[VX] = r / 255.f - 0.5f; + value.mV[VY] = g / 255.f - 0.5f; + value.mV[VZ] = b / 255.f - 0.5f; - // Delete any existing faces so that they get regenerated - mVolumeFaces.clear(); - - createVolumeFaces(); + return value; } +inline U32 sculpt_xy_to_index(U32 x, U32 y, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components) +{ + U32 index = (x + y * sculpt_width) * sculpt_components; + return index; +} - -BOOL LLVolume::isCap(S32 face) +inline U32 sculpt_st_to_index(S32 s, S32 t, S32 size_s, S32 size_t, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components) { - return mProfilep->mFaces[face].mCap; + U32 x = (U32) ((F32)s/(size_s) * (F32) sculpt_width); + U32 y = (U32) ((F32)t/(size_t) * (F32) sculpt_height); + + return sculpt_xy_to_index(x, y, sculpt_width, sculpt_height, sculpt_components); } -BOOL LLVolume::isFlat(S32 face) + +inline LLVector3 sculpt_index_to_vector(U32 index, const U8* sculpt_data) { - return mProfilep->mFaces[face].mFlat; -} + LLVector3 v = sculpt_rgb_to_vector(sculpt_data[index], sculpt_data[index+1], sculpt_data[index+2]); + return v; +} -bool LLVolumeParams::operator==(const LLVolumeParams ¶ms) const +inline LLVector3 sculpt_st_to_vector(S32 s, S32 t, S32 size_s, S32 size_t, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data) { - return ( (getPathParams() == params.getPathParams()) && - (getProfileParams() == params.getProfileParams()) && - (mSculptID == params.mSculptID) && - (mSculptType == params.mSculptType) ); + U32 index = sculpt_st_to_index(s, t, size_s, size_t, sculpt_width, sculpt_height, sculpt_components); + + return sculpt_index_to_vector(index, sculpt_data); } -bool LLVolumeParams::operator!=(const LLVolumeParams ¶ms) const +inline LLVector3 sculpt_xy_to_vector(U32 x, U32 y, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data) { - return ( (getPathParams() != params.getPathParams()) || - (getProfileParams() != params.getProfileParams()) || - (mSculptID != params.mSculptID) || - (mSculptType != params.mSculptType) ); + U32 index = sculpt_xy_to_index(x, y, sculpt_width, sculpt_height, sculpt_components); + + return sculpt_index_to_vector(index, sculpt_data); } -bool LLVolumeParams::operator<(const LLVolumeParams ¶ms) const + +F32 LLVolume::sculptGetSurfaceArea() { - if( getPathParams() != params.getPathParams() ) - { - return getPathParams() < params.getPathParams(); - } - - if (getProfileParams() != params.getProfileParams()) - { - return getProfileParams() < params.getProfileParams(); - } - - if (mSculptID != params.mSculptID) - { - return mSculptID < params.mSculptID; - } + // test to see if image has enough variation to create non-degenerate geometry + F32 area = 0; - return mSculptType < params.mSculptType; + S32 sizeS = mPathp->mPath.size(); + S32 sizeT = mProfilep->mProfile.size(); + + for (S32 s = 0; s < sizeS-1; s++) + { + for (S32 t = 0; t < sizeT-1; t++) + { + // get four corners of quad + LLVector3 p1 = mMesh[(s )*sizeT + (t )].mPos; + LLVector3 p2 = mMesh[(s+1)*sizeT + (t )].mPos; + LLVector3 p3 = mMesh[(s )*sizeT + (t+1)].mPos; + LLVector3 p4 = mMesh[(s+1)*sizeT + (t+1)].mPos; + // compute the area of the quad by taking the length of the cross product of the two triangles + LLVector3 cross1 = (p1 - p2) % (p1 - p3); + LLVector3 cross2 = (p4 - p2) % (p4 - p3); + area += (cross1.magVec() + cross2.magVec()) / 2.0; + } + } + return area; } -void LLVolumeParams::copyParams(const LLVolumeParams ¶ms) +// create placeholder shape +void LLVolume::sculptGeneratePlaceholder() { LLMemType m1(LLMemType::MTYPE_VOLUME); - mProfileParams.copyParams(params.mProfileParams); - mPathParams.copyParams(params.mPathParams); - mSculptID = params.getSculptID(); - mSculptType = params.getSculptType(); -} - -// Less restricitve approx 0 for volumes -const F32 APPROXIMATELY_ZERO = 0.001f; -bool approx_zero( F32 f, F32 tolerance = APPROXIMATELY_ZERO) -{ - return (f >= -tolerance) && (f <= tolerance); -} + + S32 sizeS = mPathp->mPath.size(); + S32 sizeT = mProfilep->mProfile.size(); + + S32 line = 0; -// return true if in range (or nearly so) -static bool limit_range(F32& v, F32 min, F32 max, F32 tolerance = APPROXIMATELY_ZERO) -{ - F32 min_delta = v - min; - if (min_delta < 0.f) - { - v = min; - if (!approx_zero(min_delta, tolerance)) - return false; - } - F32 max_delta = max - v; - if (max_delta < 0.f) + // for now, this is a sphere. + for (S32 s = 0; s < sizeS; s++) { - v = max; - if (!approx_zero(max_delta, tolerance)) - return false; - } - return true; -} - -bool LLVolumeParams::setBeginAndEndS(const F32 b, const F32 e) -{ - bool valid = true; - - // First, clamp to valid ranges. - F32 begin = b; - valid &= limit_range(begin, 0.f, 1.f - MIN_CUT_DELTA); - - F32 end = e; - if (end >= .0149f && end < MIN_CUT_DELTA) end = MIN_CUT_DELTA; // eliminate warning for common rounding error - valid &= limit_range(end, MIN_CUT_DELTA, 1.f); + for (S32 t = 0; t < sizeT; t++) + { + S32 i = t + line; + Point& pt = mMesh[i]; - valid &= limit_range(begin, 0.f, end - MIN_CUT_DELTA, .01f); + + F32 u = (F32)s/(sizeS-1); + F32 v = (F32)t/(sizeT-1); - // Now set them. - mProfileParams.setBegin(begin); - mProfileParams.setEnd(end); + const F32 RADIUS = (F32) 0.3; + + pt.mPos.mV[0] = (F32)(sin(F_PI * v) * cos(2.0 * F_PI * u) * RADIUS); + pt.mPos.mV[1] = (F32)(sin(F_PI * v) * sin(2.0 * F_PI * u) * RADIUS); + pt.mPos.mV[2] = (F32)(cos(F_PI * v) * RADIUS); - return valid; + } + line += sizeT; + } } -bool LLVolumeParams::setBeginAndEndT(const F32 b, const F32 e) +// create the vertices from the map +void LLVolume::sculptGenerateMapVertices(U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data, U8 sculpt_type) { - bool valid = true; + U8 sculpt_stitching = sculpt_type & LL_SCULPT_TYPE_MASK; + BOOL sculpt_invert = sculpt_type & LL_SCULPT_FLAG_INVERT; + BOOL sculpt_mirror = sculpt_type & LL_SCULPT_FLAG_MIRROR; + BOOL reverse_horizontal = (sculpt_invert ? !sculpt_mirror : sculpt_mirror); // XOR + + + LLMemType m1(LLMemType::MTYPE_VOLUME); + + S32 sizeS = mPathp->mPath.size(); + S32 sizeT = mProfilep->mProfile.size(); + + S32 line = 0; + for (S32 s = 0; s < sizeS; s++) + { + // Run along the profile. + for (S32 t = 0; t < sizeT; t++) + { + S32 i = t + line; + Point& pt = mMesh[i]; - // First, clamp to valid ranges. - F32 begin = b; - valid &= limit_range(begin, 0.f, 1.f - MIN_CUT_DELTA); + S32 reversed_t = t; - F32 end = e; - valid &= limit_range(end, MIN_CUT_DELTA, 1.f); + if (reverse_horizontal) + { + reversed_t = sizeT - t - 1; + } + + U32 x = (U32) ((F32)reversed_t/(sizeT-1) * (F32) sculpt_width); + U32 y = (U32) ((F32)s/(sizeS-1) * (F32) sculpt_height); - valid &= limit_range(begin, 0.f, end - MIN_CUT_DELTA, .01f); + + if (y == 0) // top row stitching + { + // pinch? + if (sculpt_stitching == LL_SCULPT_TYPE_SPHERE) + { + x = sculpt_width / 2; + } + } - // Now set them. - mPathParams.setBegin(begin); - mPathParams.setEnd(end); + if (y == sculpt_height) // bottom row stitching + { + // wrap? + if (sculpt_stitching == LL_SCULPT_TYPE_TORUS) + { + y = 0; + } + else + { + y = sculpt_height - 1; + } - return valid; -} + // pinch? + if (sculpt_stitching == LL_SCULPT_TYPE_SPHERE) + { + x = sculpt_width / 2; + } + } -bool LLVolumeParams::setHollow(const F32 h) -{ - // Validate the hollow based on path and profile. - U8 profile = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK; - U8 hole_type = mProfileParams.getCurveType() & LL_PCODE_HOLE_MASK; - - F32 max_hollow = HOLLOW_MAX; + if (x == sculpt_width) // side stitching + { + // wrap? + if ((sculpt_stitching == LL_SCULPT_TYPE_SPHERE) || + (sculpt_stitching == LL_SCULPT_TYPE_TORUS) || + (sculpt_stitching == LL_SCULPT_TYPE_CYLINDER)) + { + x = 0; + } + + else + { + x = sculpt_width - 1; + } + } - // Only square holes have trouble. - if (LL_PCODE_HOLE_SQUARE == hole_type) - { - switch(profile) - { - case LL_PCODE_PROFILE_CIRCLE: - case LL_PCODE_PROFILE_CIRCLE_HALF: - case LL_PCODE_PROFILE_EQUALTRI: - max_hollow = HOLLOW_MAX_SQUARE; + pt.mPos = sculpt_xy_to_vector(x, y, sculpt_width, sculpt_height, sculpt_components, sculpt_data); + + if (sculpt_mirror) + { + pt.mPos.mV[VX] *= -1.f; + } } + + line += sizeT; } +} - F32 hollow = h; - bool valid = limit_range(hollow, HOLLOW_MIN, max_hollow); - mProfileParams.setHollow(hollow); - return valid; -} +const S32 SCULPT_REZ_1 = 6; // changed from 4 to 6 - 6 looks round whereas 4 looks square +const S32 SCULPT_REZ_2 = 8; +const S32 SCULPT_REZ_3 = 16; +const S32 SCULPT_REZ_4 = 32; -bool LLVolumeParams::setTwistBegin(const F32 b) +S32 sculpt_sides(F32 detail) { - F32 twist_begin = b; - bool valid = limit_range(twist_begin, TWIST_MIN, TWIST_MAX); - mPathParams.setTwistBegin(twist_begin); - return valid; -} - -bool LLVolumeParams::setTwistEnd(const F32 e) -{ - F32 twist_end = e; - bool valid = limit_range(twist_end, TWIST_MIN, TWIST_MAX); - mPathParams.setTwistEnd(twist_end); - return valid; -} -bool LLVolumeParams::setRatio(const F32 x, const F32 y) -{ - F32 min_x = RATIO_MIN; - F32 max_x = RATIO_MAX; - F32 min_y = RATIO_MIN; - F32 max_y = RATIO_MAX; - // If this is a circular path (and not a sphere) then 'ratio' is actually hole size. - U8 path_type = mPathParams.getCurveType(); - U8 profile_type = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK; - if ( LL_PCODE_PATH_CIRCLE == path_type && - LL_PCODE_PROFILE_CIRCLE_HALF != profile_type) + // detail is usually one of: 1, 1.5, 2.5, 4.0. + + if (detail <= 1.0) { - // Holes are more restricted... - min_x = HOLE_X_MIN; - max_x = HOLE_X_MAX; - min_y = HOLE_Y_MIN; - max_y = HOLE_Y_MAX; + return SCULPT_REZ_1; + } + if (detail <= 2.0) + { + return SCULPT_REZ_2; + } + if (detail <= 3.0) + { + return SCULPT_REZ_3; + } + else + { + return SCULPT_REZ_4; } - - F32 ratio_x = x; - bool valid = limit_range(ratio_x, min_x, max_x); - F32 ratio_y = y; - valid &= limit_range(ratio_y, min_y, max_y); - - mPathParams.setScale(ratio_x, ratio_y); - - return valid; } -bool LLVolumeParams::setShear(const F32 x, const F32 y) -{ - F32 shear_x = x; - bool valid = limit_range(shear_x, SHEAR_MIN, SHEAR_MAX); - F32 shear_y = y; - valid &= limit_range(shear_y, SHEAR_MIN, SHEAR_MAX); - mPathParams.setShear(shear_x, shear_y); - return valid; -} -bool LLVolumeParams::setTaperX(const F32 v) -{ - F32 taper = v; - bool valid = limit_range(taper, TAPER_MIN, TAPER_MAX); - mPathParams.setTaperX(taper); - return valid; -} -bool LLVolumeParams::setTaperY(const F32 v) +// determine the number of vertices in both s and t direction for this sculpt +void sculpt_calc_mesh_resolution(U16 width, U16 height, U8 type, F32 detail, S32& s, S32& t) { - F32 taper = v; - bool valid = limit_range(taper, TAPER_MIN, TAPER_MAX); - mPathParams.setTaperY(taper); - return valid; -} + // this code has the following properties: + // 1) the aspect ratio of the mesh is as close as possible to the ratio of the map + // while still using all available verts + // 2) the mesh cannot have more verts than is allowed by LOD + // 3) the mesh cannot have more verts than is allowed by the map + + S32 max_vertices_lod = (S32)pow((double)sculpt_sides(detail), 2.0); + S32 max_vertices_map = width * height / 4; + + S32 vertices; + if (max_vertices_map > 0) + vertices = llmin(max_vertices_lod, max_vertices_map); + else + vertices = max_vertices_lod; + -bool LLVolumeParams::setRevolutions(const F32 r) -{ - F32 revolutions = r; - bool valid = limit_range(revolutions, REV_MIN, REV_MAX); - mPathParams.setRevolutions(revolutions); - return valid; + F32 ratio; + if ((width == 0) || (height == 0)) + ratio = 1.f; + else + ratio = (F32) width / (F32) height; + + + s = (S32)(F32) sqrt(((F32)vertices / ratio)); + + s = llmax(s, 4); // no degenerate sizes, please + t = vertices / s; + + t = llmax(t, 4); // no degenerate sizes, please + s = vertices / t; } -bool LLVolumeParams::setRadiusOffset(const F32 offset) +// sculpt replaces generate() for sculpted surfaces +void LLVolume::sculpt(U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data, S32 sculpt_level) { - bool valid = true; + LLMemType m1(LLMemType::MTYPE_VOLUME); + U8 sculpt_type = mParams.getSculptType(); - // If this is a sphere, just set it to 0 and get out. - U8 path_type = mPathParams.getCurveType(); - U8 profile_type = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK; - if ( LL_PCODE_PROFILE_CIRCLE_HALF == profile_type || - LL_PCODE_PATH_CIRCLE != path_type ) + BOOL data_is_empty = FALSE; + + if (sculpt_width == 0 || sculpt_height == 0 || sculpt_components < 3 || sculpt_data == NULL) { - mPathParams.setRadiusOffset(0.f); - return true; + sculpt_level = -1; + data_is_empty = TRUE; } - // Limit radius offset, based on taper and hole size y. - F32 radius_offset = offset; - F32 taper_y = getTaperY(); - F32 radius_mag = fabs(radius_offset); - F32 hole_y_mag = fabs(getRatioY()); - F32 taper_y_mag = fabs(taper_y); - // Check to see if the taper effects us. - if ( (radius_offset > 0.f && taper_y < 0.f) || - (radius_offset < 0.f && taper_y > 0.f) ) + S32 requested_sizeS = 0; + S32 requested_sizeT = 0; + + sculpt_calc_mesh_resolution(sculpt_width, sculpt_height, sculpt_type, mDetail, requested_sizeS, requested_sizeT); + + mPathp->generate(mParams.getPathParams(), mDetail, 0, TRUE, requested_sizeS); + mProfilep->generate(mParams.getProfileParams(), mPathp->isOpen(), mDetail, 0, TRUE, requested_sizeT); + + S32 sizeS = mPathp->mPath.size(); // we requested a specific size, now see what we really got + S32 sizeT = mProfilep->mProfile.size(); // we requested a specific size, now see what we really got + + // weird crash bug - DEV-11158 - trying to collect more data: + if ((sizeS == 0) || (sizeT == 0)) { - // The taper does not help increase the radius offset range. - taper_y_mag = 0.f; + llwarns << "sculpt bad mesh size " << sizeS << " " << sizeT << llendl; } - F32 max_radius_mag = 1.f - hole_y_mag * (1.f - taper_y_mag) / (1.f - hole_y_mag); + + sNumMeshPoints -= mMesh.size(); + mMesh.resize(sizeS * sizeT); + sNumMeshPoints += mMesh.size(); - // Enforce the maximum magnitude. - F32 delta = max_radius_mag - radius_mag; - if (delta < 0.f) + //generate vertex positions + if (!data_is_empty) { - // Check radius offset sign. - if (radius_offset < 0.f) - { - radius_offset = -max_radius_mag; - } - else + sculptGenerateMapVertices(sculpt_width, sculpt_height, sculpt_components, sculpt_data, sculpt_type); + + // don't test lowest LOD to support legacy content DEV-33670 + if (mDetail > SCULPT_MIN_AREA_DETAIL) { - radius_offset = max_radius_mag; + if (sculptGetSurfaceArea() < SCULPT_MIN_AREA) + { + data_is_empty = TRUE; + } } - valid = approx_zero(delta, .1f); } - mPathParams.setRadiusOffset(radius_offset); - return valid; + if (data_is_empty) + { + sculptGeneratePlaceholder(); + } + + + + for (S32 i = 0; i < (S32)mProfilep->mFaces.size(); i++) + { + mFaceMask |= mProfilep->mFaces[i].mFaceID; + } + + mSculptLevel = sculpt_level; + + // Delete any existing faces so that they get regenerated + mVolumeFaces.clear(); + + createVolumeFaces(); } -bool LLVolumeParams::setSkew(const F32 skew_value) + + + +BOOL LLVolume::isCap(S32 face) { - bool valid = true; + return mProfilep->mFaces[face].mCap; +} - // Check the skew value against the revolutions. - F32 skew = llclamp(skew_value, SKEW_MIN, SKEW_MAX); - F32 skew_mag = fabs(skew); - F32 revolutions = getRevolutions(); - F32 scale_x = getRatioX(); - F32 min_skew_mag = 1.0f - 1.0f / (revolutions * scale_x + 1.0f); - // Discontinuity; A revolution of 1 allows skews below 0.5. - if ( fabs(revolutions - 1.0f) < 0.001) - min_skew_mag = 0.0f; +BOOL LLVolume::isFlat(S32 face) +{ + return mProfilep->mFaces[face].mFlat; +} - // Clip skew. - F32 delta = skew_mag - min_skew_mag; - if (delta < 0.f) - { - // Check skew sign. - if (skew < 0.0f) - { - skew = -min_skew_mag; - } - else - { - skew = min_skew_mag; - } - valid = approx_zero(delta, .01f); - } - mPathParams.setSkew(skew); - return valid; +bool LLVolumeParams::isSculpt() const +{ + return mSculptID.notNull(); } -bool LLVolumeParams::setSculptID(const LLUUID sculpt_id, U8 sculpt_type) +bool LLVolumeParams::isMeshSculpt() const { - mSculptID = sculpt_id; - mSculptType = sculpt_type; - return true; + return isSculpt() && ((mSculptType & LL_SCULPT_TYPE_MASK) == LL_SCULPT_TYPE_MESH); } -bool LLVolumeParams::setType(U8 profile, U8 path) +bool LLVolumeParams::operator==(const LLVolumeParams ¶ms) const { - bool result = true; - // First, check profile and path for validity. - U8 profile_type = profile & LL_PCODE_PROFILE_MASK; - U8 hole_type = (profile & LL_PCODE_HOLE_MASK) >> 4; - U8 path_type = path >> 4; + return ( (getPathParams() == params.getPathParams()) && + (getProfileParams() == params.getProfileParams()) && + (mSculptID == params.mSculptID) && + (mSculptType == params.mSculptType) ); +} - if (profile_type > LL_PCODE_PROFILE_MAX) +bool LLVolumeParams::operator!=(const LLVolumeParams ¶ms) const +{ + return ( (getPathParams() != params.getPathParams()) || + (getProfileParams() != params.getProfileParams()) || + (mSculptID != params.mSculptID) || + (mSculptType != params.mSculptType) ); +} + +bool LLVolumeParams::operator<(const LLVolumeParams ¶ms) const +{ + if( getPathParams() != params.getPathParams() ) { - // Bad profile. Make it square. - profile = LL_PCODE_PROFILE_SQUARE; - result = false; - llwarns << "LLVolumeParams::setType changing bad profile type (" << profile_type - << ") to be LL_PCODE_PROFILE_SQUARE" << llendl; + return getPathParams() < params.getPathParams(); } - else if (hole_type > LL_PCODE_HOLE_MAX) + + if (getProfileParams() != params.getProfileParams()) { - // Bad hole. Make it the same. - profile = profile_type; - result = false; - llwarns << "LLVolumeParams::setType changing bad hole type (" << hole_type - << ") to be LL_PCODE_HOLE_SAME" << llendl; + return getProfileParams() < params.getProfileParams(); } - - if (path_type < LL_PCODE_PATH_MIN || - path_type > LL_PCODE_PATH_MAX) + + if (mSculptID != params.mSculptID) { - // Bad path. Make it linear. - result = false; - llwarns << "LLVolumeParams::setType changing bad path (" << path - << ") to be LL_PCODE_PATH_LINE" << llendl; - path = LL_PCODE_PATH_LINE; + return mSculptID < params.mSculptID; } - mProfileParams.setCurveType(profile); - mPathParams.setCurveType(path); - return result; + return mSculptType < params.mSculptType; + + } -// static -bool LLVolumeParams::validate(U8 prof_curve, F32 prof_begin, F32 prof_end, F32 hollow, - U8 path_curve, F32 path_begin, F32 path_end, - F32 scx, F32 scy, F32 shx, F32 shy, - F32 twistend, F32 twistbegin, F32 radiusoffset, - F32 tx, F32 ty, F32 revolutions, F32 skew) +void LLVolumeParams::copyParams(const LLVolumeParams ¶ms) { - LLVolumeParams test_params; - if (!test_params.setType (prof_curve, path_curve)) + LLMemType m1(LLMemType::MTYPE_VOLUME); + mProfileParams.copyParams(params.mProfileParams); + mPathParams.copyParams(params.mPathParams); + mSculptID = params.getSculptID(); + mSculptType = params.getSculptType(); +} + +// Less restricitve approx 0 for volumes +const F32 APPROXIMATELY_ZERO = 0.001f; +bool approx_zero( F32 f, F32 tolerance = APPROXIMATELY_ZERO) +{ + return (f >= -tolerance) && (f <= tolerance); +} + +// return true if in range (or nearly so) +static bool limit_range(F32& v, F32 min, F32 max, F32 tolerance = APPROXIMATELY_ZERO) +{ + F32 min_delta = v - min; + if (min_delta < 0.f) { - return false; + v = min; + if (!approx_zero(min_delta, tolerance)) + return false; + } + F32 max_delta = max - v; + if (max_delta < 0.f) + { + v = max; + if (!approx_zero(max_delta, tolerance)) + return false; + } + return true; +} + +bool LLVolumeParams::setBeginAndEndS(const F32 b, const F32 e) +{ + bool valid = true; + + // First, clamp to valid ranges. + F32 begin = b; + valid &= limit_range(begin, 0.f, 1.f - MIN_CUT_DELTA); + + F32 end = e; + if (end >= .0149f && end < MIN_CUT_DELTA) end = MIN_CUT_DELTA; // eliminate warning for common rounding error + valid &= limit_range(end, MIN_CUT_DELTA, 1.f); + + valid &= limit_range(begin, 0.f, end - MIN_CUT_DELTA, .01f); + + // Now set them. + mProfileParams.setBegin(begin); + mProfileParams.setEnd(end); + + return valid; +} + +bool LLVolumeParams::setBeginAndEndT(const F32 b, const F32 e) +{ + bool valid = true; + + // First, clamp to valid ranges. + F32 begin = b; + valid &= limit_range(begin, 0.f, 1.f - MIN_CUT_DELTA); + + F32 end = e; + valid &= limit_range(end, MIN_CUT_DELTA, 1.f); + + valid &= limit_range(begin, 0.f, end - MIN_CUT_DELTA, .01f); + + // Now set them. + mPathParams.setBegin(begin); + mPathParams.setEnd(end); + + return valid; +} + +bool LLVolumeParams::setHollow(const F32 h) +{ + // Validate the hollow based on path and profile. + U8 profile = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK; + U8 hole_type = mProfileParams.getCurveType() & LL_PCODE_HOLE_MASK; + + F32 max_hollow = HOLLOW_MAX; + + // Only square holes have trouble. + if (LL_PCODE_HOLE_SQUARE == hole_type) + { + switch(profile) + { + case LL_PCODE_PROFILE_CIRCLE: + case LL_PCODE_PROFILE_CIRCLE_HALF: + case LL_PCODE_PROFILE_EQUALTRI: + max_hollow = HOLLOW_MAX_SQUARE; + } + } + + F32 hollow = h; + bool valid = limit_range(hollow, HOLLOW_MIN, max_hollow); + mProfileParams.setHollow(hollow); + + return valid; +} + +bool LLVolumeParams::setTwistBegin(const F32 b) +{ + F32 twist_begin = b; + bool valid = limit_range(twist_begin, TWIST_MIN, TWIST_MAX); + mPathParams.setTwistBegin(twist_begin); + return valid; +} + +bool LLVolumeParams::setTwistEnd(const F32 e) +{ + F32 twist_end = e; + bool valid = limit_range(twist_end, TWIST_MIN, TWIST_MAX); + mPathParams.setTwistEnd(twist_end); + return valid; +} + +bool LLVolumeParams::setRatio(const F32 x, const F32 y) +{ + F32 min_x = RATIO_MIN; + F32 max_x = RATIO_MAX; + F32 min_y = RATIO_MIN; + F32 max_y = RATIO_MAX; + // If this is a circular path (and not a sphere) then 'ratio' is actually hole size. + U8 path_type = mPathParams.getCurveType(); + U8 profile_type = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK; + if ( LL_PCODE_PATH_CIRCLE == path_type && + LL_PCODE_PROFILE_CIRCLE_HALF != profile_type) + { + // Holes are more restricted... + min_x = HOLE_X_MIN; + max_x = HOLE_X_MAX; + min_y = HOLE_Y_MIN; + max_y = HOLE_Y_MAX; + } + + F32 ratio_x = x; + bool valid = limit_range(ratio_x, min_x, max_x); + F32 ratio_y = y; + valid &= limit_range(ratio_y, min_y, max_y); + + mPathParams.setScale(ratio_x, ratio_y); + + return valid; +} + +bool LLVolumeParams::setShear(const F32 x, const F32 y) +{ + F32 shear_x = x; + bool valid = limit_range(shear_x, SHEAR_MIN, SHEAR_MAX); + F32 shear_y = y; + valid &= limit_range(shear_y, SHEAR_MIN, SHEAR_MAX); + mPathParams.setShear(shear_x, shear_y); + return valid; +} + +bool LLVolumeParams::setTaperX(const F32 v) +{ + F32 taper = v; + bool valid = limit_range(taper, TAPER_MIN, TAPER_MAX); + mPathParams.setTaperX(taper); + return valid; +} + +bool LLVolumeParams::setTaperY(const F32 v) +{ + F32 taper = v; + bool valid = limit_range(taper, TAPER_MIN, TAPER_MAX); + mPathParams.setTaperY(taper); + return valid; +} + +bool LLVolumeParams::setRevolutions(const F32 r) +{ + F32 revolutions = r; + bool valid = limit_range(revolutions, REV_MIN, REV_MAX); + mPathParams.setRevolutions(revolutions); + return valid; +} + +bool LLVolumeParams::setRadiusOffset(const F32 offset) +{ + bool valid = true; + + // If this is a sphere, just set it to 0 and get out. + U8 path_type = mPathParams.getCurveType(); + U8 profile_type = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK; + if ( LL_PCODE_PROFILE_CIRCLE_HALF == profile_type || + LL_PCODE_PATH_CIRCLE != path_type ) + { + mPathParams.setRadiusOffset(0.f); + return true; + } + + // Limit radius offset, based on taper and hole size y. + F32 radius_offset = offset; + F32 taper_y = getTaperY(); + F32 radius_mag = fabs(radius_offset); + F32 hole_y_mag = fabs(getRatioY()); + F32 taper_y_mag = fabs(taper_y); + // Check to see if the taper effects us. + if ( (radius_offset > 0.f && taper_y < 0.f) || + (radius_offset < 0.f && taper_y > 0.f) ) + { + // The taper does not help increase the radius offset range. + taper_y_mag = 0.f; + } + F32 max_radius_mag = 1.f - hole_y_mag * (1.f - taper_y_mag) / (1.f - hole_y_mag); + + // Enforce the maximum magnitude. + F32 delta = max_radius_mag - radius_mag; + if (delta < 0.f) + { + // Check radius offset sign. + if (radius_offset < 0.f) + { + radius_offset = -max_radius_mag; + } + else + { + radius_offset = max_radius_mag; + } + valid = approx_zero(delta, .1f); + } + + mPathParams.setRadiusOffset(radius_offset); + return valid; +} + +bool LLVolumeParams::setSkew(const F32 skew_value) +{ + bool valid = true; + + // Check the skew value against the revolutions. + F32 skew = llclamp(skew_value, SKEW_MIN, SKEW_MAX); + F32 skew_mag = fabs(skew); + F32 revolutions = getRevolutions(); + F32 scale_x = getRatioX(); + F32 min_skew_mag = 1.0f - 1.0f / (revolutions * scale_x + 1.0f); + // Discontinuity; A revolution of 1 allows skews below 0.5. + if ( fabs(revolutions - 1.0f) < 0.001) + min_skew_mag = 0.0f; + + // Clip skew. + F32 delta = skew_mag - min_skew_mag; + if (delta < 0.f) + { + // Check skew sign. + if (skew < 0.0f) + { + skew = -min_skew_mag; + } + else + { + skew = min_skew_mag; + } + valid = approx_zero(delta, .01f); + } + + mPathParams.setSkew(skew); + return valid; +} + +bool LLVolumeParams::setSculptID(const LLUUID sculpt_id, U8 sculpt_type) +{ + mSculptID = sculpt_id; + mSculptType = sculpt_type; + return true; +} + +bool LLVolumeParams::setType(U8 profile, U8 path) +{ + bool result = true; + // First, check profile and path for validity. + U8 profile_type = profile & LL_PCODE_PROFILE_MASK; + U8 hole_type = (profile & LL_PCODE_HOLE_MASK) >> 4; + U8 path_type = path >> 4; + + if (profile_type > LL_PCODE_PROFILE_MAX) + { + // Bad profile. Make it square. + profile = LL_PCODE_PROFILE_SQUARE; + result = false; + llwarns << "LLVolumeParams::setType changing bad profile type (" << profile_type + << ") to be LL_PCODE_PROFILE_SQUARE" << llendl; + } + else if (hole_type > LL_PCODE_HOLE_MAX) + { + // Bad hole. Make it the same. + profile = profile_type; + result = false; + llwarns << "LLVolumeParams::setType changing bad hole type (" << hole_type + << ") to be LL_PCODE_HOLE_SAME" << llendl; + } + + if (path_type < LL_PCODE_PATH_MIN || + path_type > LL_PCODE_PATH_MAX) + { + // Bad path. Make it linear. + result = false; + llwarns << "LLVolumeParams::setType changing bad path (" << path + << ") to be LL_PCODE_PATH_LINE" << llendl; + path = LL_PCODE_PATH_LINE; + } + + mProfileParams.setCurveType(profile); + mPathParams.setCurveType(path); + return result; +} + +// static +bool LLVolumeParams::validate(U8 prof_curve, F32 prof_begin, F32 prof_end, F32 hollow, + U8 path_curve, F32 path_begin, F32 path_end, + F32 scx, F32 scy, F32 shx, F32 shy, + F32 twistend, F32 twistbegin, F32 radiusoffset, + F32 tx, F32 ty, F32 revolutions, F32 skew) +{ + LLVolumeParams test_params; + if (!test_params.setType (prof_curve, path_curve)) + { + return false; } if (!test_params.setBeginAndEndS (prof_begin, prof_end)) { @@ -2692,1768 +3480,2536 @@ bool LLVolumeParams::validate(U8 prof_curve, F32 prof_begin, F32 prof_end, F32 h return true; } -S32 *LLVolume::getTriangleIndices(U32 &num_indices) const -{ - LLMemType m1(LLMemType::MTYPE_VOLUME); - - S32 expected_num_triangle_indices = getNumTriangleIndices(); - if (expected_num_triangle_indices > MAX_VOLUME_TRIANGLE_INDICES) - { - // we don't allow LLVolumes with this many vertices - llwarns << "Couldn't allocate triangle indices" << llendl; - num_indices = 0; - return NULL; - } +S32 *LLVolume::getTriangleIndices(U32 &num_indices) const +{ + LLMemType m1(LLMemType::MTYPE_VOLUME); + + S32 expected_num_triangle_indices = getNumTriangleIndices(); + if (expected_num_triangle_indices > MAX_VOLUME_TRIANGLE_INDICES) + { + // we don't allow LLVolumes with this many vertices + llwarns << "Couldn't allocate triangle indices" << llendl; + num_indices = 0; + return NULL; + } + + S32* index = new S32[expected_num_triangle_indices]; + S32 count = 0; + + // Let's do this totally diffently, as we don't care about faces... + // Counter-clockwise triangles are forward facing... + + BOOL open = getProfile().isOpen(); + BOOL hollow = (mParams.getProfileParams().getHollow() > 0); + BOOL path_open = getPath().isOpen(); + S32 size_s, size_s_out, size_t; + S32 s, t, i; + size_s = getProfile().getTotal(); + size_s_out = getProfile().getTotalOut(); + size_t = getPath().mPath.size(); + + // NOTE -- if the construction of the triangles below ever changes + // then getNumTriangleIndices() method may also have to be updated. + + if (open) /* Flawfinder: ignore */ + { + if (hollow) + { + // Open hollow -- much like the closed solid, except we + // we need to stitch up the gap between s=0 and s=size_s-1 + + for (t = 0; t < size_t - 1; t++) + { + // The outer face, first cut, and inner face + for (s = 0; s < size_s - 1; s++) + { + i = s + t*size_s; + index[count++] = i; // x,y + index[count++] = i + 1; // x+1,y + index[count++] = i + size_s; // x,y+1 + + index[count++] = i + size_s; // x,y+1 + index[count++] = i + 1; // x+1,y + index[count++] = i + size_s + 1; // x+1,y+1 + } + + // The other cut face + index[count++] = s + t*size_s; // x,y + index[count++] = 0 + t*size_s; // x+1,y + index[count++] = s + (t+1)*size_s; // x,y+1 + + index[count++] = s + (t+1)*size_s; // x,y+1 + index[count++] = 0 + t*size_s; // x+1,y + index[count++] = 0 + (t+1)*size_s; // x+1,y+1 + } + + // Do the top and bottom caps, if necessary + if (path_open) + { + // Top cap + S32 pt1 = 0; + S32 pt2 = size_s-1; + S32 i = (size_t - 1)*size_s; + + while (pt2 - pt1 > 1) + { + // Use the profile points instead of the mesh, since you want + // the un-transformed profile distances. + LLVector3 p1 = getProfile().mProfile[pt1]; + LLVector3 p2 = getProfile().mProfile[pt2]; + LLVector3 pa = getProfile().mProfile[pt1+1]; + LLVector3 pb = getProfile().mProfile[pt2-1]; + + p1.mV[VZ] = 0.f; + p2.mV[VZ] = 0.f; + pa.mV[VZ] = 0.f; + pb.mV[VZ] = 0.f; + + // Use area of triangle to determine backfacing + F32 area_1a2, area_1ba, area_21b, area_2ab; + area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) + + (pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) + + (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]); - S32* index = new S32[expected_num_triangle_indices]; - S32 count = 0; + area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + + (pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) + + (pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]); - // Let's do this totally diffently, as we don't care about faces... - // Counter-clockwise triangles are forward facing... + area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) + + (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + + (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); - BOOL open = getProfile().isOpen(); - BOOL hollow = (mParams.getProfileParams().getHollow() > 0); - BOOL path_open = getPath().isOpen(); - S32 size_s, size_s_out, size_t; - S32 s, t, i; - size_s = getProfile().getTotal(); - size_s_out = getProfile().getTotalOut(); - size_t = getPath().mPath.size(); + area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) + + (pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) + + (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); - // NOTE -- if the construction of the triangles below ever changes - // then getNumTriangleIndices() method may also have to be updated. + BOOL use_tri1a2 = TRUE; + BOOL tri_1a2 = TRUE; + BOOL tri_21b = TRUE; - if (open) /* Flawfinder: ignore */ - { - if (hollow) + if (area_1a2 < 0) + { + tri_1a2 = FALSE; + } + if (area_2ab < 0) + { + // Can't use, because it contains point b + tri_1a2 = FALSE; + } + if (area_21b < 0) + { + tri_21b = FALSE; + } + if (area_1ba < 0) + { + // Can't use, because it contains point b + tri_21b = FALSE; + } + + if (!tri_1a2) + { + use_tri1a2 = FALSE; + } + else if (!tri_21b) + { + use_tri1a2 = TRUE; + } + else + { + LLVector3 d1 = p1 - pa; + LLVector3 d2 = p2 - pb; + + if (d1.magVecSquared() < d2.magVecSquared()) + { + use_tri1a2 = TRUE; + } + else + { + use_tri1a2 = FALSE; + } + } + + if (use_tri1a2) + { + index[count++] = pt1 + i; + index[count++] = pt1 + 1 + i; + index[count++] = pt2 + i; + pt1++; + } + else + { + index[count++] = pt1 + i; + index[count++] = pt2 - 1 + i; + index[count++] = pt2 + i; + pt2--; + } + } + + // Bottom cap + pt1 = 0; + pt2 = size_s-1; + while (pt2 - pt1 > 1) + { + // Use the profile points instead of the mesh, since you want + // the un-transformed profile distances. + LLVector3 p1 = getProfile().mProfile[pt1]; + LLVector3 p2 = getProfile().mProfile[pt2]; + LLVector3 pa = getProfile().mProfile[pt1+1]; + LLVector3 pb = getProfile().mProfile[pt2-1]; + + p1.mV[VZ] = 0.f; + p2.mV[VZ] = 0.f; + pa.mV[VZ] = 0.f; + pb.mV[VZ] = 0.f; + + // Use area of triangle to determine backfacing + F32 area_1a2, area_1ba, area_21b, area_2ab; + area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) + + (pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) + + (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]); + + area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + + (pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) + + (pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]); + + area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) + + (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + + (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); + + area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) + + (pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) + + (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); + + BOOL use_tri1a2 = TRUE; + BOOL tri_1a2 = TRUE; + BOOL tri_21b = TRUE; + + if (area_1a2 < 0) + { + tri_1a2 = FALSE; + } + if (area_2ab < 0) + { + // Can't use, because it contains point b + tri_1a2 = FALSE; + } + if (area_21b < 0) + { + tri_21b = FALSE; + } + if (area_1ba < 0) + { + // Can't use, because it contains point b + tri_21b = FALSE; + } + + if (!tri_1a2) + { + use_tri1a2 = FALSE; + } + else if (!tri_21b) + { + use_tri1a2 = TRUE; + } + else + { + LLVector3 d1 = p1 - pa; + LLVector3 d2 = p2 - pb; + + if (d1.magVecSquared() < d2.magVecSquared()) + { + use_tri1a2 = TRUE; + } + else + { + use_tri1a2 = FALSE; + } + } + + if (use_tri1a2) + { + index[count++] = pt1; + index[count++] = pt2; + index[count++] = pt1 + 1; + pt1++; + } + else + { + index[count++] = pt1; + index[count++] = pt2; + index[count++] = pt2 - 1; + pt2--; + } + } + } + } + else { - // Open hollow -- much like the closed solid, except we - // we need to stitch up the gap between s=0 and s=size_s-1 + // Open solid for (t = 0; t < size_t - 1; t++) { - // The outer face, first cut, and inner face + // Outer face + 1 cut face for (s = 0; s < size_s - 1; s++) { i = s + t*size_s; + index[count++] = i; // x,y index[count++] = i + 1; // x+1,y index[count++] = i + size_s; // x,y+1 - + index[count++] = i + size_s; // x,y+1 index[count++] = i + 1; // x+1,y index[count++] = i + size_s + 1; // x+1,y+1 } - // The other cut face - index[count++] = s + t*size_s; // x,y - index[count++] = 0 + t*size_s; // x+1,y - index[count++] = s + (t+1)*size_s; // x,y+1 - - index[count++] = s + (t+1)*size_s; // x,y+1 - index[count++] = 0 + t*size_s; // x+1,y - index[count++] = 0 + (t+1)*size_s; // x+1,y+1 + // The other cut face + index[count++] = (size_s - 1) + (t*size_s); // x,y + index[count++] = 0 + t*size_s; // x+1,y + index[count++] = (size_s - 1) + (t+1)*size_s; // x,y+1 + + index[count++] = (size_s - 1) + (t+1)*size_s; // x,y+1 + index[count++] = 0 + (t*size_s); // x+1,y + index[count++] = 0 + (t+1)*size_s; // x+1,y+1 + } + + // Do the top and bottom caps, if necessary + if (path_open) + { + for (s = 0; s < size_s - 2; s++) + { + index[count++] = s+1; + index[count++] = s; + index[count++] = size_s - 1; + } + + // We've got a top cap + S32 offset = (size_t - 1)*size_s; + for (s = 0; s < size_s - 2; s++) + { + // Inverted ordering from bottom cap. + index[count++] = offset + size_s - 1; + index[count++] = offset + s; + index[count++] = offset + s + 1; + } + } + } + } + else if (hollow) + { + // Closed hollow + // Outer face + + for (t = 0; t < size_t - 1; t++) + { + for (s = 0; s < size_s_out - 1; s++) + { + i = s + t*size_s; + + index[count++] = i; // x,y + index[count++] = i + 1; // x+1,y + index[count++] = i + size_s; // x,y+1 + + index[count++] = i + size_s; // x,y+1 + index[count++] = i + 1; // x+1,y + index[count++] = i + 1 + size_s; // x+1,y+1 } + } - // Do the top and bottom caps, if necessary - if (path_open) + // Inner face + // Invert facing from outer face + for (t = 0; t < size_t - 1; t++) + { + for (s = size_s_out; s < size_s - 1; s++) { - // Top cap - S32 pt1 = 0; - S32 pt2 = size_s-1; - S32 i = (size_t - 1)*size_s; + i = s + t*size_s; - while (pt2 - pt1 > 1) - { - // Use the profile points instead of the mesh, since you want - // the un-transformed profile distances. - LLVector3 p1 = getProfile().mProfile[pt1]; - LLVector3 p2 = getProfile().mProfile[pt2]; - LLVector3 pa = getProfile().mProfile[pt1+1]; - LLVector3 pb = getProfile().mProfile[pt2-1]; + index[count++] = i; // x,y + index[count++] = i + 1; // x+1,y + index[count++] = i + size_s; // x,y+1 - p1.mV[VZ] = 0.f; - p2.mV[VZ] = 0.f; - pa.mV[VZ] = 0.f; - pb.mV[VZ] = 0.f; + index[count++] = i + size_s; // x,y+1 + index[count++] = i + 1; // x+1,y + index[count++] = i + 1 + size_s; // x+1,y+1 + } + } - // Use area of triangle to determine backfacing - F32 area_1a2, area_1ba, area_21b, area_2ab; - area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) + - (pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) + - (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]); + // Do the top and bottom caps, if necessary + if (path_open) + { + // Top cap + S32 pt1 = 0; + S32 pt2 = size_s-1; + S32 i = (size_t - 1)*size_s; - area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + - (pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) + - (pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]); + while (pt2 - pt1 > 1) + { + // Use the profile points instead of the mesh, since you want + // the un-transformed profile distances. + LLVector3 p1 = getProfile().mProfile[pt1]; + LLVector3 p2 = getProfile().mProfile[pt2]; + LLVector3 pa = getProfile().mProfile[pt1+1]; + LLVector3 pb = getProfile().mProfile[pt2-1]; - area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) + - (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + - (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); + p1.mV[VZ] = 0.f; + p2.mV[VZ] = 0.f; + pa.mV[VZ] = 0.f; + pb.mV[VZ] = 0.f; - area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) + - (pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) + - (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); + // Use area of triangle to determine backfacing + F32 area_1a2, area_1ba, area_21b, area_2ab; + area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) + + (pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) + + (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]); - BOOL use_tri1a2 = TRUE; - BOOL tri_1a2 = TRUE; - BOOL tri_21b = TRUE; + area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + + (pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) + + (pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]); - if (area_1a2 < 0) - { - tri_1a2 = FALSE; - } - if (area_2ab < 0) - { - // Can't use, because it contains point b - tri_1a2 = FALSE; - } - if (area_21b < 0) - { - tri_21b = FALSE; - } - if (area_1ba < 0) - { - // Can't use, because it contains point b - tri_21b = FALSE; - } + area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) + + (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + + (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); - if (!tri_1a2) - { - use_tri1a2 = FALSE; - } - else if (!tri_21b) - { - use_tri1a2 = TRUE; - } - else - { - LLVector3 d1 = p1 - pa; - LLVector3 d2 = p2 - pb; + area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) + + (pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) + + (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); - if (d1.magVecSquared() < d2.magVecSquared()) - { - use_tri1a2 = TRUE; - } - else - { - use_tri1a2 = FALSE; - } - } + BOOL use_tri1a2 = TRUE; + BOOL tri_1a2 = TRUE; + BOOL tri_21b = TRUE; - if (use_tri1a2) + if (area_1a2 < 0) + { + tri_1a2 = FALSE; + } + if (area_2ab < 0) + { + // Can't use, because it contains point b + tri_1a2 = FALSE; + } + if (area_21b < 0) + { + tri_21b = FALSE; + } + if (area_1ba < 0) + { + // Can't use, because it contains point b + tri_21b = FALSE; + } + + if (!tri_1a2) + { + use_tri1a2 = FALSE; + } + else if (!tri_21b) + { + use_tri1a2 = TRUE; + } + else + { + LLVector3 d1 = p1 - pa; + LLVector3 d2 = p2 - pb; + + if (d1.magVecSquared() < d2.magVecSquared()) { - index[count++] = pt1 + i; - index[count++] = pt1 + 1 + i; - index[count++] = pt2 + i; - pt1++; + use_tri1a2 = TRUE; } else { - index[count++] = pt1 + i; - index[count++] = pt2 - 1 + i; - index[count++] = pt2 + i; - pt2--; + use_tri1a2 = FALSE; } } - // Bottom cap - pt1 = 0; - pt2 = size_s-1; - while (pt2 - pt1 > 1) + if (use_tri1a2) { - // Use the profile points instead of the mesh, since you want - // the un-transformed profile distances. - LLVector3 p1 = getProfile().mProfile[pt1]; - LLVector3 p2 = getProfile().mProfile[pt2]; - LLVector3 pa = getProfile().mProfile[pt1+1]; - LLVector3 pb = getProfile().mProfile[pt2-1]; + index[count++] = pt1 + i; + index[count++] = pt1 + 1 + i; + index[count++] = pt2 + i; + pt1++; + } + else + { + index[count++] = pt1 + i; + index[count++] = pt2 - 1 + i; + index[count++] = pt2 + i; + pt2--; + } + } - p1.mV[VZ] = 0.f; - p2.mV[VZ] = 0.f; - pa.mV[VZ] = 0.f; - pb.mV[VZ] = 0.f; + // Bottom cap + pt1 = 0; + pt2 = size_s-1; + while (pt2 - pt1 > 1) + { + // Use the profile points instead of the mesh, since you want + // the un-transformed profile distances. + LLVector3 p1 = getProfile().mProfile[pt1]; + LLVector3 p2 = getProfile().mProfile[pt2]; + LLVector3 pa = getProfile().mProfile[pt1+1]; + LLVector3 pb = getProfile().mProfile[pt2-1]; - // Use area of triangle to determine backfacing - F32 area_1a2, area_1ba, area_21b, area_2ab; - area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) + - (pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) + - (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]); + p1.mV[VZ] = 0.f; + p2.mV[VZ] = 0.f; + pa.mV[VZ] = 0.f; + pb.mV[VZ] = 0.f; - area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + - (pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) + - (pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]); + // Use area of triangle to determine backfacing + F32 area_1a2, area_1ba, area_21b, area_2ab; + area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) + + (pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) + + (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]); - area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) + - (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + - (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); + area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + + (pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) + + (pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]); - area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) + - (pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) + - (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); + area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) + + (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + + (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); + + area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) + + (pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) + + (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); - BOOL use_tri1a2 = TRUE; - BOOL tri_1a2 = TRUE; - BOOL tri_21b = TRUE; + BOOL use_tri1a2 = TRUE; + BOOL tri_1a2 = TRUE; + BOOL tri_21b = TRUE; - if (area_1a2 < 0) - { - tri_1a2 = FALSE; - } - if (area_2ab < 0) - { - // Can't use, because it contains point b - tri_1a2 = FALSE; - } - if (area_21b < 0) - { - tri_21b = FALSE; - } - if (area_1ba < 0) - { - // Can't use, because it contains point b - tri_21b = FALSE; - } + if (area_1a2 < 0) + { + tri_1a2 = FALSE; + } + if (area_2ab < 0) + { + // Can't use, because it contains point b + tri_1a2 = FALSE; + } + if (area_21b < 0) + { + tri_21b = FALSE; + } + if (area_1ba < 0) + { + // Can't use, because it contains point b + tri_21b = FALSE; + } - if (!tri_1a2) - { - use_tri1a2 = FALSE; - } - else if (!tri_21b) + if (!tri_1a2) + { + use_tri1a2 = FALSE; + } + else if (!tri_21b) + { + use_tri1a2 = TRUE; + } + else + { + LLVector3 d1 = p1 - pa; + LLVector3 d2 = p2 - pb; + + if (d1.magVecSquared() < d2.magVecSquared()) { use_tri1a2 = TRUE; } else { - LLVector3 d1 = p1 - pa; - LLVector3 d2 = p2 - pb; - - if (d1.magVecSquared() < d2.magVecSquared()) - { - use_tri1a2 = TRUE; - } - else - { - use_tri1a2 = FALSE; - } + use_tri1a2 = FALSE; } + } - if (use_tri1a2) - { - index[count++] = pt1; - index[count++] = pt2; - index[count++] = pt1 + 1; - pt1++; - } - else - { - index[count++] = pt1; - index[count++] = pt2; - index[count++] = pt2 - 1; - pt2--; - } + if (use_tri1a2) + { + index[count++] = pt1; + index[count++] = pt2; + index[count++] = pt1 + 1; + pt1++; + } + else + { + index[count++] = pt1; + index[count++] = pt2; + index[count++] = pt2 - 1; + pt2--; } } + } + } + else + { + // Closed solid. Easy case. + for (t = 0; t < size_t - 1; t++) + { + for (s = 0; s < size_s - 1; s++) + { + // Should wrap properly, but for now... + i = s + t*size_s; + + index[count++] = i; // x,y + index[count++] = i + 1; // x+1,y + index[count++] = i + size_s; // x,y+1 + + index[count++] = i + size_s; // x,y+1 + index[count++] = i + 1; // x+1,y + index[count++] = i + size_s + 1; // x+1,y+1 + } } - else + + // Do the top and bottom caps, if necessary + if (path_open) { - // Open solid + // bottom cap + for (s = 1; s < size_s - 2; s++) + { + index[count++] = s+1; + index[count++] = s; + index[count++] = 0; + } - for (t = 0; t < size_t - 1; t++) + // top cap + S32 offset = (size_t - 1)*size_s; + for (s = 1; s < size_s - 2; s++) { - // Outer face + 1 cut face - for (s = 0; s < size_s - 1; s++) - { - i = s + t*size_s; + // Inverted ordering from bottom cap. + index[count++] = offset; + index[count++] = offset + s; + index[count++] = offset + s + 1; + } + } + } - index[count++] = i; // x,y - index[count++] = i + 1; // x+1,y - index[count++] = i + size_s; // x,y+1 +#ifdef LL_DEBUG + // assert that we computed the correct number of indices + if (count != expected_num_triangle_indices ) + { + llerrs << "bad index count prediciton:" + << " expected=" << expected_num_triangle_indices + << " actual=" << count << llendl; + } +#endif - index[count++] = i + size_s; // x,y+1 - index[count++] = i + 1; // x+1,y - index[count++] = i + size_s + 1; // x+1,y+1 - } +#if 0 + // verify that each index does not point beyond the size of the mesh + S32 num_vertices = mMesh.size(); + for (i = 0; i < count; i+=3) + { + llinfos << index[i] << ":" << index[i+1] << ":" << index[i+2] << llendl; + llassert(index[i] < num_vertices); + llassert(index[i+1] < num_vertices); + llassert(index[i+2] < num_vertices); + } +#endif - // The other cut face - index[count++] = (size_s - 1) + (t*size_s); // x,y - index[count++] = 0 + t*size_s; // x+1,y - index[count++] = (size_s - 1) + (t+1)*size_s; // x,y+1 + num_indices = count; + return index; +} - index[count++] = (size_s - 1) + (t+1)*size_s; // x,y+1 - index[count++] = 0 + (t*size_s); // x+1,y - index[count++] = 0 + (t+1)*size_s; // x+1,y+1 - } +S32 LLVolume::getNumTriangleIndices() const +{ + BOOL profile_open = getProfile().isOpen(); + BOOL hollow = (mParams.getProfileParams().getHollow() > 0); + BOOL path_open = getPath().isOpen(); - // Do the top and bottom caps, if necessary - if (path_open) - { - for (s = 0; s < size_s - 2; s++) - { - index[count++] = s+1; - index[count++] = s; - index[count++] = size_s - 1; - } + S32 size_s, size_s_out, size_t; + size_s = getProfile().getTotal(); + size_s_out = getProfile().getTotalOut(); + size_t = getPath().mPath.size(); - // We've got a top cap - S32 offset = (size_t - 1)*size_s; - for (s = 0; s < size_s - 2; s++) - { - // Inverted ordering from bottom cap. - index[count++] = offset + size_s - 1; - index[count++] = offset + s; - index[count++] = offset + s + 1; - } - } + S32 count = 0; + if (profile_open) /* Flawfinder: ignore */ + { + if (hollow) + { + // Open hollow -- much like the closed solid, except we + // we need to stitch up the gap between s=0 and s=size_s-1 + count = (size_t - 1) * (((size_s -1) * 6) + 6); + } + else + { + count = (size_t - 1) * (((size_s -1) * 6) + 6); } } else if (hollow) { // Closed hollow // Outer face - - for (t = 0; t < size_t - 1; t++) + count = (size_t - 1) * (size_s_out - 1) * 6; + + // Inner face + count += (size_t - 1) * ((size_s - 1) - size_s_out) * 6; + } + else + { + // Closed solid. Easy case. + count = (size_t - 1) * (size_s - 1) * 6; + } + + if (path_open) + { + S32 cap_triangle_count = size_s - 3; + if ( profile_open + || hollow ) { - for (s = 0; s < size_s_out - 1; s++) - { - i = s + t*size_s; + cap_triangle_count = size_s - 2; + } + if ( cap_triangle_count > 0 ) + { + // top and bottom caps + count += cap_triangle_count * 2 * 3; + } + } + return count; +} - index[count++] = i; // x,y - index[count++] = i + 1; // x+1,y - index[count++] = i + size_s; // x,y+1 - index[count++] = i + size_s; // x,y+1 - index[count++] = i + 1; // x+1,y - index[count++] = i + 1 + size_s; // x+1,y+1 - } - } +S32 LLVolume::getNumTriangles() const +{ + U32 triangle_count = 0; - // Inner face - // Invert facing from outer face - for (t = 0; t < size_t - 1; t++) - { - for (s = size_s_out; s < size_s - 1; s++) - { - i = s + t*size_s; + for (S32 i = 0; i < getNumVolumeFaces(); ++i) + { + triangle_count += getVolumeFace(i).mNumIndices/3; + } - index[count++] = i; // x,y - index[count++] = i + 1; // x+1,y - index[count++] = i + size_s; // x,y+1 + return triangle_count; +} - index[count++] = i + size_s; // x,y+1 - index[count++] = i + 1; // x+1,y - index[count++] = i + 1 + size_s; // x+1,y+1 - } - } - // Do the top and bottom caps, if necessary - if (path_open) - { - // Top cap - S32 pt1 = 0; - S32 pt2 = size_s-1; - S32 i = (size_t - 1)*size_s; +//----------------------------------------------------------------------------- +// generateSilhouetteVertices() +//----------------------------------------------------------------------------- +void LLVolume::generateSilhouetteVertices(std::vector &vertices, + std::vector &normals, + std::vector &segments, + const LLVector3& obj_cam_vec_in, + const LLMatrix4& mat_in, + const LLMatrix3& norm_mat_in, + S32 face_mask) +{ + LLMemType m1(LLMemType::MTYPE_VOLUME); - while (pt2 - pt1 > 1) - { - // Use the profile points instead of the mesh, since you want - // the un-transformed profile distances. - LLVector3 p1 = getProfile().mProfile[pt1]; - LLVector3 p2 = getProfile().mProfile[pt2]; - LLVector3 pa = getProfile().mProfile[pt1+1]; - LLVector3 pb = getProfile().mProfile[pt2-1]; + LLMatrix4a mat; + mat.loadu(mat_in); - p1.mV[VZ] = 0.f; - p2.mV[VZ] = 0.f; - pa.mV[VZ] = 0.f; - pb.mV[VZ] = 0.f; + LLMatrix4a norm_mat; + norm_mat.loadu(norm_mat_in); + + LLVector4a obj_cam_vec; + obj_cam_vec.load3(obj_cam_vec_in.mV); - // Use area of triangle to determine backfacing - F32 area_1a2, area_1ba, area_21b, area_2ab; - area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) + - (pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) + - (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]); + vertices.clear(); + normals.clear(); + segments.clear(); - area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + - (pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) + - (pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]); + if ((mParams.getSculptType() & LL_SCULPT_TYPE_MASK) == LL_SCULPT_TYPE_MESH) + { + return; + } + + S32 cur_index = 0; + //for each face + for (face_list_t::iterator iter = mVolumeFaces.begin(); + iter != mVolumeFaces.end(); ++iter) + { + LLVolumeFace& face = *iter; + + if (!(face_mask & (0x1 << cur_index++)) || + face.mNumIndices == 0 || face.mEdge.empty()) + { + continue; + } - area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) + - (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + - (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); + if (face.mTypeMask & (LLVolumeFace::CAP_MASK)) { + + } + else { - area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) + - (pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) + - (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); + //============================================== + //DEBUG draw edge map instead of silhouette edge + //============================================== - BOOL use_tri1a2 = TRUE; - BOOL tri_1a2 = TRUE; - BOOL tri_21b = TRUE; +#if DEBUG_SILHOUETTE_EDGE_MAP - if (area_1a2 < 0) - { - tri_1a2 = FALSE; - } - if (area_2ab < 0) - { - // Can't use, because it contains point b - tri_1a2 = FALSE; - } - if (area_21b < 0) - { - tri_21b = FALSE; - } - if (area_1ba < 0) - { - // Can't use, because it contains point b - tri_21b = FALSE; - } + //for each triangle + U32 count = face.mNumIndices; + for (U32 j = 0; j < count/3; j++) { + //get vertices + S32 v1 = face.mIndices[j*3+0]; + S32 v2 = face.mIndices[j*3+1]; + S32 v3 = face.mIndices[j*3+2]; - if (!tri_1a2) - { - use_tri1a2 = FALSE; - } - else if (!tri_21b) - { - use_tri1a2 = TRUE; - } - else - { - LLVector3 d1 = p1 - pa; - LLVector3 d2 = p2 - pb; + //get current face center + LLVector3 cCenter = (face.mVertices[v1].getPosition() + + face.mVertices[v2].getPosition() + + face.mVertices[v3].getPosition()) / 3.0f; - if (d1.magVecSquared() < d2.magVecSquared()) - { - use_tri1a2 = TRUE; + //for each edge + for (S32 k = 0; k < 3; k++) { + S32 nIndex = face.mEdge[j*3+k]; + if (nIndex <= -1) { + continue; } - else - { - use_tri1a2 = FALSE; + + if (nIndex >= (S32) count/3) { + continue; } - } + //get neighbor vertices + v1 = face.mIndices[nIndex*3+0]; + v2 = face.mIndices[nIndex*3+1]; + v3 = face.mIndices[nIndex*3+2]; - if (use_tri1a2) - { - index[count++] = pt1 + i; - index[count++] = pt1 + 1 + i; - index[count++] = pt2 + i; - pt1++; - } - else - { - index[count++] = pt1 + i; - index[count++] = pt2 - 1 + i; - index[count++] = pt2 + i; - pt2--; + //get neighbor face center + LLVector3 nCenter = (face.mVertices[v1].getPosition() + + face.mVertices[v2].getPosition() + + face.mVertices[v3].getPosition()) / 3.0f; + + //draw line + vertices.push_back(cCenter); + vertices.push_back(nCenter); + normals.push_back(LLVector3(1,1,1)); + normals.push_back(LLVector3(1,1,1)); + segments.push_back(vertices.size()); } } + + continue; - // Bottom cap - pt1 = 0; - pt2 = size_s-1; - while (pt2 - pt1 > 1) - { - // Use the profile points instead of the mesh, since you want - // the un-transformed profile distances. - LLVector3 p1 = getProfile().mProfile[pt1]; - LLVector3 p2 = getProfile().mProfile[pt2]; - LLVector3 pa = getProfile().mProfile[pt1+1]; - LLVector3 pb = getProfile().mProfile[pt2-1]; - - p1.mV[VZ] = 0.f; - p2.mV[VZ] = 0.f; - pa.mV[VZ] = 0.f; - pb.mV[VZ] = 0.f; + //============================================== + //DEBUG + //============================================== - // Use area of triangle to determine backfacing - F32 area_1a2, area_1ba, area_21b, area_2ab; - area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) + - (pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) + - (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]); + //============================================== + //DEBUG draw normals instead of silhouette edge + //============================================== +#elif DEBUG_SILHOUETTE_NORMALS - area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + - (pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) + - (pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]); + //for each vertex + for (U32 j = 0; j < face.mNumVertices; j++) { + vertices.push_back(face.mVertices[j].getPosition()); + vertices.push_back(face.mVertices[j].getPosition() + face.mVertices[j].getNormal()*0.1f); + normals.push_back(LLVector3(0,0,1)); + normals.push_back(LLVector3(0,0,1)); + segments.push_back(vertices.size()); +#if DEBUG_SILHOUETTE_BINORMALS + vertices.push_back(face.mVertices[j].getPosition()); + vertices.push_back(face.mVertices[j].getPosition() + face.mVertices[j].mBinormal*0.1f); + normals.push_back(LLVector3(0,0,1)); + normals.push_back(LLVector3(0,0,1)); + segments.push_back(vertices.size()); +#endif + } + + continue; +#else + //============================================== + //DEBUG + //============================================== - area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) + - (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) + - (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); + static const U8 AWAY = 0x01, + TOWARDS = 0x02; - area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) + - (pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) + - (pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]); + //for each triangle + std::vector fFacing; + vector_append(fFacing, face.mNumIndices/3); - BOOL use_tri1a2 = TRUE; - BOOL tri_1a2 = TRUE; - BOOL tri_21b = TRUE; + LLVector4a* v = (LLVector4a*) face.mPositions; + LLVector4a* n = (LLVector4a*) face.mNormals; - if (area_1a2 < 0) - { - tri_1a2 = FALSE; - } - if (area_2ab < 0) - { - // Can't use, because it contains point b - tri_1a2 = FALSE; - } - if (area_21b < 0) - { - tri_21b = FALSE; - } - if (area_1ba < 0) - { - // Can't use, because it contains point b - tri_21b = FALSE; - } + for (U32 j = 0; j < face.mNumIndices/3; j++) + { + //approximate normal + S32 v1 = face.mIndices[j*3+0]; + S32 v2 = face.mIndices[j*3+1]; + S32 v3 = face.mIndices[j*3+2]; - if (!tri_1a2) - { - use_tri1a2 = FALSE; - } - else if (!tri_21b) + LLVector4a c1,c2; + c1.setSub(v[v1], v[v2]); + c2.setSub(v[v2], v[v3]); + + LLVector4a norm; + + norm.setCross3(c1, c2); + + if (norm.dot3(norm) < 0.00000001f) { - use_tri1a2 = TRUE; + fFacing[j] = AWAY | TOWARDS; } - else + else { - LLVector3 d1 = p1 - pa; - LLVector3 d2 = p2 - pb; - - if (d1.magVecSquared() < d2.magVecSquared()) + //get view vector + LLVector4a view; + view.setSub(obj_cam_vec, v[v1]); + bool away = view.dot3(norm) > 0.0f; + if (away) { - use_tri1a2 = TRUE; + fFacing[j] = AWAY; } - else + else { - use_tri1a2 = FALSE; + fFacing[j] = TOWARDS; } } - - if (use_tri1a2) - { - index[count++] = pt1; - index[count++] = pt2; - index[count++] = pt1 + 1; - pt1++; - } - else - { - index[count++] = pt1; - index[count++] = pt2; - index[count++] = pt2 - 1; - pt2--; + } + + //for each triangle + for (U32 j = 0; j < face.mNumIndices/3; j++) + { + if (fFacing[j] == (AWAY | TOWARDS)) + { //this is a degenerate triangle + //take neighbor facing (degenerate faces get facing of one of their neighbors) + // *FIX IF NEEDED: this does not deal with neighboring degenerate faces + for (S32 k = 0; k < 3; k++) + { + S32 index = face.mEdge[j*3+k]; + if (index != -1) + { + fFacing[j] = fFacing[index]; + break; + } + } + continue; //skip degenerate face } + + //for each edge + for (S32 k = 0; k < 3; k++) { + S32 index = face.mEdge[j*3+k]; + if (index != -1 && fFacing[index] == (AWAY | TOWARDS)) { + //our neighbor is degenerate, make him face our direction + fFacing[face.mEdge[j*3+k]] = fFacing[j]; + continue; + } + + if (index == -1 || //edge has no neighbor, MUST be a silhouette edge + (fFacing[index] & fFacing[j]) == 0) { //we found a silhouette edge + + S32 v1 = face.mIndices[j*3+k]; + S32 v2 = face.mIndices[j*3+((k+1)%3)]; + + LLVector4a t; + mat.affineTransform(v[v1], t); + vertices.push_back(LLVector3(t[0], t[1], t[2])); + + norm_mat.rotate(n[v1], t); + + t.normalize3fast(); + normals.push_back(LLVector3(t[0], t[1], t[2])); + + mat.affineTransform(v[v2], t); + vertices.push_back(LLVector3(t[0], t[1], t[2])); + + norm_mat.rotate(n[v2], t); + t.normalize3fast(); + normals.push_back(LLVector3(t[0], t[1], t[2])); + + segments.push_back(vertices.size()); + } + } } - } +#endif + } + } +} + +S32 LLVolume::lineSegmentIntersect(const LLVector3& start, const LLVector3& end, + S32 face, + LLVector3* intersection,LLVector2* tex_coord, LLVector3* normal, LLVector3* bi_normal) +{ + LLVector4a starta, enda; + starta.load3(start.mV); + enda.load3(end.mV); + + return lineSegmentIntersect(starta, enda, face, intersection, tex_coord, normal, bi_normal); + +} + + +S32 LLVolume::lineSegmentIntersect(const LLVector4a& start, const LLVector4a& end, + S32 face, + LLVector3* intersection,LLVector2* tex_coord, LLVector3* normal, LLVector3* bi_normal) +{ + S32 hit_face = -1; + + S32 start_face; + S32 end_face; + + if (face == -1) // ALL_SIDES + { + start_face = 0; + end_face = getNumVolumeFaces() - 1; } else { - // Closed solid. Easy case. - for (t = 0; t < size_t - 1; t++) - { - for (s = 0; s < size_s - 1; s++) - { - // Should wrap properly, but for now... - i = s + t*size_s; + start_face = face; + end_face = face; + } - index[count++] = i; // x,y - index[count++] = i + 1; // x+1,y - index[count++] = i + size_s; // x,y+1 + LLVector4a dir; + dir.setSub(end, start); - index[count++] = i + size_s; // x,y+1 - index[count++] = i + 1; // x+1,y - index[count++] = i + size_s + 1; // x+1,y+1 - } - } + F32 closest_t = 2.f; // must be larger than 1 + + end_face = llmin(end_face, getNumVolumeFaces()-1); - // Do the top and bottom caps, if necessary - if (path_open) + for (S32 i = start_face; i <= end_face; i++) + { + LLVolumeFace &face = mVolumeFaces[i]; + + LLVector4a box_center; + box_center.setAdd(face.mExtents[0], face.mExtents[1]); + box_center.mul(0.5f); + + LLVector4a box_size; + box_size.setSub(face.mExtents[1], face.mExtents[0]); + + if (LLLineSegmentBoxIntersect(start, end, box_center, box_size)) { - // bottom cap - for (s = 1; s < size_s - 2; s++) + if (bi_normal != NULL) // if the caller wants binormals, we may need to generate them { - index[count++] = s+1; - index[count++] = s; - index[count++] = 0; + genBinormals(i); } - // top cap - S32 offset = (size_t - 1)*size_s; - for (s = 1; s < size_s - 2; s++) + if (!face.mOctree) { - // Inverted ordering from bottom cap. - index[count++] = offset; - index[count++] = offset + s; - index[count++] = offset + s + 1; + face.createOctree(); } - } - } + + //LLVector4a* p = (LLVector4a*) face.mPositions; -#ifdef LL_DEBUG - // assert that we computed the correct number of indices - if (count != expected_num_triangle_indices ) - { - llerrs << "bad index count prediciton:" - << " expected=" << expected_num_triangle_indices - << " actual=" << count << llendl; + LLOctreeTriangleRayIntersect intersect(start, dir, &face, &closest_t, intersection, tex_coord, normal, bi_normal); + intersect.traverse(face.mOctree); + if (intersect.mHitFace) + { + hit_face = i; + } + } } -#endif + + + return hit_face; +} -#if 0 - // verify that each index does not point beyond the size of the mesh - S32 num_vertices = mMesh.size(); - for (i = 0; i < count; i+=3) - { - llinfos << index[i] << ":" << index[i+1] << ":" << index[i+2] << llendl; - llassert(index[i] < num_vertices); - llassert(index[i+1] < num_vertices); - llassert(index[i+2] < num_vertices); - } -#endif +class LLVertexIndexPair +{ +public: + LLVertexIndexPair(const LLVector3 &vertex, const S32 index); - num_indices = count; - return index; + LLVector3 mVertex; + S32 mIndex; +}; + +LLVertexIndexPair::LLVertexIndexPair(const LLVector3 &vertex, const S32 index) +{ + mVertex = vertex; + mIndex = index; } -S32 LLVolume::getNumTriangleIndices() const +const F32 VERTEX_SLOP = 0.00001f; +const F32 VERTEX_SLOP_SQRD = VERTEX_SLOP * VERTEX_SLOP; + +struct lessVertex { - BOOL profile_open = getProfile().isOpen(); - BOOL hollow = (mParams.getProfileParams().getHollow() > 0); - BOOL path_open = getPath().isOpen(); + bool operator()(const LLVertexIndexPair *a, const LLVertexIndexPair *b) + { + const F32 slop = VERTEX_SLOP; - S32 size_s, size_s_out, size_t; - size_s = getProfile().getTotal(); - size_s_out = getProfile().getTotalOut(); - size_t = getPath().mPath.size(); + if (a->mVertex.mV[0] + slop < b->mVertex.mV[0]) + { + return TRUE; + } + else if (a->mVertex.mV[0] - slop > b->mVertex.mV[0]) + { + return FALSE; + } + + if (a->mVertex.mV[1] + slop < b->mVertex.mV[1]) + { + return TRUE; + } + else if (a->mVertex.mV[1] - slop > b->mVertex.mV[1]) + { + return FALSE; + } + + if (a->mVertex.mV[2] + slop < b->mVertex.mV[2]) + { + return TRUE; + } + else if (a->mVertex.mV[2] - slop > b->mVertex.mV[2]) + { + return FALSE; + } + + return FALSE; + } +}; - S32 count = 0; - if (profile_open) /* Flawfinder: ignore */ +struct lessTriangle +{ + bool operator()(const S32 *a, const S32 *b) { - if (hollow) + if (*a < *b) + { + return TRUE; + } + else if (*a > *b) + { + return FALSE; + } + + if (*(a+1) < *(b+1)) { - // Open hollow -- much like the closed solid, except we - // we need to stitch up the gap between s=0 and s=size_s-1 - count = (size_t - 1) * (((size_s -1) * 6) + 6); + return TRUE; } - else + else if (*(a+1) > *(b+1)) { - count = (size_t - 1) * (((size_s -1) * 6) + 6); + return FALSE; } - } - else if (hollow) - { - // Closed hollow - // Outer face - count = (size_t - 1) * (size_s_out - 1) * 6; - - // Inner face - count += (size_t - 1) * ((size_s - 1) - size_s_out) * 6; - } - else - { - // Closed solid. Easy case. - count = (size_t - 1) * (size_s - 1) * 6; - } - if (path_open) - { - S32 cap_triangle_count = size_s - 3; - if ( profile_open - || hollow ) + if (*(a+2) < *(b+2)) { - cap_triangle_count = size_s - 2; + return TRUE; } - if ( cap_triangle_count > 0 ) + else if (*(a+2) > *(b+2)) { - // top and bottom caps - count += cap_triangle_count * 2 * 3; + return FALSE; } + + return FALSE; } - return count; +}; + +BOOL equalTriangle(const S32 *a, const S32 *b) +{ + if ((*a == *b) && (*(a+1) == *(b+1)) && (*(a+2) == *(b+2))) + { + return TRUE; + } + return FALSE; } -//----------------------------------------------------------------------------- -// generateSilhouetteVertices() -//----------------------------------------------------------------------------- -void LLVolume::generateSilhouetteVertices(std::vector &vertices, - std::vector &normals, - std::vector &segments, - const LLVector3& obj_cam_vec, - const LLMatrix4& mat, - const LLMatrix3& norm_mat, - S32 face_mask) +BOOL LLVolume::cleanupTriangleData( const S32 num_input_vertices, + const std::vector& input_vertices, + const S32 num_input_triangles, + S32 *input_triangles, + S32 &num_output_vertices, + LLVector3 **output_vertices, + S32 &num_output_triangles, + S32 **output_triangles) { LLMemType m1(LLMemType::MTYPE_VOLUME); - vertices.clear(); - normals.clear(); - segments.clear(); - - S32 cur_index = 0; - //for each face - for (face_list_t::iterator iter = mVolumeFaces.begin(); - iter != mVolumeFaces.end(); ++iter) + /* Testing: avoid any cleanup + static BOOL skip_cleanup = TRUE; + if ( skip_cleanup ) { - const LLVolumeFace& face = *iter; - - if (!(face_mask & (0x1 << cur_index++))) + num_output_vertices = num_input_vertices; + num_output_triangles = num_input_triangles; + + *output_vertices = new LLVector3[num_input_vertices]; + for (S32 index = 0; index < num_input_vertices; index++) { - continue; - } - if (face.mTypeMask & (LLVolumeFace::CAP_MASK)) { - + (*output_vertices)[index] = input_vertices[index].mPos; } - else { - - //============================================== - //DEBUG draw edge map instead of silhouette edge - //============================================== - -#if DEBUG_SILHOUETTE_EDGE_MAP - - //for each triangle - U32 count = face.mIndices.size(); - for (U32 j = 0; j < count/3; j++) { - //get vertices - S32 v1 = face.mIndices[j*3+0]; - S32 v2 = face.mIndices[j*3+1]; - S32 v3 = face.mIndices[j*3+2]; - - //get current face center - LLVector3 cCenter = (face.mVertices[v1].mPosition + - face.mVertices[v2].mPosition + - face.mVertices[v3].mPosition) / 3.0f; - - //for each edge - for (S32 k = 0; k < 3; k++) { - S32 nIndex = face.mEdge[j*3+k]; - if (nIndex <= -1) { - continue; - } - - if (nIndex >= (S32) count/3) { - continue; - } - //get neighbor vertices - v1 = face.mIndices[nIndex*3+0]; - v2 = face.mIndices[nIndex*3+1]; - v3 = face.mIndices[nIndex*3+2]; - - //get neighbor face center - LLVector3 nCenter = (face.mVertices[v1].mPosition + - face.mVertices[v2].mPosition + - face.mVertices[v3].mPosition) / 3.0f; - //draw line - vertices.push_back(cCenter); - vertices.push_back(nCenter); - normals.push_back(LLVector3(1,1,1)); - normals.push_back(LLVector3(1,1,1)); - segments.push_back(vertices.size()); - } - } - - continue; + *output_triangles = new S32[num_input_triangles*3]; + memcpy(*output_triangles, input_triangles, 3*num_input_triangles*sizeof(S32)); // Flawfinder: ignore + return TRUE; + } + */ - //============================================== - //DEBUG - //============================================== + // Here's how we do this: + // Create a structure which contains the original vertex index and the + // LLVector3 data. + // "Sort" the data by the vectors + // Create an array the size of the old vertex list, with a mapping of + // old indices to new indices. + // Go through triangles, shift so the lowest index is first + // Sort triangles by first index + // Remove duplicate triangles + // Allocate and pack new triangle data. - //============================================== - //DEBUG draw normals instead of silhouette edge - //============================================== -#elif DEBUG_SILHOUETTE_NORMALS + //LLTimer cleanupTimer; + //llinfos << "In vertices: " << num_input_vertices << llendl; + //llinfos << "In triangles: " << num_input_triangles << llendl; - //for each vertex - for (U32 j = 0; j < face.mVertices.size(); j++) { - vertices.push_back(face.mVertices[j].mPosition); - vertices.push_back(face.mVertices[j].mPosition + face.mVertices[j].mNormal*0.1f); - normals.push_back(LLVector3(0,0,1)); - normals.push_back(LLVector3(0,0,1)); - segments.push_back(vertices.size()); -#if DEBUG_SILHOUETTE_BINORMALS - vertices.push_back(face.mVertices[j].mPosition); - vertices.push_back(face.mVertices[j].mPosition + face.mVertices[j].mBinormal*0.1f); - normals.push_back(LLVector3(0,0,1)); - normals.push_back(LLVector3(0,0,1)); - segments.push_back(vertices.size()); -#endif - } - - continue; -#else - //============================================== - //DEBUG - //============================================== + S32 i; + typedef std::multiset vertex_set_t; + vertex_set_t vertex_list; - static const U8 AWAY = 0x01, - TOWARDS = 0x02; + LLVertexIndexPair *pairp = NULL; + for (i = 0; i < num_input_vertices; i++) + { + LLVertexIndexPair *new_pairp = new LLVertexIndexPair(input_vertices[i].mPos, i); + vertex_list.insert(new_pairp); + } - //for each triangle - std::vector fFacing; - vector_append(fFacing, face.mIndices.size()/3); - for (U32 j = 0; j < face.mIndices.size()/3; j++) - { - //approximate normal - S32 v1 = face.mIndices[j*3+0]; - S32 v2 = face.mIndices[j*3+1]; - S32 v3 = face.mIndices[j*3+2]; + // Generate the vertex mapping and the list of vertices without + // duplicates. This will crash if there are no vertices. + llassert(num_input_vertices > 0); // check for no vertices! + S32 *vertex_mapping = new S32[num_input_vertices]; + LLVector3 *new_vertices = new LLVector3[num_input_vertices]; + LLVertexIndexPair *prev_pairp = NULL; - LLVector3 norm = (face.mVertices[v1].mPosition - face.mVertices[v2].mPosition) % - (face.mVertices[v2].mPosition - face.mVertices[v3].mPosition); - - if (norm.magVecSquared() < 0.00000001f) - { - fFacing[j] = AWAY | TOWARDS; - } - else - { - //get view vector - LLVector3 view = (obj_cam_vec-face.mVertices[v1].mPosition); - bool away = view * norm > 0.0f; - if (away) - { - fFacing[j] = AWAY; - } - else - { - fFacing[j] = TOWARDS; - } - } - } - - //for each triangle - for (U32 j = 0; j < face.mIndices.size()/3; j++) - { - if (fFacing[j] == (AWAY | TOWARDS)) - { //this is a degenerate triangle - //take neighbor facing (degenerate faces get facing of one of their neighbors) - // *FIX IF NEEDED: this does not deal with neighboring degenerate faces - for (S32 k = 0; k < 3; k++) - { - S32 index = face.mEdge[j*3+k]; - if (index != -1) - { - fFacing[j] = fFacing[index]; - break; - } - } - continue; //skip degenerate face - } + S32 new_num_vertices; - //for each edge - for (S32 k = 0; k < 3; k++) { - S32 index = face.mEdge[j*3+k]; - if (index != -1 && fFacing[index] == (AWAY | TOWARDS)) { - //our neighbor is degenerate, make him face our direction - fFacing[face.mEdge[j*3+k]] = fFacing[j]; - continue; - } + new_num_vertices = 0; + for (vertex_set_t::iterator iter = vertex_list.begin(), + end = vertex_list.end(); + iter != end; iter++) + { + pairp = *iter; + if (!prev_pairp || ((pairp->mVertex - prev_pairp->mVertex).magVecSquared() >= VERTEX_SLOP_SQRD)) + { + new_vertices[new_num_vertices] = pairp->mVertex; + //llinfos << "Added vertex " << new_num_vertices << " : " << pairp->mVertex << llendl; + new_num_vertices++; + // Update the previous + prev_pairp = pairp; + } + else + { + //llinfos << "Removed duplicate vertex " << pairp->mVertex << ", distance magVecSquared() is " << (pairp->mVertex - prev_pairp->mVertex).magVecSquared() << llendl; + } + vertex_mapping[pairp->mIndex] = new_num_vertices - 1; + } - if (index == -1 || //edge has no neighbor, MUST be a silhouette edge - (fFacing[index] & fFacing[j]) == 0) { //we found a silhouette edge + // Iterate through triangles and remove degenerates, re-ordering vertices + // along the way. + S32 *new_triangles = new S32[num_input_triangles * 3]; + S32 new_num_triangles = 0; - S32 v1 = face.mIndices[j*3+k]; - S32 v2 = face.mIndices[j*3+((k+1)%3)]; - - vertices.push_back(face.mVertices[v1].mPosition*mat); - LLVector3 norm1 = face.mVertices[v1].mNormal * norm_mat; - norm1.normVec(); - normals.push_back(norm1); + for (i = 0; i < num_input_triangles; i++) + { + S32 v1 = i*3; + S32 v2 = v1 + 1; + S32 v3 = v1 + 2; - vertices.push_back(face.mVertices[v2].mPosition*mat); - LLVector3 norm2 = face.mVertices[v2].mNormal * norm_mat; - norm2.normVec(); - normals.push_back(norm2); + //llinfos << "Checking triangle " << input_triangles[v1] << ":" << input_triangles[v2] << ":" << input_triangles[v3] << llendl; + input_triangles[v1] = vertex_mapping[input_triangles[v1]]; + input_triangles[v2] = vertex_mapping[input_triangles[v2]]; + input_triangles[v3] = vertex_mapping[input_triangles[v3]]; - segments.push_back(vertices.size()); - } - } + if ((input_triangles[v1] == input_triangles[v2]) + || (input_triangles[v1] == input_triangles[v3]) + || (input_triangles[v2] == input_triangles[v3])) + { + //llinfos << "Removing degenerate triangle " << input_triangles[v1] << ":" << input_triangles[v2] << ":" << input_triangles[v3] << llendl; + // Degenerate triangle, skip + continue; + } + + if (input_triangles[v1] < input_triangles[v2]) + { + if (input_triangles[v1] < input_triangles[v3]) + { + // (0 < 1) && (0 < 2) + new_triangles[new_num_triangles*3] = input_triangles[v1]; + new_triangles[new_num_triangles*3+1] = input_triangles[v2]; + new_triangles[new_num_triangles*3+2] = input_triangles[v3]; + } + else + { + // (0 < 1) && (2 < 0) + new_triangles[new_num_triangles*3] = input_triangles[v3]; + new_triangles[new_num_triangles*3+1] = input_triangles[v1]; + new_triangles[new_num_triangles*3+2] = input_triangles[v2]; } -#endif } + else if (input_triangles[v2] < input_triangles[v3]) + { + // (1 < 0) && (1 < 2) + new_triangles[new_num_triangles*3] = input_triangles[v2]; + new_triangles[new_num_triangles*3+1] = input_triangles[v3]; + new_triangles[new_num_triangles*3+2] = input_triangles[v1]; + } + else + { + // (1 < 0) && (2 < 1) + new_triangles[new_num_triangles*3] = input_triangles[v3]; + new_triangles[new_num_triangles*3+1] = input_triangles[v1]; + new_triangles[new_num_triangles*3+2] = input_triangles[v2]; + } + new_num_triangles++; } -} -S32 LLVolume::lineSegmentIntersect(const LLVector3& start, const LLVector3& end, - S32 face, - LLVector3* intersection,LLVector2* tex_coord, LLVector3* normal, LLVector3* bi_normal) -{ - S32 hit_face = -1; - - S32 start_face; - S32 end_face; - - if (face == -1) // ALL_SIDES - { - start_face = 0; - end_face = getNumVolumeFaces() - 1; - } - else + if (new_num_triangles == 0) { - start_face = face; - end_face = face; + llwarns << "Created volume object with 0 faces." << llendl; + delete[] new_triangles; + delete[] vertex_mapping; + delete[] new_vertices; + return FALSE; } - LLVector3 dir = end - start; + typedef std::set triangle_set_t; + triangle_set_t triangle_list; - F32 closest_t = 2.f; // must be larger than 1 - - for (S32 i = start_face; i <= end_face; i++) + for (i = 0; i < new_num_triangles; i++) { - const LLVolumeFace &face = getVolumeFace((U32)i); + triangle_list.insert(&new_triangles[i*3]); + } - LLVector3 box_center = (face.mExtents[0] + face.mExtents[1]) / 2.f; - LLVector3 box_size = face.mExtents[1] - face.mExtents[0]; + // Sort through the triangle list, and delete duplicates - if (LLLineSegmentBoxIntersect(start, end, box_center, box_size)) - { - if (bi_normal != NULL) // if the caller wants binormals, we may need to generate them - { - genBinormals(i); - } - - for (U32 tri = 0; tri < face.mIndices.size()/3; tri++) - { - S32 index1 = face.mIndices[tri*3+0]; - S32 index2 = face.mIndices[tri*3+1]; - S32 index3 = face.mIndices[tri*3+2]; + S32 *prevp = NULL; + S32 *curp = NULL; - F32 a, b, t; - - if (LLTriangleRayIntersect(face.mVertices[index1].mPosition, - face.mVertices[index2].mPosition, - face.mVertices[index3].mPosition, - start, dir, &a, &b, &t, FALSE)) - { - if ((t >= 0.f) && // if hit is after start - (t <= 1.f) && // and before end - (t < closest_t)) // and this hit is closer + S32 *sorted_tris = new S32[new_num_triangles*3]; + S32 cur_tri = 0; + for (triangle_set_t::iterator iter = triangle_list.begin(), + end = triangle_list.end(); + iter != end; iter++) + { + curp = *iter; + if (!prevp || !equalTriangle(prevp, curp)) { - closest_t = t; - hit_face = i; - - if (intersection != NULL) - { - *intersection = start + dir * closest_t; - } - - if (tex_coord != NULL) - { - *tex_coord = ((1.f - a - b) * face.mVertices[index1].mTexCoord + - a * face.mVertices[index2].mTexCoord + - b * face.mVertices[index3].mTexCoord); - - } + //llinfos << "Added triangle " << *curp << ":" << *(curp+1) << ":" << *(curp+2) << llendl; + sorted_tris[cur_tri*3] = *curp; + sorted_tris[cur_tri*3+1] = *(curp+1); + sorted_tris[cur_tri*3+2] = *(curp+2); + cur_tri++; + prevp = curp; + } + else + { + //llinfos << "Skipped triangle " << *curp << ":" << *(curp+1) << ":" << *(curp+2) << llendl; + } + } - if (normal != NULL) - { - *normal = ((1.f - a - b) * face.mVertices[index1].mNormal + - a * face.mVertices[index2].mNormal + - b * face.mVertices[index3].mNormal); - } + *output_vertices = new LLVector3[new_num_vertices]; + num_output_vertices = new_num_vertices; + for (i = 0; i < new_num_vertices; i++) + { + (*output_vertices)[i] = new_vertices[i]; + } - if (bi_normal != NULL) - { - *bi_normal = ((1.f - a - b) * face.mVertices[index1].mBinormal + - a * face.mVertices[index2].mBinormal + - b * face.mVertices[index3].mBinormal); - } + *output_triangles = new S32[cur_tri*3]; + num_output_triangles = cur_tri; + memcpy(*output_triangles, sorted_tris, 3*cur_tri*sizeof(S32)); /* Flawfinder: ignore */ - } - } - } - } + /* + llinfos << "Out vertices: " << num_output_vertices << llendl; + llinfos << "Out triangles: " << num_output_triangles << llendl; + for (i = 0; i < num_output_vertices; i++) + { + llinfos << i << ":" << (*output_vertices)[i] << llendl; } + for (i = 0; i < num_output_triangles; i++) + { + llinfos << i << ":" << (*output_triangles)[i*3] << ":" << (*output_triangles)[i*3+1] << ":" << (*output_triangles)[i*3+2] << llendl; + } + */ + + //llinfos << "Out vertices: " << num_output_vertices << llendl; + //llinfos << "Out triangles: " << num_output_triangles << llendl; + delete[] vertex_mapping; + vertex_mapping = NULL; + delete[] new_vertices; + new_vertices = NULL; + delete[] new_triangles; + new_triangles = NULL; + delete[] sorted_tris; + sorted_tris = NULL; + triangle_list.clear(); + std::for_each(vertex_list.begin(), vertex_list.end(), DeletePointer()); + vertex_list.clear(); - - return hit_face; + return TRUE; } -class LLVertexIndexPair -{ -public: - LLVertexIndexPair(const LLVector3 &vertex, const S32 index); - - LLVector3 mVertex; - S32 mIndex; -}; -LLVertexIndexPair::LLVertexIndexPair(const LLVector3 &vertex, const S32 index) +BOOL LLVolumeParams::importFile(LLFILE *fp) { - mVertex = vertex; - mIndex = index; -} - -const F32 VERTEX_SLOP = 0.00001f; -const F32 VERTEX_SLOP_SQRD = VERTEX_SLOP * VERTEX_SLOP; + LLMemType m1(LLMemType::MTYPE_VOLUME); + + //llinfos << "importing volume" << llendl; + const S32 BUFSIZE = 16384; + char buffer[BUFSIZE]; /* Flawfinder: ignore */ + // *NOTE: changing the size or type of this buffer will require + // changing the sscanf below. + char keyword[256]; /* Flawfinder: ignore */ + keyword[0] = 0; -struct lessVertex -{ - bool operator()(const LLVertexIndexPair *a, const LLVertexIndexPair *b) + while (!feof(fp)) { - const F32 slop = VERTEX_SLOP; - - if (a->mVertex.mV[0] + slop < b->mVertex.mV[0]) + if (fgets(buffer, BUFSIZE, fp) == NULL) { - return TRUE; + buffer[0] = '\0'; } - else if (a->mVertex.mV[0] - slop > b->mVertex.mV[0]) + + sscanf(buffer, " %255s", keyword); /* Flawfinder: ignore */ + if (!strcmp("{", keyword)) { - return FALSE; + continue; } - - if (a->mVertex.mV[1] + slop < b->mVertex.mV[1]) + if (!strcmp("}",keyword)) { - return TRUE; + break; } - else if (a->mVertex.mV[1] - slop > b->mVertex.mV[1]) + else if (!strcmp("profile", keyword)) { - return FALSE; + mProfileParams.importFile(fp); } - - if (a->mVertex.mV[2] + slop < b->mVertex.mV[2]) + else if (!strcmp("path",keyword)) { - return TRUE; + mPathParams.importFile(fp); } - else if (a->mVertex.mV[2] - slop > b->mVertex.mV[2]) + else { - return FALSE; + llwarns << "unknown keyword " << keyword << " in volume import" << llendl; } - - return FALSE; } -}; -struct lessTriangle + return TRUE; +} + +BOOL LLVolumeParams::exportFile(LLFILE *fp) const +{ + fprintf(fp,"\tshape 0\n"); + fprintf(fp,"\t{\n"); + mPathParams.exportFile(fp); + mProfileParams.exportFile(fp); + fprintf(fp, "\t}\n"); + return TRUE; +} + + +BOOL LLVolumeParams::importLegacyStream(std::istream& input_stream) { - bool operator()(const S32 *a, const S32 *b) + LLMemType m1(LLMemType::MTYPE_VOLUME); + + //llinfos << "importing volume" << llendl; + const S32 BUFSIZE = 16384; + // *NOTE: changing the size or type of this buffer will require + // changing the sscanf below. + char buffer[BUFSIZE]; /* Flawfinder: ignore */ + char keyword[256]; /* Flawfinder: ignore */ + keyword[0] = 0; + + while (input_stream.good()) { - if (*a < *b) - { - return TRUE; - } - else if (*a > *b) + input_stream.getline(buffer, BUFSIZE); + sscanf(buffer, " %255s", keyword); + if (!strcmp("{", keyword)) { - return FALSE; + continue; } - - if (*(a+1) < *(b+1)) + if (!strcmp("}",keyword)) { - return TRUE; + break; } - else if (*(a+1) > *(b+1)) + else if (!strcmp("profile", keyword)) { - return FALSE; + mProfileParams.importLegacyStream(input_stream); } - - if (*(a+2) < *(b+2)) + else if (!strcmp("path",keyword)) { - return TRUE; + mPathParams.importLegacyStream(input_stream); } - else if (*(a+2) > *(b+2)) + else { - return FALSE; + llwarns << "unknown keyword " << keyword << " in volume import" << llendl; } - - return FALSE; } -}; -BOOL equalTriangle(const S32 *a, const S32 *b) -{ - if ((*a == *b) && (*(a+1) == *(b+1)) && (*(a+2) == *(b+2))) - { - return TRUE; - } - return FALSE; + return TRUE; } -BOOL LLVolume::cleanupTriangleData( const S32 num_input_vertices, - const std::vector& input_vertices, - const S32 num_input_triangles, - S32 *input_triangles, - S32 &num_output_vertices, - LLVector3 **output_vertices, - S32 &num_output_triangles, - S32 **output_triangles) +BOOL LLVolumeParams::exportLegacyStream(std::ostream& output_stream) const { LLMemType m1(LLMemType::MTYPE_VOLUME); - /* Testing: avoid any cleanup - static BOOL skip_cleanup = TRUE; - if ( skip_cleanup ) - { - num_output_vertices = num_input_vertices; - num_output_triangles = num_input_triangles; + output_stream <<"\tshape 0\n"; + output_stream <<"\t{\n"; + mPathParams.exportLegacyStream(output_stream); + mProfileParams.exportLegacyStream(output_stream); + output_stream << "\t}\n"; + return TRUE; +} - *output_vertices = new LLVector3[num_input_vertices]; - for (S32 index = 0; index < num_input_vertices; index++) - { - (*output_vertices)[index] = input_vertices[index].mPos; - } +LLSD LLVolumeParams::sculptAsLLSD() const +{ + LLSD sd = LLSD(); + sd["id"] = getSculptID(); + sd["type"] = getSculptType(); - *output_triangles = new S32[num_input_triangles*3]; - memcpy(*output_triangles, input_triangles, 3*num_input_triangles*sizeof(S32)); // Flawfinder: ignore - return TRUE; - } - */ + return sd; +} - // Here's how we do this: - // Create a structure which contains the original vertex index and the - // LLVector3 data. - // "Sort" the data by the vectors - // Create an array the size of the old vertex list, with a mapping of - // old indices to new indices. - // Go through triangles, shift so the lowest index is first - // Sort triangles by first index - // Remove duplicate triangles - // Allocate and pack new triangle data. +bool LLVolumeParams::sculptFromLLSD(LLSD& sd) +{ + setSculptID(sd["id"].asUUID(), (U8)sd["type"].asInteger()); + return true; +} - //LLTimer cleanupTimer; - //llinfos << "In vertices: " << num_input_vertices << llendl; - //llinfos << "In triangles: " << num_input_triangles << llendl; +LLSD LLVolumeParams::asLLSD() const +{ + LLSD sd = LLSD(); + sd["path"] = mPathParams; + sd["profile"] = mProfileParams; + sd["sculpt"] = sculptAsLLSD(); + + return sd; +} - S32 i; - typedef std::multiset vertex_set_t; - vertex_set_t vertex_list; +bool LLVolumeParams::fromLLSD(LLSD& sd) +{ + mPathParams.fromLLSD(sd["path"]); + mProfileParams.fromLLSD(sd["profile"]); + sculptFromLLSD(sd["sculpt"]); + + return true; +} - LLVertexIndexPair *pairp = NULL; - for (i = 0; i < num_input_vertices; i++) +void LLVolumeParams::reduceS(F32 begin, F32 end) +{ + begin = llclampf(begin); + end = llclampf(end); + if (begin > end) { - LLVertexIndexPair *new_pairp = new LLVertexIndexPair(input_vertices[i].mPos, i); - vertex_list.insert(new_pairp); + F32 temp = begin; + begin = end; + end = temp; } + F32 a = mProfileParams.getBegin(); + F32 b = mProfileParams.getEnd(); + mProfileParams.setBegin(a + begin * (b - a)); + mProfileParams.setEnd(a + end * (b - a)); +} - // Generate the vertex mapping and the list of vertices without - // duplicates. This will crash if there are no vertices. - llassert(num_input_vertices > 0); // check for no vertices! - S32 *vertex_mapping = new S32[num_input_vertices]; - LLVector3 *new_vertices = new LLVector3[num_input_vertices]; - LLVertexIndexPair *prev_pairp = NULL; - - S32 new_num_vertices; - - new_num_vertices = 0; - for (vertex_set_t::iterator iter = vertex_list.begin(), - end = vertex_list.end(); - iter != end; iter++) +void LLVolumeParams::reduceT(F32 begin, F32 end) +{ + begin = llclampf(begin); + end = llclampf(end); + if (begin > end) { - pairp = *iter; - if (!prev_pairp || ((pairp->mVertex - prev_pairp->mVertex).magVecSquared() >= VERTEX_SLOP_SQRD)) - { - new_vertices[new_num_vertices] = pairp->mVertex; - //llinfos << "Added vertex " << new_num_vertices << " : " << pairp->mVertex << llendl; - new_num_vertices++; - // Update the previous - prev_pairp = pairp; - } - else - { - //llinfos << "Removed duplicate vertex " << pairp->mVertex << ", distance magVecSquared() is " << (pairp->mVertex - prev_pairp->mVertex).magVecSquared() << llendl; - } - vertex_mapping[pairp->mIndex] = new_num_vertices - 1; + F32 temp = begin; + begin = end; + end = temp; } + F32 a = mPathParams.getBegin(); + F32 b = mPathParams.getEnd(); + mPathParams.setBegin(a + begin * (b - a)); + mPathParams.setEnd(a + end * (b - a)); +} - // Iterate through triangles and remove degenerates, re-ordering vertices - // along the way. - S32 *new_triangles = new S32[num_input_triangles * 3]; - S32 new_num_triangles = 0; +const F32 MIN_CONCAVE_PROFILE_WEDGE = 0.125f; // 1/8 unity +const F32 MIN_CONCAVE_PATH_WEDGE = 0.111111f; // 1/9 unity - for (i = 0; i < num_input_triangles; i++) +// returns TRUE if the shape can be approximated with a convex shape +// for collison purposes +BOOL LLVolumeParams::isConvex() const +{ + if (!getSculptID().isNull()) { - S32 v1 = i*3; - S32 v2 = v1 + 1; - S32 v3 = v1 + 2; - - //llinfos << "Checking triangle " << input_triangles[v1] << ":" << input_triangles[v2] << ":" << input_triangles[v3] << llendl; - input_triangles[v1] = vertex_mapping[input_triangles[v1]]; - input_triangles[v2] = vertex_mapping[input_triangles[v2]]; - input_triangles[v3] = vertex_mapping[input_triangles[v3]]; - - if ((input_triangles[v1] == input_triangles[v2]) - || (input_triangles[v1] == input_triangles[v3]) - || (input_triangles[v2] == input_triangles[v3])) - { - //llinfos << "Removing degenerate triangle " << input_triangles[v1] << ":" << input_triangles[v2] << ":" << input_triangles[v3] << llendl; - // Degenerate triangle, skip - continue; - } + // can't determine, be safe and say no: + return FALSE; + } + + F32 path_length = mPathParams.getEnd() - mPathParams.getBegin(); + F32 hollow = mProfileParams.getHollow(); + + U8 path_type = mPathParams.getCurveType(); + if ( path_length > MIN_CONCAVE_PATH_WEDGE + && ( mPathParams.getTwist() != mPathParams.getTwistBegin() + || (hollow > 0.f + && LL_PCODE_PATH_LINE != path_type) ) ) + { + // twist along a "not too short" path is concave + return FALSE; + } - if (input_triangles[v1] < input_triangles[v2]) - { - if (input_triangles[v1] < input_triangles[v3]) - { - // (0 < 1) && (0 < 2) - new_triangles[new_num_triangles*3] = input_triangles[v1]; - new_triangles[new_num_triangles*3+1] = input_triangles[v2]; - new_triangles[new_num_triangles*3+2] = input_triangles[v3]; - } - else - { - // (0 < 1) && (2 < 0) - new_triangles[new_num_triangles*3] = input_triangles[v3]; - new_triangles[new_num_triangles*3+1] = input_triangles[v1]; - new_triangles[new_num_triangles*3+2] = input_triangles[v2]; - } - } - else if (input_triangles[v2] < input_triangles[v3]) - { - // (1 < 0) && (1 < 2) - new_triangles[new_num_triangles*3] = input_triangles[v2]; - new_triangles[new_num_triangles*3+1] = input_triangles[v3]; - new_triangles[new_num_triangles*3+2] = input_triangles[v1]; - } - else - { - // (1 < 0) && (2 < 1) - new_triangles[new_num_triangles*3] = input_triangles[v3]; - new_triangles[new_num_triangles*3+1] = input_triangles[v1]; - new_triangles[new_num_triangles*3+2] = input_triangles[v2]; - } - new_num_triangles++; + F32 profile_length = mProfileParams.getEnd() - mProfileParams.getBegin(); + BOOL same_hole = hollow == 0.f + || (mProfileParams.getCurveType() & LL_PCODE_HOLE_MASK) == LL_PCODE_HOLE_SAME; + + F32 min_profile_wedge = MIN_CONCAVE_PROFILE_WEDGE; + U8 profile_type = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK; + if ( LL_PCODE_PROFILE_CIRCLE_HALF == profile_type ) + { + // it is a sphere and spheres get twice the minimum profile wedge + min_profile_wedge = 2.f * MIN_CONCAVE_PROFILE_WEDGE; } - if (new_num_triangles == 0) + BOOL convex_profile = ( ( profile_length == 1.f + || profile_length <= 0.5f ) + && hollow == 0.f ) // trivially convex + || ( profile_length <= min_profile_wedge + && same_hole ); // effectvely convex (even when hollow) + + if (!convex_profile) { - llwarns << "Created volume object with 0 faces." << llendl; - delete[] new_triangles; - delete[] vertex_mapping; - delete[] new_vertices; + // profile is concave return FALSE; } - typedef std::set triangle_set_t; - triangle_set_t triangle_list; + if ( LL_PCODE_PATH_LINE == path_type ) + { + // straight paths with convex profile + return TRUE; + } - for (i = 0; i < new_num_triangles; i++) + BOOL concave_path = (path_length < 1.0f) && (path_length > 0.5f); + if (concave_path) { - triangle_list.insert(&new_triangles[i*3]); + return FALSE; } - // Sort through the triangle list, and delete duplicates + // we're left with spheres, toroids and tubes + if ( LL_PCODE_PROFILE_CIRCLE_HALF == profile_type ) + { + // at this stage all spheres must be convex + return TRUE; + } - S32 *prevp = NULL; - S32 *curp = NULL; + // it's a toroid or tube + if ( path_length <= MIN_CONCAVE_PATH_WEDGE ) + { + // effectively convex + return TRUE; + } - S32 *sorted_tris = new S32[new_num_triangles*3]; - S32 cur_tri = 0; - for (triangle_set_t::iterator iter = triangle_list.begin(), - end = triangle_list.end(); - iter != end; iter++) + return FALSE; +} + +// debug +void LLVolumeParams::setCube() +{ + mProfileParams.setCurveType(LL_PCODE_PROFILE_SQUARE); + mProfileParams.setBegin(0.f); + mProfileParams.setEnd(1.f); + mProfileParams.setHollow(0.f); + + mPathParams.setBegin(0.f); + mPathParams.setEnd(1.f); + mPathParams.setScale(1.f, 1.f); + mPathParams.setShear(0.f, 0.f); + mPathParams.setCurveType(LL_PCODE_PATH_LINE); + mPathParams.setTwistBegin(0.f); + mPathParams.setTwistEnd(0.f); + mPathParams.setRadiusOffset(0.f); + mPathParams.setTaper(0.f, 0.f); + mPathParams.setRevolutions(0.f); + mPathParams.setSkew(0.f); +} + +LLFaceID LLVolume::generateFaceMask() +{ + LLFaceID new_mask = 0x0000; + + switch(mParams.getProfileParams().getCurveType() & LL_PCODE_PROFILE_MASK) { - curp = *iter; - if (!prevp || !equalTriangle(prevp, curp)) + case LL_PCODE_PROFILE_CIRCLE: + case LL_PCODE_PROFILE_CIRCLE_HALF: + new_mask |= LL_FACE_OUTER_SIDE_0; + break; + case LL_PCODE_PROFILE_SQUARE: { - //llinfos << "Added triangle " << *curp << ":" << *(curp+1) << ":" << *(curp+2) << llendl; - sorted_tris[cur_tri*3] = *curp; - sorted_tris[cur_tri*3+1] = *(curp+1); - sorted_tris[cur_tri*3+2] = *(curp+2); - cur_tri++; - prevp = curp; + for(S32 side = (S32)(mParams.getProfileParams().getBegin() * 4.f); side < llceil(mParams.getProfileParams().getEnd() * 4.f); side++) + { + new_mask |= LL_FACE_OUTER_SIDE_0 << side; + } } - else + break; + case LL_PCODE_PROFILE_ISOTRI: + case LL_PCODE_PROFILE_EQUALTRI: + case LL_PCODE_PROFILE_RIGHTTRI: { - //llinfos << "Skipped triangle " << *curp << ":" << *(curp+1) << ":" << *(curp+2) << llendl; + for(S32 side = (S32)(mParams.getProfileParams().getBegin() * 3.f); side < llceil(mParams.getProfileParams().getEnd() * 3.f); side++) + { + new_mask |= LL_FACE_OUTER_SIDE_0 << side; + } } + break; + default: + llerrs << "Unknown profile!" << llendl; + break; } - *output_vertices = new LLVector3[new_num_vertices]; - num_output_vertices = new_num_vertices; - for (i = 0; i < new_num_vertices; i++) + // handle hollow objects + if (mParams.getProfileParams().getHollow() > 0) { - (*output_vertices)[i] = new_vertices[i]; + new_mask |= LL_FACE_INNER_SIDE; } - *output_triangles = new S32[cur_tri*3]; - num_output_triangles = cur_tri; - memcpy(*output_triangles, sorted_tris, 3*cur_tri*sizeof(S32)); /* Flawfinder: ignore */ + // handle open profile curves + if (mProfilep->isOpen()) + { + new_mask |= LL_FACE_PROFILE_BEGIN | LL_FACE_PROFILE_END; + } - /* - llinfos << "Out vertices: " << num_output_vertices << llendl; - llinfos << "Out triangles: " << num_output_triangles << llendl; - for (i = 0; i < num_output_vertices; i++) + // handle open path curves + if (mPathp->isOpen()) { - llinfos << i << ":" << (*output_vertices)[i] << llendl; + new_mask |= LL_FACE_PATH_BEGIN | LL_FACE_PATH_END; } - for (i = 0; i < num_output_triangles; i++) + + return new_mask; +} + +BOOL LLVolume::isFaceMaskValid(LLFaceID face_mask) +{ + LLFaceID test_mask = 0; + for(S32 i = 0; i < getNumFaces(); i++) { - llinfos << i << ":" << (*output_triangles)[i*3] << ":" << (*output_triangles)[i*3+1] << ":" << (*output_triangles)[i*3+2] << llendl; + test_mask |= mProfilep->mFaces[i].mFaceID; } - */ - //llinfos << "Out vertices: " << num_output_vertices << llendl; - //llinfos << "Out triangles: " << num_output_triangles << llendl; - delete[] vertex_mapping; - vertex_mapping = NULL; - delete[] new_vertices; - new_vertices = NULL; - delete[] new_triangles; - new_triangles = NULL; - delete[] sorted_tris; - sorted_tris = NULL; - triangle_list.clear(); - std::for_each(vertex_list.begin(), vertex_list.end(), DeletePointer()); - vertex_list.clear(); - - return TRUE; + return test_mask == face_mask; +} + +BOOL LLVolume::isConvex() const +{ + // mParams.isConvex() may return FALSE even though the final + // geometry is actually convex due to LOD approximations. + // TODO -- provide LLPath and LLProfile with isConvex() methods + // that correctly determine convexity. -- Leviathan + return mParams.isConvex(); +} + + +std::ostream& operator<<(std::ostream &s, const LLProfileParams &profile_params) +{ + s << "{type=" << (U32) profile_params.mCurveType; + s << ", begin=" << profile_params.mBegin; + s << ", end=" << profile_params.mEnd; + s << ", hollow=" << profile_params.mHollow; + s << "}"; + return s; +} + + +std::ostream& operator<<(std::ostream &s, const LLPathParams &path_params) +{ + s << "{type=" << (U32) path_params.mCurveType; + s << ", begin=" << path_params.mBegin; + s << ", end=" << path_params.mEnd; + s << ", twist=" << path_params.mTwistEnd; + s << ", scale=" << path_params.mScale; + s << ", shear=" << path_params.mShear; + s << ", twist_begin=" << path_params.mTwistBegin; + s << ", radius_offset=" << path_params.mRadiusOffset; + s << ", taper=" << path_params.mTaper; + s << ", revolutions=" << path_params.mRevolutions; + s << ", skew=" << path_params.mSkew; + s << "}"; + return s; +} + + +std::ostream& operator<<(std::ostream &s, const LLVolumeParams &volume_params) +{ + s << "{profileparams = " << volume_params.mProfileParams; + s << ", pathparams = " << volume_params.mPathParams; + s << "}"; + return s; +} + + +std::ostream& operator<<(std::ostream &s, const LLProfile &profile) +{ + s << " {open=" << (U32) profile.mOpen; + s << ", dirty=" << profile.mDirty; + s << ", totalout=" << profile.mTotalOut; + s << ", total=" << profile.mTotal; + s << "}"; + return s; +} + + +std::ostream& operator<<(std::ostream &s, const LLPath &path) +{ + s << "{open=" << (U32) path.mOpen; + s << ", dirty=" << path.mDirty; + s << ", step=" << path.mStep; + s << ", total=" << path.mTotal; + s << "}"; + return s; +} + +std::ostream& operator<<(std::ostream &s, const LLVolume &volume) +{ + s << "{params = " << volume.getParams(); + s << ", path = " << *volume.mPathp; + s << ", profile = " << *volume.mProfilep; + s << "}"; + return s; +} + + +std::ostream& operator<<(std::ostream &s, const LLVolume *volumep) +{ + s << "{params = " << volumep->getParams(); + s << ", path = " << *(volumep->mPathp); + s << ", profile = " << *(volumep->mProfilep); + s << "}"; + return s; +} + +LLVolumeFace::LLVolumeFace() : + mID(0), + mTypeMask(0), + mBeginS(0), + mBeginT(0), + mNumS(0), + mNumT(0), + mNumVertices(0), + mNumIndices(0), + mPositions(NULL), + mNormals(NULL), + mBinormals(NULL), + mTexCoords(NULL), + mIndices(NULL), + mWeights(NULL), + mOctree(NULL) +{ + mExtents = (LLVector4a*) malloc(sizeof(LLVector4a)*3); + mCenter = mExtents+2; } +LLVolumeFace::LLVolumeFace(const LLVolumeFace& src) +: mID(0), + mTypeMask(0), + mBeginS(0), + mBeginT(0), + mNumS(0), + mNumT(0), + mNumVertices(0), + mNumIndices(0), + mPositions(NULL), + mNormals(NULL), + mBinormals(NULL), + mTexCoords(NULL), + mIndices(NULL), + mWeights(NULL), + mOctree(NULL) +{ + mExtents = (LLVector4a*) malloc(sizeof(LLVector4a)*3); + mCenter = mExtents+2; + *this = src; +} -BOOL LLVolumeParams::importFile(LLFILE *fp) +LLVolumeFace& LLVolumeFace::operator=(const LLVolumeFace& src) { - LLMemType m1(LLMemType::MTYPE_VOLUME); + if (&src == this) + { //self assignment, do nothing + return *this; + } + + mID = src.mID; + mTypeMask = src.mTypeMask; + mBeginS = src.mBeginS; + mBeginT = src.mBeginT; + mNumS = src.mNumS; + mNumT = src.mNumT; + + mExtents[0] = src.mExtents[0]; + mExtents[1] = src.mExtents[1]; + *mCenter = *src.mCenter; + + mNumVertices = 0; + mNumIndices = 0; + + freeData(); - //llinfos << "importing volume" << llendl; - const S32 BUFSIZE = 16384; - char buffer[BUFSIZE]; /* Flawfinder: ignore */ - // *NOTE: changing the size or type of this buffer will require - // changing the sscanf below. - char keyword[256]; /* Flawfinder: ignore */ - keyword[0] = 0; + LLVector4a::memcpyNonAliased16((F32*) mExtents, (F32*) src.mExtents, 3*sizeof(LLVector4a)); - while (!feof(fp)) + resizeVertices(src.mNumVertices); + resizeIndices(src.mNumIndices); + + if (mNumVertices) { - if (fgets(buffer, BUFSIZE, fp) == NULL) - { - buffer[0] = '\0'; - } - - sscanf(buffer, " %255s", keyword); /* Flawfinder: ignore */ - if (!strcmp("{", keyword)) - { - continue; - } - if (!strcmp("}",keyword)) + S32 vert_size = mNumVertices*sizeof(LLVector4a); + S32 tc_size = (mNumVertices*sizeof(LLVector2)+0xF) & ~0xF; + + LLVector4a::memcpyNonAliased16((F32*) mPositions, (F32*) src.mPositions, vert_size); + LLVector4a::memcpyNonAliased16((F32*) mNormals, (F32*) src.mNormals, vert_size); + LLVector4a::memcpyNonAliased16((F32*) mTexCoords, (F32*) src.mTexCoords, tc_size); + + + if (src.mBinormals) { - break; + allocateBinormals(src.mNumVertices); + LLVector4a::memcpyNonAliased16((F32*) mBinormals, (F32*) src.mBinormals, vert_size); } - else if (!strcmp("profile", keyword)) + else { - mProfileParams.importFile(fp); + free(mBinormals); + mBinormals = NULL; } - else if (!strcmp("path",keyword)) + + if (src.mWeights) { - mPathParams.importFile(fp); + allocateWeights(src.mNumVertices); + LLVector4a::memcpyNonAliased16((F32*) mWeights, (F32*) src.mWeights, vert_size); } else { - llwarns << "unknown keyword " << keyword << " in volume import" << llendl; + free(mWeights); + mWeights = NULL; } } - return TRUE; + if (mNumIndices) + { + S32 idx_size = (mNumIndices*sizeof(U16)+0xF) & ~0xF; + + LLVector4a::memcpyNonAliased16((F32*) mIndices, (F32*) src.mIndices, idx_size); + } + + //delete + return *this; } -BOOL LLVolumeParams::exportFile(LLFILE *fp) const +LLVolumeFace::~LLVolumeFace() { - fprintf(fp,"\tshape 0\n"); - fprintf(fp,"\t{\n"); - mPathParams.exportFile(fp); - mProfileParams.exportFile(fp); - fprintf(fp, "\t}\n"); - return TRUE; + free(mExtents); + mExtents = NULL; + + freeData(); } +void LLVolumeFace::freeData() +{ + free(mPositions); + mPositions = NULL; + free( mNormals); + mNormals = NULL; + free(mTexCoords); + mTexCoords = NULL; + free(mIndices); + mIndices = NULL; + free(mBinormals); + mBinormals = NULL; + free(mWeights); + mWeights = NULL; + + delete mOctree; + mOctree = NULL; +} -BOOL LLVolumeParams::importLegacyStream(std::istream& input_stream) +BOOL LLVolumeFace::create(LLVolume* volume, BOOL partial_build) { - LLMemType m1(LLMemType::MTYPE_VOLUME); - - //llinfos << "importing volume" << llendl; - const S32 BUFSIZE = 16384; - // *NOTE: changing the size or type of this buffer will require - // changing the sscanf below. - char buffer[BUFSIZE]; /* Flawfinder: ignore */ - char keyword[256]; /* Flawfinder: ignore */ - keyword[0] = 0; + //tree for this face is no longer valid + delete mOctree; + mOctree = NULL; - while (input_stream.good()) + if (mTypeMask & CAP_MASK) { - input_stream.getline(buffer, BUFSIZE); - sscanf(buffer, " %255s", keyword); - if (!strcmp("{", keyword)) - { - continue; - } - if (!strcmp("}",keyword)) - { - break; - } - else if (!strcmp("profile", keyword)) - { - mProfileParams.importLegacyStream(input_stream); - } - else if (!strcmp("path",keyword)) - { - mPathParams.importLegacyStream(input_stream); - } - else - { - llwarns << "unknown keyword " << keyword << " in volume import" << llendl; - } + return createCap(volume, partial_build); + } + else if ((mTypeMask & END_MASK) || (mTypeMask & SIDE_MASK)) + { + return createSide(volume, partial_build); + } + else + { + llerrs << "Unknown/uninitialized face type!" << llendl; + return FALSE; } - - return TRUE; -} - -BOOL LLVolumeParams::exportLegacyStream(std::ostream& output_stream) const -{ - LLMemType m1(LLMemType::MTYPE_VOLUME); - - output_stream <<"\tshape 0\n"; - output_stream <<"\t{\n"; - mPathParams.exportLegacyStream(output_stream); - mProfileParams.exportLegacyStream(output_stream); - output_stream << "\t}\n"; - return TRUE; } -LLSD LLVolumeParams::asLLSD() const +void LLVolumeFace::getVertexData(U16 index, LLVolumeFace::VertexData& cv) { - LLSD sd = LLSD(); - sd["path"] = mPathParams; - sd["profile"] = mProfileParams; - return sd; + cv.setPosition(mPositions[index]); + cv.setNormal(mNormals[index]); + cv.mTexCoord = mTexCoords[index]; } -bool LLVolumeParams::fromLLSD(LLSD& sd) +bool LLVolumeFace::VertexMapData::operator==(const LLVolumeFace::VertexData& rhs) const { - mPathParams.fromLLSD(sd["path"]); - mProfileParams.fromLLSD(sd["profile"]); - return true; + return getPosition().equals3(rhs.getPosition()) && + mTexCoord == rhs.mTexCoord && + getNormal().equals3(rhs.getNormal()); } -void LLVolumeParams::reduceS(F32 begin, F32 end) +bool LLVolumeFace::VertexMapData::ComparePosition::operator()(const LLVector3& a, const LLVector3& b) const { - begin = llclampf(begin); - end = llclampf(end); - if (begin > end) + if (a.mV[0] != b.mV[0]) { - F32 temp = begin; - begin = end; - end = temp; + return a.mV[0] < b.mV[0]; } - F32 a = mProfileParams.getBegin(); - F32 b = mProfileParams.getEnd(); - mProfileParams.setBegin(a + begin * (b - a)); - mProfileParams.setEnd(a + end * (b - a)); + + if (a.mV[1] != b.mV[1]) + { + return a.mV[1] < b.mV[1]; + } + + return a.mV[2] < b.mV[2]; } -void LLVolumeParams::reduceT(F32 begin, F32 end) +void LLVolumeFace::optimize(F32 angle_cutoff) { - begin = llclampf(begin); - end = llclampf(end); - if (begin > end) + LLVolumeFace new_face; + + //map of points to vector of vertices at that point + VertexMapData::PointMap point_map; + + //remove redundant vertices + for (U32 i = 0; i < mNumIndices; ++i) { - F32 temp = begin; - begin = end; - end = temp; + U16 index = mIndices[i]; + + LLVolumeFace::VertexData cv; + getVertexData(index, cv); + + BOOL found = FALSE; + VertexMapData::PointMap::iterator point_iter = point_map.find(LLVector3(cv.getPosition().getF32ptr())); + if (point_iter != point_map.end()) + { //duplicate point might exist + for (U32 j = 0; j < point_iter->second.size(); ++j) + { + LLVolumeFace::VertexData& tv = (point_iter->second)[j]; + if (tv.compareNormal(cv, angle_cutoff)) + { + found = TRUE; + new_face.pushIndex((point_iter->second)[j].mIndex); + break; + } + } + } + + if (!found) + { + new_face.pushVertex(cv); + U16 index = (U16) new_face.mNumVertices-1; + new_face.pushIndex(index); + + VertexMapData d; + d.setPosition(cv.getPosition()); + d.mTexCoord = cv.mTexCoord; + d.setNormal(cv.getNormal()); + d.mIndex = index; + if (point_iter != point_map.end()) + { + point_iter->second.push_back(d); + } + else + { + point_map[LLVector3(d.getPosition().getF32ptr())].push_back(d); + } + } } - F32 a = mPathParams.getBegin(); - F32 b = mPathParams.getEnd(); - mPathParams.setBegin(a + begin * (b - a)); - mPathParams.setEnd(a + end * (b - a)); + + swapData(new_face); } -const F32 MIN_CONCAVE_PROFILE_WEDGE = 0.125f; // 1/8 unity -const F32 MIN_CONCAVE_PATH_WEDGE = 0.111111f; // 1/9 unity +class LLVCacheTriangleData; -// returns TRUE if the shape can be approximated with a convex shape -// for collison purposes -BOOL LLVolumeParams::isConvex() const +class LLVCacheVertexData { - F32 path_length = mPathParams.getEnd() - mPathParams.getBegin(); - F32 hollow = mProfileParams.getHollow(); - - U8 path_type = mPathParams.getCurveType(); - if ( path_length > MIN_CONCAVE_PATH_WEDGE - && ( mPathParams.getTwist() != mPathParams.getTwistBegin() - || (hollow > 0.f - && LL_PCODE_PATH_LINE != path_type) ) ) +public: + S32 mIdx; + S32 mCacheTag; + F32 mScore; + U32 mActiveTriangles; + std::vector mTriangles; + + LLVCacheVertexData() { - // twist along a "not too short" path is concave - return FALSE; + mCacheTag = -1; + mScore = 0.f; + mActiveTriangles = 0; + mIdx = -1; } +}; - F32 profile_length = mProfileParams.getEnd() - mProfileParams.getBegin(); - BOOL same_hole = hollow == 0.f - || (mProfileParams.getCurveType() & LL_PCODE_HOLE_MASK) == LL_PCODE_HOLE_SAME; +class LLVCacheTriangleData +{ +public: + bool mActive; + F32 mScore; + LLVCacheVertexData* mVertex[3]; - F32 min_profile_wedge = MIN_CONCAVE_PROFILE_WEDGE; - U8 profile_type = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK; - if ( LL_PCODE_PROFILE_CIRCLE_HALF == profile_type ) + LLVCacheTriangleData() { - // it is a sphere and spheres get twice the minimum profile wedge - min_profile_wedge = 2.f * MIN_CONCAVE_PROFILE_WEDGE; + mActive = true; + mScore = 0.f; + mVertex[0] = mVertex[1] = mVertex[2] = NULL; } - BOOL convex_profile = ( ( profile_length == 1.f - || profile_length <= 0.5f ) - && hollow == 0.f ) // trivially convex - || ( profile_length <= min_profile_wedge - && same_hole ); // effectvely convex (even when hollow) - - if (!convex_profile) + void complete() { - // profile is concave - return FALSE; + mActive = false; + for (S32 i = 0; i < 3; ++i) + { + if (mVertex[i]) + { + llassert_always(mVertex[i]->mActiveTriangles > 0); + mVertex[i]->mActiveTriangles--; + } + } } - if ( LL_PCODE_PATH_LINE == path_type ) - { - // straight paths with convex profile - return TRUE; + bool operator<(const LLVCacheTriangleData& rhs) const + { //highest score first + return rhs.mScore < mScore; } +}; - BOOL concave_path = (path_length < 1.0f) && (path_length > 0.5f); - if (concave_path) - { - return FALSE; +const F32 FindVertexScore_CacheDecayPower = 1.5f; +const F32 FindVertexScore_LastTriScore = 0.75f; +const F32 FindVertexScore_ValenceBoostScale = 2.0f; +const F32 FindVertexScore_ValenceBoostPower = 0.5f; +const U32 MaxSizeVertexCache = 32; + +F32 find_vertex_score(LLVCacheVertexData& data) +{ + if (data.mActiveTriangles == 0) + { //no triangle references this vertex + return -1.f; } - // we're left with spheres, toroids and tubes - if ( LL_PCODE_PROFILE_CIRCLE_HALF == profile_type ) + F32 score = 0.f; + + S32 cache_idx = data.mCacheTag; + + if (cache_idx < 0) { - // at this stage all spheres must be convex - return TRUE; + //not in cache } - - // it's a toroid or tube - if ( path_length <= MIN_CONCAVE_PATH_WEDGE ) + else { - // effectively convex - return TRUE; + if (cache_idx < 3) + { //vertex was in the last triangle + score = FindVertexScore_LastTriScore; + } + else + { //more points for being higher in the cache + F32 scaler = 1.f/(MaxSizeVertexCache-3); + score = 1.f-((cache_idx-3)*scaler); + score = powf(score, FindVertexScore_CacheDecayPower); + } } - return FALSE; -} - -// debug -void LLVolumeParams::setCube() -{ - mProfileParams.setCurveType(LL_PCODE_PROFILE_SQUARE); - mProfileParams.setBegin(0.f); - mProfileParams.setEnd(1.f); - mProfileParams.setHollow(0.f); + //bonus points for having low valence + F32 valence_boost = powf(data.mActiveTriangles, -FindVertexScore_ValenceBoostPower); + score += FindVertexScore_ValenceBoostScale * valence_boost; - mPathParams.setBegin(0.f); - mPathParams.setEnd(1.f); - mPathParams.setScale(1.f, 1.f); - mPathParams.setShear(0.f, 0.f); - mPathParams.setCurveType(LL_PCODE_PATH_LINE); - mPathParams.setTwistBegin(0.f); - mPathParams.setTwistEnd(0.f); - mPathParams.setRadiusOffset(0.f); - mPathParams.setTaper(0.f, 0.f); - mPathParams.setRevolutions(0.f); - mPathParams.setSkew(0.f); + return score; } -LLFaceID LLVolume::generateFaceMask() +class LLVCacheFIFO { - LLFaceID new_mask = 0x0000; +public: + LLVCacheVertexData* mCache[MaxSizeVertexCache]; + U32 mMisses; - switch(mParams.getProfileParams().getCurveType() & LL_PCODE_PROFILE_MASK) + LLVCacheFIFO() { - case LL_PCODE_PROFILE_CIRCLE: - case LL_PCODE_PROFILE_CIRCLE_HALF: - new_mask |= LL_FACE_OUTER_SIDE_0; - break; - case LL_PCODE_PROFILE_SQUARE: + mMisses = 0; + for (U32 i = 0; i < MaxSizeVertexCache; ++i) { - for(S32 side = (S32)(mParams.getProfileParams().getBegin() * 4.f); side < llceil(mParams.getProfileParams().getEnd() * 4.f); side++) - { - new_mask |= LL_FACE_OUTER_SIDE_0 << side; - } + mCache[i] = NULL; } - break; - case LL_PCODE_PROFILE_ISOTRI: - case LL_PCODE_PROFILE_EQUALTRI: - case LL_PCODE_PROFILE_RIGHTTRI: + } + + void addVertex(LLVCacheVertexData* data) + { + if (data->mCacheTag == -1) { - for(S32 side = (S32)(mParams.getProfileParams().getBegin() * 3.f); side < llceil(mParams.getProfileParams().getEnd() * 3.f); side++) + mMisses++; + + S32 end = MaxSizeVertexCache-1; + + if (mCache[end]) { - new_mask |= LL_FACE_OUTER_SIDE_0 << side; + mCache[end]->mCacheTag = -1; + } + + for (S32 i = end; i > 0; --i) + { + mCache[i] = mCache[i-1]; + if (mCache[i]) + { + mCache[i]->mCacheTag = i; + } } + + mCache[0] = data; + data->mCacheTag = 0; } - break; - default: - llerrs << "Unknown profile!" << llendl; - break; } +}; - // handle hollow objects - if (mParams.getProfileParams().getHollow() > 0) +class LLVCacheLRU +{ +public: + LLVCacheVertexData* mCache[MaxSizeVertexCache+3]; + + LLVCacheTriangleData* mBestTriangle; + + U32 mMisses; + + LLVCacheLRU() { - new_mask |= LL_FACE_INNER_SIDE; + for (U32 i = 0; i < MaxSizeVertexCache+3; ++i) + { + mCache[i] = NULL; + } + + mBestTriangle = NULL; + mMisses = 0; } - // handle open profile curves - if (mProfilep->isOpen()) + void addVertex(LLVCacheVertexData* data) { - new_mask |= LL_FACE_PROFILE_BEGIN | LL_FACE_PROFILE_END; + S32 end = MaxSizeVertexCache+2; + if (data->mCacheTag != -1) + { //just moving a vertex to the front of the cache + end = data->mCacheTag; + } + else + { + mMisses++; + if (mCache[end]) + { //adding a new vertex, vertex at end of cache falls off + mCache[end]->mCacheTag = -1; + } + } + + for (S32 i = end; i > 0; --i) + { //adjust cache pointers and tags + mCache[i] = mCache[i-1]; + + if (mCache[i]) + { + mCache[i]->mCacheTag = i; + } + } + + mCache[0] = data; + mCache[0]->mCacheTag = 0; } - // handle open path curves - if (mPathp->isOpen()) + void addTriangle(LLVCacheTriangleData* data) { - new_mask |= LL_FACE_PATH_BEGIN | LL_FACE_PATH_END; + addVertex(data->mVertex[0]); + addVertex(data->mVertex[1]); + addVertex(data->mVertex[2]); } - return new_mask; -} - -BOOL LLVolume::isFaceMaskValid(LLFaceID face_mask) -{ - LLFaceID test_mask = 0; - for(S32 i = 0; i < getNumFaces(); i++) + void updateScores() { - test_mask |= mProfilep->mFaces[i].mFaceID; + for (U32 i = MaxSizeVertexCache; i < MaxSizeVertexCache+3; ++i) + { //trailing 3 vertices aren't actually in the cache for scoring purposes + if (mCache[i]) + { + mCache[i]->mCacheTag = -1; + } + } + + for (U32 i = 0; i < MaxSizeVertexCache; ++i) + { //update scores of vertices in cache + if (mCache[i]) + { + mCache[i]->mScore = find_vertex_score(*(mCache[i])); + llassert_always(mCache[i]->mCacheTag == i); + } + } + + mBestTriangle = NULL; + //update triangle scores + for (U32 i = 0; i < MaxSizeVertexCache+3; ++i) + { + if (mCache[i]) + { + for (U32 j = 0; j < mCache[i]->mTriangles.size(); ++j) + { + LLVCacheTriangleData* tri = mCache[i]->mTriangles[j]; + if (tri->mActive) + { + tri->mScore = tri->mVertex[0]->mScore; + tri->mScore += tri->mVertex[1]->mScore; + tri->mScore += tri->mVertex[2]->mScore; + + if (!mBestTriangle || mBestTriangle->mScore < tri->mScore) + { + mBestTriangle = tri; + } + } + } + } + } + + //knock trailing 3 vertices off the cache + for (U32 i = MaxSizeVertexCache; i < MaxSizeVertexCache+3; ++i) + { + if (mCache[i]) + { + llassert_always(mCache[i]->mCacheTag == -1); + mCache[i] = NULL; + } + } } +}; - return test_mask == face_mask; -} -BOOL LLVolume::isConvex() const -{ - // mParams.isConvex() may return FALSE even though the final - // geometry is actually convex due to LOD approximations. - // TODO -- provide LLPath and LLProfile with isConvex() methods - // that correctly determine convexity. -- Leviathan - return mParams.isConvex(); -} +void LLVolumeFace::cacheOptimize() +{ //optimize for vertex cache according to Forsyth method: + // http://home.comcast.net/~tom_forsyth/papers/fast_vert_cache_opt.html + + LLVCacheLRU cache; + + //mapping of vertices to triangles and indices + std::vector vertex_data; + //mapping of triangles do vertices + std::vector triangle_data; -std::ostream& operator<<(std::ostream &s, const LLProfileParams &profile_params) -{ - s << "{type=" << (U32) profile_params.mCurveType; - s << ", begin=" << profile_params.mBegin; - s << ", end=" << profile_params.mEnd; - s << ", hollow=" << profile_params.mHollow; - s << "}"; - return s; -} + triangle_data.resize(mNumIndices/3); + vertex_data.resize(mNumVertices); + for (U32 i = 0; i < mNumIndices; i++) + { //populate vertex data and triangle data arrays + U16 idx = mIndices[i]; + U32 tri_idx = i/3; -std::ostream& operator<<(std::ostream &s, const LLPathParams &path_params) -{ - s << "{type=" << (U32) path_params.mCurveType; - s << ", begin=" << path_params.mBegin; - s << ", end=" << path_params.mEnd; - s << ", twist=" << path_params.mTwistEnd; - s << ", scale=" << path_params.mScale; - s << ", shear=" << path_params.mShear; - s << ", twist_begin=" << path_params.mTwistBegin; - s << ", radius_offset=" << path_params.mRadiusOffset; - s << ", taper=" << path_params.mTaper; - s << ", revolutions=" << path_params.mRevolutions; - s << ", skew=" << path_params.mSkew; - s << "}"; - return s; -} + vertex_data[idx].mTriangles.push_back(&(triangle_data[tri_idx])); + vertex_data[idx].mIdx = idx; + triangle_data[tri_idx].mVertex[i%3] = &(vertex_data[idx]); + } + /*F32 pre_acmr = 1.f; + //measure cache misses from before rebuild + { + LLVCacheFIFO test_cache; + for (U32 i = 0; i < mNumIndices; ++i) + { + test_cache.addVertex(&vertex_data[mIndices[i]]); + } -std::ostream& operator<<(std::ostream &s, const LLVolumeParams &volume_params) -{ - s << "{profileparams = " << volume_params.mProfileParams; - s << ", pathparams = " << volume_params.mPathParams; - s << "}"; - return s; -} + for (U32 i = 0; i < mNumVertices; i++) + { + vertex_data[i].mCacheTag = -1; + } + pre_acmr = (F32) test_cache.mMisses/(mNumIndices/3); + }*/ -std::ostream& operator<<(std::ostream &s, const LLProfile &profile) -{ - s << " {open=" << (U32) profile.mOpen; - s << ", dirty=" << profile.mDirty; - s << ", totalout=" << profile.mTotalOut; - s << ", total=" << profile.mTotal; - s << "}"; - return s; -} + for (U32 i = 0; i < mNumVertices; i++) + { //initialize score values (no cache -- might try a fifo cache here) + vertex_data[i].mScore = find_vertex_score(vertex_data[i]); + vertex_data[i].mActiveTriangles = vertex_data[i].mTriangles.size(); + for (U32 j = 0; j < vertex_data[i].mTriangles.size(); ++j) + { + vertex_data[i].mTriangles[j]->mScore += vertex_data[i].mScore; + } + } -std::ostream& operator<<(std::ostream &s, const LLPath &path) -{ - s << "{open=" << (U32) path.mOpen; - s << ", dirty=" << path.mDirty; - s << ", step=" << path.mStep; - s << ", total=" << path.mTotal; - s << "}"; - return s; -} + //sort triangle data by score + std::sort(triangle_data.begin(), triangle_data.end()); -std::ostream& operator<<(std::ostream &s, const LLVolume &volume) -{ - s << "{params = " << volume.getParams(); - s << ", path = " << *volume.mPathp; - s << ", profile = " << *volume.mProfilep; - s << "}"; - return s; -} + std::vector new_indices; + LLVCacheTriangleData* tri; -std::ostream& operator<<(std::ostream &s, const LLVolume *volumep) -{ - s << "{params = " << volumep->getParams(); - s << ", path = " << *(volumep->mPathp); - s << ", profile = " << *(volumep->mProfilep); - s << "}"; - return s; -} + //prime pump by adding first triangle to cache; + tri = &(triangle_data[0]); + cache.addTriangle(tri); + new_indices.push_back(tri->mVertex[0]->mIdx); + new_indices.push_back(tri->mVertex[1]->mIdx); + new_indices.push_back(tri->mVertex[2]->mIdx); + tri->complete(); + U32 breaks = 0; + for (U32 i = 1; i < mNumIndices/3; ++i) + { + cache.updateScores(); + tri = cache.mBestTriangle; + if (!tri) + { + breaks++; + for (U32 j = 0; j < triangle_data.size(); ++j) + { + if (triangle_data[j].mActive) + { + tri = &(triangle_data[j]); + break; + } + } + } + + cache.addTriangle(tri); + new_indices.push_back(tri->mVertex[0]->mIdx); + new_indices.push_back(tri->mVertex[1]->mIdx); + new_indices.push_back(tri->mVertex[2]->mIdx); + tri->complete(); + } -BOOL LLVolumeFace::create(LLVolume* volume, BOOL partial_build) -{ - BOOL ret = FALSE ; - if (mTypeMask & CAP_MASK) + for (U32 i = 0; i < mNumIndices; ++i) { - ret = createCap(volume, partial_build); + mIndices[i] = new_indices[i]; } - else if ((mTypeMask & END_MASK) || (mTypeMask & SIDE_MASK)) + + /*F32 post_acmr = 1.f; + //measure cache misses from after rebuild + { + LLVCacheFIFO test_cache; + for (U32 i = 0; i < mNumVertices; i++) + { + vertex_data[i].mCacheTag = -1; + } + + for (U32 i = 0; i < mNumIndices; ++i) + { + test_cache.addVertex(&vertex_data[mIndices[i]]); + } + + post_acmr = (F32) test_cache.mMisses/(mNumIndices/3); + }*/ + + //optimize for pre-TnL cache + + //allocate space for new buffer + S32 num_verts = mNumVertices; + LLVector4a* pos = (LLVector4a*) malloc(sizeof(LLVector4a)*num_verts); + LLVector4a* norm = (LLVector4a*) malloc(sizeof(LLVector4a)*num_verts); + S32 size = ((num_verts*sizeof(LLVector2)) + 0xF) & ~0xF; + LLVector2* tc = (LLVector2*) malloc(size); + + LLVector4a* wght = NULL; + if (mWeights) { - ret = createSide(volume, partial_build); + wght = (LLVector4a*) malloc(sizeof(LLVector4a)*num_verts); } - else + + LLVector4a* binorm = NULL; + if (mBinormals) { - llerrs << "Unknown/uninitialized face type!" << llendl; + binorm = (LLVector4a*) malloc(sizeof(LLVector4a)*num_verts); } - //update the range of the texture coordinates - if(ret) + //allocate mapping of old indices to new indices + std::vector new_idx; + new_idx.resize(mNumVertices, -1); + + S32 cur_idx = 0; + for (U32 i = 0; i < mNumIndices; ++i) { - mTexCoordExtents[0].setVec(1.f, 1.f) ; - mTexCoordExtents[1].setVec(0.f, 0.f) ; + U16 idx = mIndices[i]; + if (new_idx[idx] == -1) + { //this vertex hasn't been added yet + new_idx[idx] = cur_idx; - U32 end = mVertices.size() ; - for(U32 i = 0 ; i < end ; i++) - { - if(mTexCoordExtents[0].mV[0] > mVertices[i].mTexCoord.mV[0]) + //copy vertex data + pos[cur_idx] = mPositions[idx]; + norm[cur_idx] = mNormals[idx]; + tc[cur_idx] = mTexCoords[idx]; + if (mWeights) { - mTexCoordExtents[0].mV[0] = mVertices[i].mTexCoord.mV[0] ; + wght[cur_idx] = mWeights[idx]; } - if(mTexCoordExtents[1].mV[0] < mVertices[i].mTexCoord.mV[0]) + if (mBinormals) { - mTexCoordExtents[1].mV[0] = mVertices[i].mTexCoord.mV[0] ; + binorm[cur_idx] = mBinormals[idx]; } - if(mTexCoordExtents[0].mV[1] > mVertices[i].mTexCoord.mV[1]) - { - mTexCoordExtents[0].mV[1] = mVertices[i].mTexCoord.mV[1] ; - } - if(mTexCoordExtents[1].mV[1] < mVertices[i].mTexCoord.mV[1]) - { - mTexCoordExtents[1].mV[1] = mVertices[i].mTexCoord.mV[1] ; - } + cur_idx++; } - mTexCoordExtents[0].mV[0] = llmax(0.f, mTexCoordExtents[0].mV[0]) ; - mTexCoordExtents[0].mV[1] = llmax(0.f, mTexCoordExtents[0].mV[1]) ; - mTexCoordExtents[1].mV[0] = llmin(1.f, mTexCoordExtents[1].mV[0]) ; - mTexCoordExtents[1].mV[1] = llmin(1.f, mTexCoordExtents[1].mV[1]) ; } - return ret ; + for (U32 i = 0; i < mNumIndices; ++i) + { + mIndices[i] = new_idx[mIndices[i]]; + } + + free(mPositions); + free(mNormals); + free(mTexCoords); + free(mWeights); + free(mBinormals); + + mPositions = pos; + mNormals = norm; + mTexCoords = tc; + mWeights = wght; + mBinormals = binorm; + + //std::string result = llformat("ACMR pre/post: %.3f/%.3f -- %d triangles %d breaks", pre_acmr, post_acmr, mNumIndices/3, breaks); + //llinfos << result << llendl; + +} + +void LLVolumeFace::createOctree(F32 scaler, const LLVector4a& center, const LLVector4a& size) +{ + if (mOctree) + { + return; + } + + mOctree = new LLOctreeRoot(center, size, NULL); + new LLVolumeOctreeListener(mOctree); + + for (U32 i = 0; i < mNumIndices; i+= 3) + { //for each triangle + LLPointer tri = new LLVolumeTriangle(); + + const LLVector4a& v0 = mPositions[mIndices[i]]; + const LLVector4a& v1 = mPositions[mIndices[i+1]]; + const LLVector4a& v2 = mPositions[mIndices[i+2]]; + + //store pointers to vertex data + tri->mV[0] = &v0; + tri->mV[1] = &v1; + tri->mV[2] = &v2; + + //store indices + tri->mIndex[0] = mIndices[i]; + tri->mIndex[1] = mIndices[i+1]; + tri->mIndex[2] = mIndices[i+2]; + + //get minimum point + LLVector4a min = v0; + min.setMin(min, v1); + min.setMin(min, v2); + + //get maximum point + LLVector4a max = v0; + max.setMax(max, v1); + max.setMax(max, v2); + + //compute center + LLVector4a center; + center.setAdd(min, max); + center.mul(0.5f); + + tri->mPositionGroup = center; + + //compute "radius" + LLVector4a size; + size.setSub(max,min); + + tri->mRadius = size.getLength3().getF32() * scaler; + + //insert + mOctree->insert(tri); + } + + //remove unneeded octree layers + while (!mOctree->balance()) { } + + //calculate AABB for each node + LLVolumeOctreeRebound rebound(this); + rebound.traverse(mOctree); + + if (gDebugGL) + { + LLVolumeOctreeValidate validate; + validate.traverse(mOctree); + } +} + + +void LLVolumeFace::swapData(LLVolumeFace& rhs) +{ + llswap(rhs.mPositions, mPositions); + llswap(rhs.mNormals, mNormals); + llswap(rhs.mBinormals, mBinormals); + llswap(rhs.mTexCoords, mTexCoords); + llswap(rhs.mIndices,mIndices); + llswap(rhs.mNumVertices, mNumVertices); + llswap(rhs.mNumIndices, mNumIndices); } void LerpPlanarVertex(LLVolumeFace::VertexData& v0, @@ -4463,10 +6019,21 @@ void LerpPlanarVertex(LLVolumeFace::VertexData& v0, F32 coef01, F32 coef02) { - vout.mPosition = v0.mPosition + ((v1.mPosition-v0.mPosition)*coef01)+((v2.mPosition-v0.mPosition)*coef02); + + LLVector4a lhs; + lhs.setSub(v1.getPosition(), v0.getPosition()); + lhs.mul(coef01); + LLVector4a rhs; + rhs.setSub(v2.getPosition(), v0.getPosition()); + rhs.mul(coef02); + + rhs.add(lhs); + rhs.add(v0.getPosition()); + + vout.setPosition(rhs); + vout.mTexCoord = v0.mTexCoord + ((v1.mTexCoord-v0.mTexCoord)*coef01)+((v2.mTexCoord-v0.mTexCoord)*coef02); - vout.mNormal = v0.mNormal; - vout.mBinormal = v0.mBinormal; + vout.setNormal(v0.getNormal()); } BOOL LLVolumeFace::createUnCutCubeCap(LLVolume* volume, BOOL partial_build) @@ -4486,84 +6053,113 @@ BOOL LLVolumeFace::createUnCutCubeCap(LLVolume* volume, BOOL partial_build) num_vertices = (grid_size+1)*(grid_size+1); num_indices = quad_count * 4; - LLVector3& min = mExtents[0]; - LLVector3& max = mExtents[1]; + LLVector4a& min = mExtents[0]; + LLVector4a& max = mExtents[1]; S32 offset = 0; if (mTypeMask & TOP_MASK) + { offset = (max_t-1) * max_s; + } else + { offset = mBeginS; + } + + { + VertexData corners[4]; + VertexData baseVert; + for(S32 t = 0; t < 4; t++) + { + corners[t].getPosition().load3( mesh[offset + (grid_size*t)].mPos.mV); + corners[t].mTexCoord.mV[0] = profile[grid_size*t].mV[0]+0.5f; + corners[t].mTexCoord.mV[1] = 0.5f - profile[grid_size*t].mV[1]; + } + + { + LLVector4a lhs; + lhs.setSub(corners[1].getPosition(), corners[0].getPosition()); + LLVector4a rhs; + rhs.setSub(corners[2].getPosition(), corners[1].getPosition()); + baseVert.getNormal().setCross3(lhs, rhs); + baseVert.getNormal().normalize3fast(); + } + + if(!(mTypeMask & TOP_MASK)) + { + baseVert.getNormal().mul(-1.0f); + } + else + { + //Swap the UVs on the U(X) axis for top face + LLVector2 swap; + swap = corners[0].mTexCoord; + corners[0].mTexCoord=corners[3].mTexCoord; + corners[3].mTexCoord=swap; + swap = corners[1].mTexCoord; + corners[1].mTexCoord=corners[2].mTexCoord; + corners[2].mTexCoord=swap; + } - VertexData corners[4]; - VertexData baseVert; - for(int t = 0; t < 4; t++){ - corners[t].mPosition = mesh[offset + (grid_size*t)].mPos; - corners[t].mTexCoord.mV[0] = profile[grid_size*t].mV[0]+0.5f; - corners[t].mTexCoord.mV[1] = 0.5f - profile[grid_size*t].mV[1]; - } - baseVert.mNormal = - ((corners[1].mPosition-corners[0].mPosition) % - (corners[2].mPosition-corners[1].mPosition)); - baseVert.mNormal.normVec(); - if(!(mTypeMask & TOP_MASK)){ - baseVert.mNormal *= -1.0f; - }else{ - //Swap the UVs on the U(X) axis for top face - LLVector2 swap; - swap = corners[0].mTexCoord; - corners[0].mTexCoord=corners[3].mTexCoord; - corners[3].mTexCoord=swap; - swap = corners[1].mTexCoord; - corners[1].mTexCoord=corners[2].mTexCoord; - corners[2].mTexCoord=swap; - } - baseVert.mBinormal = calc_binormal_from_triangle( - corners[0].mPosition, corners[0].mTexCoord, - corners[1].mPosition, corners[1].mTexCoord, - corners[2].mPosition, corners[2].mTexCoord); - for(int t = 0; t < 4; t++){ - corners[t].mBinormal = baseVert.mBinormal; - corners[t].mNormal = baseVert.mNormal; - } - mHasBinormals = TRUE; + LLVector4a binormal; + + calc_binormal_from_triangle( binormal, + corners[0].getPosition(), corners[0].mTexCoord, + corners[1].getPosition(), corners[1].mTexCoord, + corners[2].getPosition(), corners[2].mTexCoord); + + binormal.normalize3fast(); - if (partial_build) - { - mVertices.clear(); - } + S32 size = (grid_size+1)*(grid_size+1); + resizeVertices(size); + allocateBinormals(size); - S32 vtop = mVertices.size(); - for(int gx = 0;gxsetAdd(min, max); + mCenter->mul(0.5f); + } if (!partial_build) { -#if GEN_TRI_STRIP - mTriStrip.clear(); -#endif + resizeIndices(grid_size*grid_size*6); + + U16* out = mIndices; + S32 idxs[] = {0,1,(grid_size+1)+1,(grid_size+1)+1,(grid_size+1),0}; for(S32 gx = 0;gx=0;i--) { - mIndices.push_back(vtop+(gy*(grid_size+1))+gx+idxs[i]); - } - -#if GEN_TRI_STRIP - if (gy == 0) - { - mTriStrip.push_back((gx+1)*(grid_size+1)); - mTriStrip.push_back((gx+1)*(grid_size+1)); - mTriStrip.push_back(gx*(grid_size+1)); - } - - mTriStrip.push_back(gy+1+(gx+1)*(grid_size+1)); - mTriStrip.push_back(gy+1+gx*(grid_size+1)); - - - if (gy == grid_size-1) - { - mTriStrip.push_back(gy+1+gx*(grid_size+1)); - } -#endif + *out++ = ((gy*(grid_size+1))+gx+idxs[i]); + } } else { for(S32 i=0;i<6;i++) { - mIndices.push_back(vtop+(gy*(grid_size+1))+gx+idxs[i]); - } - -#if GEN_TRI_STRIP - if (gy == 0) - { - mTriStrip.push_back(gx*(grid_size+1)); - mTriStrip.push_back(gx*(grid_size+1)); - mTriStrip.push_back((gx+1)*(grid_size+1)); - } - - mTriStrip.push_back(gy+1+gx*(grid_size+1)); - mTriStrip.push_back(gy+1+(gx+1)*(grid_size+1)); - - if (gy == grid_size-1) - { - mTriStrip.push_back(gy+1+(gx+1)*(grid_size+1)); + *out++ = ((gy*(grid_size+1))+gx+idxs[i]); } -#endif } - } - - } - -#if GEN_TRI_STRIP - if (mTriStrip.size()%2 == 1) - { - mTriStrip.push_back(mTriStrip[mTriStrip.size()-1]); + } } -#endif } return TRUE; @@ -4658,17 +6211,31 @@ BOOL LLVolumeFace::createCap(LLVolume* volume, BOOL partial_build) num_vertices = profile.size(); num_indices = (profile.size() - 2)*3; - mVertices.resize(num_vertices); + if (!(mTypeMask & HOLLOW_MASK) && !(mTypeMask & OPEN_MASK)) + { + resizeVertices(num_vertices+1); + allocateBinormals(num_vertices+1); - if (!partial_build) + if (!partial_build) + { + resizeIndices(num_indices+3); + } + } + else { - mIndices.resize(num_indices); + resizeVertices(num_vertices); + allocateBinormals(num_vertices); + + if (!partial_build) + { + resizeIndices(num_indices); + } } S32 max_s = volume->getProfile().getTotal(); S32 max_t = volume->getPath().mPath.size(); - mCenter.clearVec(); + mCenter->clear(); S32 offset = 0; if (mTypeMask & TOP_MASK) @@ -4686,82 +6253,91 @@ BOOL LLVolumeFace::createCap(LLVolume* volume, BOOL partial_build) LLVector2 cuv; LLVector2 min_uv, max_uv; - LLVector3& min = mExtents[0]; - LLVector3& max = mExtents[1]; + LLVector4a& min = mExtents[0]; + LLVector4a& max = mExtents[1]; + + LLVector2* tc = (LLVector2*) mTexCoords; + LLVector4a* pos = (LLVector4a*) mPositions; + LLVector4a* norm = (LLVector4a*) mNormals; + LLVector4a* binorm = (LLVector4a*) mBinormals; // Copy the vertices into the array for (S32 i = 0; i < num_vertices; i++) { if (mTypeMask & TOP_MASK) { - mVertices[i].mTexCoord.mV[0] = profile[i].mV[0]+0.5f; - mVertices[i].mTexCoord.mV[1] = profile[i].mV[1]+0.5f; + tc[i].mV[0] = profile[i].mV[0]+0.5f; + tc[i].mV[1] = profile[i].mV[1]+0.5f; } else { // Mirror for underside. - mVertices[i].mTexCoord.mV[0] = profile[i].mV[0]+0.5f; - mVertices[i].mTexCoord.mV[1] = 0.5f - profile[i].mV[1]; + tc[i].mV[0] = profile[i].mV[0]+0.5f; + tc[i].mV[1] = 0.5f - profile[i].mV[1]; } - mVertices[i].mPosition = mesh[i + offset].mPos; + pos[i].load3(mesh[i + offset].mPos.mV); if (i == 0) { - min = max = mVertices[i].mPosition; - min_uv = max_uv = mVertices[i].mTexCoord; + max = pos[i]; + min = max; + min_uv = max_uv = tc[i]; } else { - update_min_max(min,max, mVertices[i].mPosition); - update_min_max(min_uv, max_uv, mVertices[i].mTexCoord); + update_min_max(min,max,pos[i]); + update_min_max(min_uv, max_uv, tc[i]); } } - mCenter = (min+max)*0.5f; + mCenter->setAdd(min, max); + mCenter->mul(0.5f); + cuv = (min_uv + max_uv)*0.5f; - LLVector3 binormal = calc_binormal_from_triangle( - mCenter, cuv, - mVertices[0].mPosition, mVertices[0].mTexCoord, - mVertices[1].mPosition, mVertices[1].mTexCoord); - binormal.normVec(); + LLVector4a binormal; + calc_binormal_from_triangle(binormal, + *mCenter, cuv, + pos[0], tc[0], + pos[1], tc[1]); + binormal.normalize3fast(); + + LLVector4a normal; + LLVector4a d0, d1; + - LLVector3 d0; - LLVector3 d1; - LLVector3 normal; + d0.setSub(*mCenter, pos[0]); + d1.setSub(*mCenter, pos[1]); - d0 = mCenter-mVertices[0].mPosition; - d1 = mCenter-mVertices[1].mPosition; + if (mTypeMask & TOP_MASK) + { + normal.setCross3(d0, d1); + } + else + { + normal.setCross3(d1, d0); + } - normal = (mTypeMask & TOP_MASK) ? (d0%d1) : (d1%d0); - normal.normVec(); + normal.normalize3fast(); VertexData vd; - vd.mPosition = mCenter; - vd.mNormal = normal; - vd.mBinormal = binormal; + vd.setPosition(*mCenter); vd.mTexCoord = cuv; if (!(mTypeMask & HOLLOW_MASK) && !(mTypeMask & OPEN_MASK)) { - mVertices.push_back(vd); + pos[num_vertices] = *mCenter; + tc[num_vertices] = cuv; num_vertices++; - if (!partial_build) - { - vector_append(mIndices, 3); - } } - for (S32 i = 0; i < num_vertices; i++) { - mVertices[i].mBinormal = binormal; - mVertices[i].mNormal = normal; + binorm[i].load4a(binormal.getF32ptr()); + norm[i].load4a(normal.getF32ptr()); } - mHasBinormals = TRUE; - if (partial_build) { return TRUE; @@ -4869,8 +6445,6 @@ BOOL LLVolumeFace::createCap(LLVolume* volume, BOOL partial_build) pt2--; } } - - makeTriStrip(); } else { @@ -4975,8 +6549,6 @@ BOOL LLVolumeFace::createCap(LLVolume* volume, BOOL partial_build) pt2--; } } - - makeTriStrip(); } } else @@ -4998,131 +6570,277 @@ BOOL LLVolumeFace::createCap(LLVolume* volume, BOOL partial_build) mIndices[3*i+v2] = i + 1; } -#if GEN_TRI_STRIP - //make tri strip - if (mTypeMask & OPEN_MASK) - { - makeTriStrip(); - } - else - { - S32 j = num_vertices-2; - if (mTypeMask & TOP_MASK) - { - mTriStrip.push_back(0); - for (S32 i = 0; i <= j; ++i) - { - mTriStrip.push_back(i); - if (i != j) - { - mTriStrip.push_back(j); - } - --j; - } - } - else - { - mTriStrip.push_back(j); - for (S32 i = 0; i <= j; ++i) - { - if (i != j) - { - mTriStrip.push_back(j); - } - mTriStrip.push_back(i); - --j; - } - } - - mTriStrip.push_back(mTriStrip[mTriStrip.size()-1]); - if (mTriStrip.size()%2 == 1) - { - mTriStrip.push_back(mTriStrip[mTriStrip.size()-1]); - } - } -#endif } return TRUE; } -void LLVolumeFace::makeTriStrip() +void LLVolumeFace::createBinormals() { -#if GEN_TRI_STRIP - for (U32 i = 0; i < mIndices.size(); i+=3) + LLMemType m1(LLMemType::MTYPE_VOLUME); + + if (!mBinormals) { - U16 i0 = mIndices[i]; - U16 i1 = mIndices[i+1]; - U16 i2 = mIndices[i+2]; + allocateBinormals(mNumVertices); - if ((i/3)%2 == 1) - { - mTriStrip.push_back(i0); - mTriStrip.push_back(i0); - mTriStrip.push_back(i1); - mTriStrip.push_back(i2); - mTriStrip.push_back(i2); - } - else + //generate binormals + LLVector4a* pos = mPositions; + LLVector2* tc = (LLVector2*) mTexCoords; + LLVector4a* binorm = (LLVector4a*) mBinormals; + + LLVector4a* end = mBinormals+mNumVertices; + while (binorm < end) { - mTriStrip.push_back(i2); - mTriStrip.push_back(i2); - mTriStrip.push_back(i1); - mTriStrip.push_back(i0); - mTriStrip.push_back(i0); + (*binorm++).clear(); } - } - if (mTriStrip.size()%2 == 1) - { - mTriStrip.push_back(mTriStrip[mTriStrip.size()-1]); - } -#endif -} + binorm = mBinormals; -void LLVolumeFace::createBinormals() -{ - LLMemType m1(LLMemType::MTYPE_VOLUME); - - if (!mHasBinormals) - { - //generate binormals - for (U32 i = 0; i < mIndices.size()/3; i++) + for (U32 i = 0; i < mNumIndices/3; i++) { //for each triangle - const VertexData& v0 = mVertices[mIndices[i*3+0]]; - const VertexData& v1 = mVertices[mIndices[i*3+1]]; - const VertexData& v2 = mVertices[mIndices[i*3+2]]; + const U16& i0 = mIndices[i*3+0]; + const U16& i1 = mIndices[i*3+1]; + const U16& i2 = mIndices[i*3+2]; //calculate binormal - LLVector3 binorm = calc_binormal_from_triangle(v0.mPosition, v0.mTexCoord, - v1.mPosition, v1.mTexCoord, - v2.mPosition, v2.mTexCoord); + LLVector4a binormal; + calc_binormal_from_triangle(binormal, + pos[i0], tc[i0], + pos[i1], tc[i1], + pos[i2], tc[i2]); - for (U32 j = 0; j < 3; j++) - { //add triangle normal to vertices - mVertices[mIndices[i*3+j]].mBinormal += binorm; // * (weight_sum - d[j])/weight_sum; - } + + //add triangle normal to vertices + binorm[i0].add(binormal); + binorm[i1].add(binormal); + binorm[i2].add(binormal); //even out quad contributions if (i % 2 == 0) { - mVertices[mIndices[i*3+2]].mBinormal += binorm; + binorm[i2].add(binormal); } else { - mVertices[mIndices[i*3+1]].mBinormal += binorm; + binorm[i1].add(binormal); } } //normalize binormals - for (U32 i = 0; i < mVertices.size(); i++) + for (U32 i = 0; i < mNumVertices; i++) + { + binorm[i].normalize3fast(); + //bump map/planar projection code requires normals to be normalized + mNormals[i].normalize3fast(); + } + } +} + +void LLVolumeFace::resizeVertices(S32 num_verts) +{ + free(mPositions); + free(mNormals); + free(mBinormals); + free(mTexCoords); + + mBinormals = NULL; + + if (num_verts) + { + mPositions = (LLVector4a*) malloc(sizeof(LLVector4a)*num_verts); + assert_aligned(mPositions, 16); + mNormals = (LLVector4a*) malloc(sizeof(LLVector4a)*num_verts); + assert_aligned(mNormals, 16); + + //pad texture coordinate block end to allow for QWORD reads + S32 size = ((num_verts*sizeof(LLVector2)) + 0xF) & ~0xF; + mTexCoords = (LLVector2*) malloc(size); + assert_aligned(mTexCoords, 16); + } + else + { + mPositions = NULL; + mNormals = NULL; + mTexCoords = NULL; + } + + mNumVertices = num_verts; +} + +void LLVolumeFace::pushVertex(const LLVolumeFace::VertexData& cv) +{ + pushVertex(cv.getPosition(), cv.getNormal(), cv.mTexCoord); +} + +void LLVolumeFace::pushVertex(const LLVector4a& pos, const LLVector4a& norm, const LLVector2& tc) +{ + S32 new_verts = mNumVertices+1; + S32 new_size = new_verts*16; +// S32 old_size = mNumVertices*16; + + //positions + mPositions = (LLVector4a*) realloc(mPositions, new_size); + + //normals + mNormals = (LLVector4a*) realloc(mNormals, new_size); + + //tex coords + new_size = ((new_verts*8)+0xF) & ~0xF; + mTexCoords = (LLVector2*) realloc(mTexCoords, new_size); + + + //just clear binormals + free(mBinormals); + mBinormals = NULL; + + mPositions[mNumVertices] = pos; + mNormals[mNumVertices] = norm; + mTexCoords[mNumVertices] = tc; + + mNumVertices++; +} + +void LLVolumeFace::allocateBinormals(S32 num_verts) +{ + free(mBinormals); + mBinormals = (LLVector4a*) malloc(sizeof(LLVector4a)*num_verts); +} + +void LLVolumeFace::allocateWeights(S32 num_verts) +{ + free(mWeights); + mWeights = (LLVector4a*) malloc(sizeof(LLVector4a)*num_verts); +} + +void LLVolumeFace::resizeIndices(S32 num_indices) +{ + free(mIndices); + + if (num_indices) + { + //pad index block end to allow for QWORD reads + S32 size = ((num_indices*sizeof(U16)) + 0xF) & ~0xF; + + mIndices = (U16*) malloc(size); + } + else + { + mIndices = NULL; + } + + mNumIndices = num_indices; +} + +void LLVolumeFace::pushIndex(const U16& idx) +{ + S32 new_count = mNumIndices + 1; + S32 new_size = ((new_count*2)+0xF) & ~0xF; + + S32 old_size = ((mNumIndices*2)+0xF) & ~0xF; + if (new_size != old_size) + { + mIndices = (U16*) realloc(mIndices, new_size); + } + + mIndices[mNumIndices++] = idx; +} + +void LLVolumeFace::fillFromLegacyData(std::vector& v, std::vector& idx) +{ + resizeVertices(v.size()); + resizeIndices(idx.size()); + + for (U32 i = 0; i < v.size(); ++i) + { + mPositions[i] = v[i].getPosition(); + mNormals[i] = v[i].getNormal(); + mTexCoords[i] = v[i].mTexCoord; + } + + for (U32 i = 0; i < idx.size(); ++i) + { + mIndices[i] = idx[i]; + } +} + +void LLVolumeFace::appendFace(const LLVolumeFace& face, LLMatrix4& mat_in, LLMatrix4& norm_mat_in) +{ + U16 offset = mNumVertices; + + S32 new_count = face.mNumVertices + mNumVertices; + + if (new_count > 65536) + { + llerrs << "Cannot append face -- 16-bit overflow will occur." << llendl; + } + + if (face.mNumVertices == 0) + { + llerrs << "Cannot append empty face." << llendl; + } + + //allocate new buffer space + mPositions = (LLVector4a*) realloc(mPositions, new_count*sizeof(LLVector4a)); + assert_aligned(mPositions, 16); + mNormals = (LLVector4a*) realloc(mNormals, new_count*sizeof(LLVector4a)); + assert_aligned(mNormals, 16); + mTexCoords = (LLVector2*) realloc(mTexCoords, (new_count*sizeof(LLVector2)+0xF) & ~0xF); + assert_aligned(mTexCoords, 16); + + mNumVertices = new_count; + + //get destination address of appended face + LLVector4a* dst_pos = mPositions+offset; + LLVector2* dst_tc = mTexCoords+offset; + LLVector4a* dst_norm = mNormals+offset; + + //get source addresses of appended face + const LLVector4a* src_pos = face.mPositions; + const LLVector2* src_tc = face.mTexCoords; + const LLVector4a* src_norm = face.mNormals; + + //load aligned matrices + LLMatrix4a mat, norm_mat; + mat.loadu(mat_in); + norm_mat.loadu(norm_mat_in); + + for (U32 i = 0; i < face.mNumVertices; ++i) + { + //transform appended face position and store + mat.affineTransform(src_pos[i], dst_pos[i]); + + //transform appended face normal and store + norm_mat.rotate(src_norm[i], dst_norm[i]); + dst_norm[i].normalize3fast(); + + //copy appended face texture coordinate + dst_tc[i] = src_tc[i]; + + if (offset == 0 && i == 0) + { //initialize bounding box + mExtents[0] = mExtents[1] = dst_pos[i]; + } + else { - mVertices[i].mBinormal.normVec(); - mVertices[i].mNormal.normVec(); + //stretch bounding box + update_min_max(mExtents[0], mExtents[1], dst_pos[i]); } + } + - mHasBinormals = TRUE; + new_count = mNumIndices + face.mNumIndices; + + //allocate new index buffer + mIndices = (U16*) realloc(mIndices, (new_count*sizeof(U16)+0xF) & ~0xF); + + //get destination address into new index buffer + U16* dst_idx = mIndices+mNumIndices; + mNumIndices = new_count; + + for (U32 i = 0; i < face.mNumIndices; ++i) + { //copy indices, offsetting by old vertex count + dst_idx[i] = face.mIndices[i]+offset; } } @@ -5152,18 +6870,20 @@ BOOL LLVolumeFace::createSide(LLVolume* volume, BOOL partial_build) num_vertices = mNumS*mNumT; num_indices = (mNumS-1)*(mNumT-1)*6; - mVertices.resize(num_vertices); - if (!partial_build) { - mIndices.resize(num_indices); - mEdge.resize(num_indices); - } - else - { - mHasBinormals = FALSE; + resizeVertices(num_vertices); + resizeIndices(num_indices); + + if ((volume->getParams().getSculptType() & LL_SCULPT_TYPE_MASK) != LL_SCULPT_TYPE_MESH) + { + mEdge.resize(num_indices); + } } + LLVector4a* pos = (LLVector4a*) mPositions; + LLVector4a* norm = (LLVector4a*) mNormals; + LLVector2* tc = (LLVector2*) mTexCoords; S32 begin_stex = llfloor( profile[mBeginS].mV[2] ); S32 num_s = ((mTypeMask & INNER_MASK) && (mTypeMask & FLAT_MASK) && mNumS > 2) ? mNumS/2 : mNumS; @@ -5214,21 +6934,20 @@ BOOL LLVolumeFace::createSide(LLVolume* volume, BOOL partial_build) i = mBeginS + s + max_s*t; } - mVertices[cur_vertex].mPosition = mesh[i].mPos; - mVertices[cur_vertex].mTexCoord = LLVector2(ss,tt); + pos[cur_vertex].load3(mesh[i].mPos.mV); + tc[cur_vertex] = LLVector2(ss,tt); - mVertices[cur_vertex].mNormal = LLVector3(0,0,0); - mVertices[cur_vertex].mBinormal = LLVector3(0,0,0); - + norm[cur_vertex].clear(); cur_vertex++; if ((mTypeMask & INNER_MASK) && (mTypeMask & FLAT_MASK) && mNumS > 2 && s > 0) { - mVertices[cur_vertex].mPosition = mesh[i].mPos; - mVertices[cur_vertex].mTexCoord = LLVector2(ss,tt); + + pos[cur_vertex].load3(mesh[i].mPos.mV); + tc[cur_vertex] = LLVector2(ss,tt); - mVertices[cur_vertex].mNormal = LLVector3(0,0,0); - mVertices[cur_vertex].mBinormal = LLVector3(0,0,0); + norm[cur_vertex].clear(); + cur_vertex++; } } @@ -5246,29 +6965,29 @@ BOOL LLVolumeFace::createSide(LLVolume* volume, BOOL partial_build) i = mBeginS + s + max_s*t; ss = profile[mBeginS + s].mV[2] - begin_stex; - mVertices[cur_vertex].mPosition = mesh[i].mPos; - mVertices[cur_vertex].mTexCoord = LLVector2(ss,tt); - - mVertices[cur_vertex].mNormal = LLVector3(0,0,0); - mVertices[cur_vertex].mBinormal = LLVector3(0,0,0); - + pos[cur_vertex].load3(mesh[i].mPos.mV); + tc[cur_vertex] = LLVector2(ss,tt); + norm[cur_vertex].clear(); + cur_vertex++; } } //get bounding box for this side - LLVector3& face_min = mExtents[0]; - LLVector3& face_max = mExtents[1]; - mCenter.clearVec(); + LLVector4a& face_min = mExtents[0]; + LLVector4a& face_max = mExtents[1]; + mCenter->clear(); - face_min = face_max = mVertices[0].mPosition; - for (U32 i = 1; i < mVertices.size(); ++i) + face_min = face_max = pos[0]; + + for (U32 i = 1; i < mNumVertices; ++i) { - update_min_max(face_min, face_max, mVertices[i].mPosition); + update_min_max(face_min, face_max, pos[i]); } - mCenter = (face_min + face_max) * 0.5f; + mCenter->setAdd(face_min, face_max); + mCenter->mul(0.5f); S32 cur_index = 0; S32 cur_edge = 0; @@ -5276,18 +6995,9 @@ BOOL LLVolumeFace::createSide(LLVolume* volume, BOOL partial_build) if (!partial_build) { -#if GEN_TRI_STRIP - mTriStrip.clear(); -#endif - // Now we generate the indices. for (t = 0; t < (mNumT-1); t++) { -#if GEN_TRI_STRIP - //prepend terminating index to strip - mTriStrip.push_back(mNumS*t); -#endif - for (s = 0; s < (mNumS-1); s++) { mIndices[cur_index++] = s + mNumS*t; //bottom left @@ -5297,16 +7007,6 @@ BOOL LLVolumeFace::createSide(LLVolume* volume, BOOL partial_build) mIndices[cur_index++] = s+1 + mNumS*t; //bottom right mIndices[cur_index++] = s+1 + mNumS*(t+1); //top right -#if GEN_TRI_STRIP - if (s == 0) - { - mTriStrip.push_back(s+mNumS*t); - mTriStrip.push_back(s+mNumS*(t+1)); - } - mTriStrip.push_back(s+1+mNumS*t); - mTriStrip.push_back(s+1+mNumS*(t+1)); -#endif - mEdge[cur_edge++] = (mNumS-1)*2*t+s*2+1; //bottom left/top right neighbor face if (t < mNumT-2) { //top right/top left neighbor face mEdge[cur_edge++] = (mNumS-1)*2*(t+1)+s*2+1; @@ -5347,52 +7047,61 @@ BOOL LLVolumeFace::createSide(LLVolume* volume, BOOL partial_build) } mEdge[cur_edge++] = (mNumS-1)*2*t+s*2; //top right/bottom left neighbor face } -#if GEN_TRI_STRIP - //append terminating vertex to strip - mTriStrip.push_back(mNumS-1+mNumS*(t+1)); -#endif } + } -#if GEN_TRI_STRIP - if (mTriStrip.size()%2 == 1) - { - mTriStrip.push_back(mTriStrip[mTriStrip.size()-1]); - } -#endif + //clear normals + for (U32 i = 0; i < mNumVertices; i++) + { + mNormals[i].clear(); } //generate normals - for (U32 i = 0; i < mIndices.size()/3; i++) //for each triangle + for (U32 i = 0; i < mNumIndices/3; i++) //for each triangle { const U16* idx = &(mIndices[i*3]); - - VertexData* v[] = - { &mVertices[idx[0]], &mVertices[idx[1]], &mVertices[idx[2]] }; - - //calculate triangle normal - LLVector3 norm = (v[0]->mPosition-v[1]->mPosition) % (v[0]->mPosition-v[2]->mPosition); + - v[0]->mNormal += norm; - v[1]->mNormal += norm; - v[2]->mNormal += norm; + LLVector4a* v[] = + { pos+idx[0], pos+idx[1], pos+idx[2] }; + + LLVector4a* n[] = + { norm+idx[0], norm+idx[1], norm+idx[2] }; + + //calculate triangle normal + LLVector4a a, b, c; + + a.setSub(*v[0], *v[1]); + b.setSub(*v[0], *v[2]); + c.setCross3(a,b); + n[0]->add(c); + n[1]->add(c); + n[2]->add(c); + //even out quad contributions - v[i%2+1]->mNormal += norm; + n[i%2+1]->add(c); } // adjust normals based on wrapping and stitching - BOOL s_bottom_converges = ((mVertices[0].mPosition - mVertices[mNumS*(mNumT-2)].mPosition).magVecSquared() < 0.000001f); - BOOL s_top_converges = ((mVertices[mNumS-1].mPosition - mVertices[mNumS*(mNumT-2)+mNumS-1].mPosition).magVecSquared() < 0.000001f); + LLVector4a top; + top.setSub(pos[0], pos[mNumS*(mNumT-2)]); + BOOL s_bottom_converges = (top.dot3(top) < 0.000001f); + + top.setSub(pos[mNumS-1], pos[mNumS*(mNumT-2)+mNumS-1]); + BOOL s_top_converges = (top.dot3(top) < 0.000001f); + if (sculpt_stitching == LL_SCULPT_TYPE_NONE) // logic for non-sculpt volumes { if (volume->getPath().isOpen() == FALSE) { //wrap normals on T for (S32 i = 0; i < mNumS; i++) { - LLVector3 norm = mVertices[i].mNormal + mVertices[mNumS*(mNumT-1)+i].mNormal; - mVertices[i].mNormal = norm; - mVertices[mNumS*(mNumT-1)+i].mNormal = norm; + LLVector4a n; + n.setAdd(norm[i], norm[mNumS*(mNumT-1)+i]); + norm[i] = n; + norm[mNumS*(mNumT-1)+i] = n; } } @@ -5400,9 +7109,10 @@ BOOL LLVolumeFace::createSide(LLVolume* volume, BOOL partial_build) { //wrap normals on S for (S32 i = 0; i < mNumT; i++) { - LLVector3 norm = mVertices[mNumS*i].mNormal + mVertices[mNumS*i+mNumS-1].mNormal; - mVertices[mNumS * i].mNormal = norm; - mVertices[mNumS * i+mNumS-1].mNormal = norm; + LLVector4a n; + n.setAdd(norm[mNumS*i], norm[mNumS*i+mNumS-1]); + norm[mNumS * i] = n; + norm[mNumS * i+mNumS-1] = n; } } @@ -5413,7 +7123,7 @@ BOOL LLVolumeFace::createSide(LLVolume* volume, BOOL partial_build) { //all lower S have same normal for (S32 i = 0; i < mNumT; i++) { - mVertices[mNumS*i].mNormal = LLVector3(1,0,0); + norm[mNumS*i].set(1,0,0); } } @@ -5421,12 +7131,11 @@ BOOL LLVolumeFace::createSide(LLVolume* volume, BOOL partial_build) { //all upper S have same normal for (S32 i = 0; i < mNumT; i++) { - mVertices[mNumS*i+mNumS-1].mNormal = LLVector3(-1,0,0); + norm[mNumS*i+mNumS-1].set(-1,0,0); } } } } - else // logic for sculpt volumes { BOOL average_poles = FALSE; @@ -5449,30 +7158,33 @@ BOOL LLVolumeFace::createSide(LLVolume* volume, BOOL partial_build) { // average normals for north pole - LLVector3 average(0.0, 0.0, 0.0); + LLVector4a average; + average.clear(); + for (S32 i = 0; i < mNumS; i++) { - average += mVertices[i].mNormal; + average.add(norm[i]); } // set average for (S32 i = 0; i < mNumS; i++) { - mVertices[i].mNormal = average; + norm[i] = average; } // average normals for south pole - average = LLVector3(0.0, 0.0, 0.0); + average.clear(); + for (S32 i = 0; i < mNumS; i++) { - average += mVertices[i + mNumS * (mNumT - 1)].mNormal; + average.add(norm[i + mNumS * (mNumT - 1)]); } // set average for (S32 i = 0; i < mNumS; i++) { - mVertices[i + mNumS * (mNumT - 1)].mNormal = average; + norm[i + mNumS * (mNumT - 1)] = average; } } @@ -5482,23 +7194,22 @@ BOOL LLVolumeFace::createSide(LLVolume* volume, BOOL partial_build) { for (S32 i = 0; i < mNumT; i++) { - LLVector3 norm = mVertices[mNumS*i].mNormal + mVertices[mNumS*i+mNumS-1].mNormal; - mVertices[mNumS * i].mNormal = norm; - mVertices[mNumS * i+mNumS-1].mNormal = norm; + LLVector4a n; + n.setAdd(norm[mNumS*i], norm[mNumS*i+mNumS-1]); + norm[mNumS * i] = n; + norm[mNumS * i+mNumS-1] = n; } } - - if (wrap_t) { for (S32 i = 0; i < mNumS; i++) { - LLVector3 norm = mVertices[i].mNormal + mVertices[mNumS*(mNumT-1)+i].mNormal; - mVertices[i].mNormal = norm; - mVertices[mNumS*(mNumT-1)+i].mNormal = norm; + LLVector4a n; + n.setAdd(norm[i], norm[mNumS*(mNumT-1)+i]); + norm[i] = n; + norm[mNumS*(mNumT-1)+i] = n; } - } } @@ -5508,41 +7219,51 @@ BOOL LLVolumeFace::createSide(LLVolume* volume, BOOL partial_build) // Finds binormal based on three vertices with texture coordinates. // Fills in dummy values if the triangle has degenerate texture coordinates. -LLVector3 calc_binormal_from_triangle( - const LLVector3& pos0, +void calc_binormal_from_triangle(LLVector4a& binormal, + + const LLVector4a& pos0, const LLVector2& tex0, - const LLVector3& pos1, + const LLVector4a& pos1, const LLVector2& tex1, - const LLVector3& pos2, + const LLVector4a& pos2, const LLVector2& tex2) { - LLVector3 rx0( pos0.mV[VX], tex0.mV[VX], tex0.mV[VY] ); - LLVector3 rx1( pos1.mV[VX], tex1.mV[VX], tex1.mV[VY] ); - LLVector3 rx2( pos2.mV[VX], tex2.mV[VX], tex2.mV[VY] ); + LLVector4a rx0( pos0[VX], tex0.mV[VX], tex0.mV[VY] ); + LLVector4a rx1( pos1[VX], tex1.mV[VX], tex1.mV[VY] ); + LLVector4a rx2( pos2[VX], tex2.mV[VX], tex2.mV[VY] ); - LLVector3 ry0( pos0.mV[VY], tex0.mV[VX], tex0.mV[VY] ); - LLVector3 ry1( pos1.mV[VY], tex1.mV[VX], tex1.mV[VY] ); - LLVector3 ry2( pos2.mV[VY], tex2.mV[VX], tex2.mV[VY] ); + LLVector4a ry0( pos0[VY], tex0.mV[VX], tex0.mV[VY] ); + LLVector4a ry1( pos1[VY], tex1.mV[VX], tex1.mV[VY] ); + LLVector4a ry2( pos2[VY], tex2.mV[VX], tex2.mV[VY] ); - LLVector3 rz0( pos0.mV[VZ], tex0.mV[VX], tex0.mV[VY] ); - LLVector3 rz1( pos1.mV[VZ], tex1.mV[VX], tex1.mV[VY] ); - LLVector3 rz2( pos2.mV[VZ], tex2.mV[VX], tex2.mV[VY] ); + LLVector4a rz0( pos0[VZ], tex0.mV[VX], tex0.mV[VY] ); + LLVector4a rz1( pos1[VZ], tex1.mV[VX], tex1.mV[VY] ); + LLVector4a rz2( pos2[VZ], tex2.mV[VX], tex2.mV[VY] ); - LLVector3 r0 = (rx0 - rx1) % (rx0 - rx2); - LLVector3 r1 = (ry0 - ry1) % (ry0 - ry2); - LLVector3 r2 = (rz0 - rz1) % (rz0 - rz2); + LLVector4a lhs, rhs; + + LLVector4a r0; + lhs.setSub(rx0, rx1); rhs.setSub(rx0, rx2); + r0.setCross3(lhs, rhs); + + LLVector4a r1; + lhs.setSub(ry0, ry1); rhs.setSub(ry0, ry2); + r1.setCross3(lhs, rhs); + + LLVector4a r2; + lhs.setSub(rz0, rz1); rhs.setSub(rz0, rz2); + r2.setCross3(lhs, rhs); - if( r0.mV[VX] && r1.mV[VX] && r2.mV[VX] ) + if( r0[VX] && r1[VX] && r2[VX] ) { - LLVector3 binormal( - -r0.mV[VZ] / r0.mV[VX], - -r1.mV[VZ] / r1.mV[VX], - -r2.mV[VZ] / r2.mV[VX]); + binormal.set( + -r0[VZ] / r0[VX], + -r1[VZ] / r1[VX], + -r2[VZ] / r2[VX]); // binormal.normVec(); - return binormal; } else { - return LLVector3( 0, 1 , 0 ); + binormal.set( 0, 1 , 0 ); } } diff --git a/indra/llmath/llvolume.h b/indra/llmath/llvolume.h index 4a25f586da..eceaced9e2 100644 --- a/indra/llmath/llvolume.h +++ b/indra/llmath/llvolume.h @@ -1,1106 +1,1106 @@ -/** - * @file llvolume.h - * @brief LLVolume base class. - * - * $LicenseInfo:firstyear=2002&license=viewerlgpl$ - * Second Life Viewer Source Code - * Copyright (C) 2010, Linden Research, Inc. - * - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; - * version 2.1 of the License only. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with this library; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - * - * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA - * $/LicenseInfo$ - */ - -#ifndef LL_LLVOLUME_H -#define LL_LLVOLUME_H - -#include - -class LLProfileParams; -class LLPathParams; -class LLVolumeParams; -class LLProfile; -class LLPath; - -template class LLOctreeNode; - -class LLVector4a; -class LLVolumeFace; -class LLVolume; -class LLVolumeTriangle; - -#include "lldarray.h" -#include "lluuid.h" -#include "v4color.h" -//#include "vmath.h" -#include "v2math.h" -#include "v3math.h" -#include "v3dmath.h" -#include "v4math.h" -#include "llquaternion.h" -#include "llstrider.h" -#include "v4coloru.h" -#include "llrefcount.h" -#include "llfile.h" - -//============================================================================ - -const S32 MIN_DETAIL_FACES = 6; -const S32 MIN_LOD = 0; -const S32 MAX_LOD = 3; - -// These are defined here but are not enforced at this level, -// rather they are here for the convenience of code that uses -// the LLVolume class. -const F32 MIN_VOLUME_PROFILE_WIDTH = 0.05f; -const F32 MIN_VOLUME_PATH_WIDTH = 0.05f; - -const F32 CUT_QUANTA = 0.00002f; -const F32 SCALE_QUANTA = 0.01f; -const F32 SHEAR_QUANTA = 0.01f; -const F32 TAPER_QUANTA = 0.01f; -const F32 REV_QUANTA = 0.015f; -const F32 HOLLOW_QUANTA = 0.00002f; - -const S32 MAX_VOLUME_TRIANGLE_INDICES = 10000; - -//============================================================================ - -// useful masks -const LLPCode LL_PCODE_HOLLOW_MASK = 0x80; // has a thickness -const LLPCode LL_PCODE_SEGMENT_MASK = 0x40; // segments (1 angle) -const LLPCode LL_PCODE_PATCH_MASK = 0x20; // segmented segments (2 angles) -const LLPCode LL_PCODE_HEMI_MASK = 0x10; // half-primitives get their own type per PR's dictum -const LLPCode LL_PCODE_BASE_MASK = 0x0F; - - // primitive shapes -const LLPCode LL_PCODE_CUBE = 1; -const LLPCode LL_PCODE_PRISM = 2; -const LLPCode LL_PCODE_TETRAHEDRON = 3; -const LLPCode LL_PCODE_PYRAMID = 4; -const LLPCode LL_PCODE_CYLINDER = 5; -const LLPCode LL_PCODE_CONE = 6; -const LLPCode LL_PCODE_SPHERE = 7; -const LLPCode LL_PCODE_TORUS = 8; -const LLPCode LL_PCODE_VOLUME = 9; - - // surfaces -//const LLPCode LL_PCODE_SURFACE_TRIANGLE = 10; -//const LLPCode LL_PCODE_SURFACE_SQUARE = 11; -//const LLPCode LL_PCODE_SURFACE_DISC = 12; - -const LLPCode LL_PCODE_APP = 14; // App specific pcode (for viewer/sim side only objects) -const LLPCode LL_PCODE_LEGACY = 15; - -// Pcodes for legacy objects -//const LLPCode LL_PCODE_LEGACY_ATOR = 0x10 | LL_PCODE_LEGACY; // ATOR -const LLPCode LL_PCODE_LEGACY_AVATAR = 0x20 | LL_PCODE_LEGACY; // PLAYER -//const LLPCode LL_PCODE_LEGACY_BIRD = 0x30 | LL_PCODE_LEGACY; // BIRD -//const LLPCode LL_PCODE_LEGACY_DEMON = 0x40 | LL_PCODE_LEGACY; // DEMON -const LLPCode LL_PCODE_LEGACY_GRASS = 0x50 | LL_PCODE_LEGACY; // GRASS -const LLPCode LL_PCODE_TREE_NEW = 0x60 | LL_PCODE_LEGACY; // new trees -//const LLPCode LL_PCODE_LEGACY_ORACLE = 0x70 | LL_PCODE_LEGACY; // ORACLE -const LLPCode LL_PCODE_LEGACY_PART_SYS = 0x80 | LL_PCODE_LEGACY; // PART_SYS -const LLPCode LL_PCODE_LEGACY_ROCK = 0x90 | LL_PCODE_LEGACY; // ROCK -//const LLPCode LL_PCODE_LEGACY_SHOT = 0xA0 | LL_PCODE_LEGACY; // BASIC_SHOT -//const LLPCode LL_PCODE_LEGACY_SHOT_BIG = 0xB0 | LL_PCODE_LEGACY; -//const LLPCode LL_PCODE_LEGACY_SMOKE = 0xC0 | LL_PCODE_LEGACY; // SMOKE -//const LLPCode LL_PCODE_LEGACY_SPARK = 0xD0 | LL_PCODE_LEGACY;// SPARK -const LLPCode LL_PCODE_LEGACY_TEXT_BUBBLE = 0xE0 | LL_PCODE_LEGACY; // TEXTBUBBLE -const LLPCode LL_PCODE_LEGACY_TREE = 0xF0 | LL_PCODE_LEGACY; // TREE - - // hemis -const LLPCode LL_PCODE_CYLINDER_HEMI = LL_PCODE_CYLINDER | LL_PCODE_HEMI_MASK; -const LLPCode LL_PCODE_CONE_HEMI = LL_PCODE_CONE | LL_PCODE_HEMI_MASK; -const LLPCode LL_PCODE_SPHERE_HEMI = LL_PCODE_SPHERE | LL_PCODE_HEMI_MASK; -const LLPCode LL_PCODE_TORUS_HEMI = LL_PCODE_TORUS | LL_PCODE_HEMI_MASK; - - -// Volumes consist of a profile at the base that is swept around -// a path to make a volume. -// The profile code -const U8 LL_PCODE_PROFILE_MASK = 0x0f; -const U8 LL_PCODE_PROFILE_MIN = 0x00; -const U8 LL_PCODE_PROFILE_CIRCLE = 0x00; -const U8 LL_PCODE_PROFILE_SQUARE = 0x01; -const U8 LL_PCODE_PROFILE_ISOTRI = 0x02; -const U8 LL_PCODE_PROFILE_EQUALTRI = 0x03; -const U8 LL_PCODE_PROFILE_RIGHTTRI = 0x04; -const U8 LL_PCODE_PROFILE_CIRCLE_HALF = 0x05; -const U8 LL_PCODE_PROFILE_MAX = 0x05; - -// Stored in the profile byte -const U8 LL_PCODE_HOLE_MASK = 0xf0; -const U8 LL_PCODE_HOLE_MIN = 0x00; -const U8 LL_PCODE_HOLE_SAME = 0x00; // same as outside profile -const U8 LL_PCODE_HOLE_CIRCLE = 0x10; -const U8 LL_PCODE_HOLE_SQUARE = 0x20; -const U8 LL_PCODE_HOLE_TRIANGLE = 0x30; -const U8 LL_PCODE_HOLE_MAX = 0x03; // min/max needs to be >> 4 of real min/max - -const U8 LL_PCODE_PATH_IGNORE = 0x00; -const U8 LL_PCODE_PATH_MIN = 0x01; // min/max needs to be >> 4 of real min/max -const U8 LL_PCODE_PATH_LINE = 0x10; -const U8 LL_PCODE_PATH_CIRCLE = 0x20; -const U8 LL_PCODE_PATH_CIRCLE2 = 0x30; -const U8 LL_PCODE_PATH_TEST = 0x40; -const U8 LL_PCODE_PATH_FLEXIBLE = 0x80; -const U8 LL_PCODE_PATH_MAX = 0x08; - -//============================================================================ - -// face identifiers -typedef U16 LLFaceID; - -const LLFaceID LL_FACE_PATH_BEGIN = 0x1 << 0; -const LLFaceID LL_FACE_PATH_END = 0x1 << 1; -const LLFaceID LL_FACE_INNER_SIDE = 0x1 << 2; -const LLFaceID LL_FACE_PROFILE_BEGIN = 0x1 << 3; -const LLFaceID LL_FACE_PROFILE_END = 0x1 << 4; -const LLFaceID LL_FACE_OUTER_SIDE_0 = 0x1 << 5; -const LLFaceID LL_FACE_OUTER_SIDE_1 = 0x1 << 6; -const LLFaceID LL_FACE_OUTER_SIDE_2 = 0x1 << 7; -const LLFaceID LL_FACE_OUTER_SIDE_3 = 0x1 << 8; - -//============================================================================ - -// sculpt types + flags - -const U8 LL_SCULPT_TYPE_NONE = 0; -const U8 LL_SCULPT_TYPE_SPHERE = 1; -const U8 LL_SCULPT_TYPE_TORUS = 2; -const U8 LL_SCULPT_TYPE_PLANE = 3; -const U8 LL_SCULPT_TYPE_CYLINDER = 4; -const U8 LL_SCULPT_TYPE_MESH = 5; -const U8 LL_SCULPT_TYPE_MASK = LL_SCULPT_TYPE_SPHERE | LL_SCULPT_TYPE_TORUS | LL_SCULPT_TYPE_PLANE | - LL_SCULPT_TYPE_CYLINDER | LL_SCULPT_TYPE_MESH; - -const U8 LL_SCULPT_FLAG_INVERT = 64; -const U8 LL_SCULPT_FLAG_MIRROR = 128; - -const S32 LL_SCULPT_MESH_MAX_FACES = 8; - -class LLProfileParams -{ -public: - LLProfileParams() - : mCurveType(LL_PCODE_PROFILE_SQUARE), - mBegin(0.f), - mEnd(1.f), - mHollow(0.f), - mCRC(0) - { - } - - LLProfileParams(U8 curve, F32 begin, F32 end, F32 hollow) - : mCurveType(curve), - mBegin(begin), - mEnd(end), - mHollow(hollow), - mCRC(0) - { - } - - LLProfileParams(U8 curve, U16 begin, U16 end, U16 hollow) - { - mCurveType = curve; - F32 temp_f32 = begin * CUT_QUANTA; - if (temp_f32 > 1.f) - { - temp_f32 = 1.f; - } - mBegin = temp_f32; - temp_f32 = end * CUT_QUANTA; - if (temp_f32 > 1.f) - { - temp_f32 = 1.f; - } - mEnd = 1.f - temp_f32; - temp_f32 = hollow * HOLLOW_QUANTA; - if (temp_f32 > 1.f) - { - temp_f32 = 1.f; - } - mHollow = temp_f32; - mCRC = 0; - } - - bool operator==(const LLProfileParams ¶ms) const; - bool operator!=(const LLProfileParams ¶ms) const; - bool operator<(const LLProfileParams ¶ms) const; - - void copyParams(const LLProfileParams ¶ms); - - BOOL importFile(LLFILE *fp); - BOOL exportFile(LLFILE *fp) const; - - BOOL importLegacyStream(std::istream& input_stream); - BOOL exportLegacyStream(std::ostream& output_stream) const; - - LLSD asLLSD() const; - operator LLSD() const { return asLLSD(); } - bool fromLLSD(LLSD& sd); - - const F32& getBegin () const { return mBegin; } - const F32& getEnd () const { return mEnd; } - const F32& getHollow() const { return mHollow; } - const U8& getCurveType () const { return mCurveType; } - - void setCurveType(const U32 type) { mCurveType = type;} - void setBegin(const F32 begin) { mBegin = (begin >= 1.0f) ? 0.0f : ((int) (begin * 100000))/100000.0f;} - void setEnd(const F32 end) { mEnd = (end <= 0.0f) ? 1.0f : ((int) (end * 100000))/100000.0f;} - void setHollow(const F32 hollow) { mHollow = ((int) (hollow * 100000))/100000.0f;} - - friend std::ostream& operator<<(std::ostream &s, const LLProfileParams &profile_params); - -protected: - // Profile params - U8 mCurveType; - F32 mBegin; - F32 mEnd; - F32 mHollow; - - U32 mCRC; -}; - -inline bool LLProfileParams::operator==(const LLProfileParams ¶ms) const -{ - return - (getCurveType() == params.getCurveType()) && - (getBegin() == params.getBegin()) && - (getEnd() == params.getEnd()) && - (getHollow() == params.getHollow()); -} - -inline bool LLProfileParams::operator!=(const LLProfileParams ¶ms) const -{ - return - (getCurveType() != params.getCurveType()) || - (getBegin() != params.getBegin()) || - (getEnd() != params.getEnd()) || - (getHollow() != params.getHollow()); -} - - -inline bool LLProfileParams::operator<(const LLProfileParams ¶ms) const -{ - if (getCurveType() != params.getCurveType()) - { - return getCurveType() < params.getCurveType(); - } - else - if (getBegin() != params.getBegin()) - { - return getBegin() < params.getBegin(); - } - else - if (getEnd() != params.getEnd()) - { - return getEnd() < params.getEnd(); - } - else - { - return getHollow() < params.getHollow(); - } -} - -#define U8_TO_F32(x) (F32)(*((S8 *)&x)) - -class LLPathParams -{ -public: - LLPathParams() - : - mCurveType(LL_PCODE_PATH_LINE), - mBegin(0.f), - mEnd(1.f), - mScale(1.f,1.f), - mShear(0.f,0.f), - mTwistBegin(0.f), - mTwistEnd(0.f), - mRadiusOffset(0.f), - mTaper(0.f,0.f), - mRevolutions(1.f), - mSkew(0.f), - mCRC(0) - { - } - - LLPathParams(U8 curve, F32 begin, F32 end, F32 scx, F32 scy, F32 shx, F32 shy, F32 twistend, F32 twistbegin, F32 radiusoffset, F32 tx, F32 ty, F32 revolutions, F32 skew) - : mCurveType(curve), - mBegin(begin), - mEnd(end), - mScale(scx,scy), - mShear(shx,shy), - mTwistBegin(twistbegin), - mTwistEnd(twistend), - mRadiusOffset(radiusoffset), - mTaper(tx,ty), - mRevolutions(revolutions), - mSkew(skew), - mCRC(0) - { - } - - LLPathParams(U8 curve, U16 begin, U16 end, U8 scx, U8 scy, U8 shx, U8 shy, U8 twistend, U8 twistbegin, U8 radiusoffset, U8 tx, U8 ty, U8 revolutions, U8 skew) - { - mCurveType = curve; - mBegin = (F32)(begin * CUT_QUANTA); - mEnd = (F32)(100.f - end) * CUT_QUANTA; - if (mEnd > 1.f) - mEnd = 1.f; - mScale.setVec((F32) (200 - scx) * SCALE_QUANTA,(F32) (200 - scy) * SCALE_QUANTA); - mShear.setVec(U8_TO_F32(shx) * SHEAR_QUANTA,U8_TO_F32(shy) * SHEAR_QUANTA); - mTwistBegin = U8_TO_F32(twistbegin) * SCALE_QUANTA; - mTwistEnd = U8_TO_F32(twistend) * SCALE_QUANTA; - mRadiusOffset = U8_TO_F32(radiusoffset) * SCALE_QUANTA; - mTaper.setVec(U8_TO_F32(tx) * TAPER_QUANTA,U8_TO_F32(ty) * TAPER_QUANTA); - mRevolutions = ((F32)revolutions) * REV_QUANTA + 1.0f; - mSkew = U8_TO_F32(skew) * SCALE_QUANTA; - - mCRC = 0; - } - - bool operator==(const LLPathParams ¶ms) const; - bool operator!=(const LLPathParams ¶ms) const; - bool operator<(const LLPathParams ¶ms) const; - - void copyParams(const LLPathParams ¶ms); - - BOOL importFile(LLFILE *fp); - BOOL exportFile(LLFILE *fp) const; - - BOOL importLegacyStream(std::istream& input_stream); - BOOL exportLegacyStream(std::ostream& output_stream) const; - - LLSD asLLSD() const; - operator LLSD() const { return asLLSD(); } - bool fromLLSD(LLSD& sd); - - const F32& getBegin() const { return mBegin; } - const F32& getEnd() const { return mEnd; } - const LLVector2 &getScale() const { return mScale; } - const F32& getScaleX() const { return mScale.mV[0]; } - const F32& getScaleY() const { return mScale.mV[1]; } - const LLVector2 getBeginScale() const; - const LLVector2 getEndScale() const; - const LLVector2 &getShear() const { return mShear; } - const F32& getShearX() const { return mShear.mV[0]; } - const F32& getShearY() const { return mShear.mV[1]; } - const U8& getCurveType () const { return mCurveType; } - - const F32& getTwistBegin() const { return mTwistBegin; } - const F32& getTwistEnd() const { return mTwistEnd; } - const F32& getTwist() const { return mTwistEnd; } // deprecated - const F32& getRadiusOffset() const { return mRadiusOffset; } - const LLVector2 &getTaper() const { return mTaper; } - const F32& getTaperX() const { return mTaper.mV[0]; } - const F32& getTaperY() const { return mTaper.mV[1]; } - const F32& getRevolutions() const { return mRevolutions; } - const F32& getSkew() const { return mSkew; } - - void setCurveType(const U8 type) { mCurveType = type; } - void setBegin(const F32 begin) { mBegin = begin; } - void setEnd(const F32 end) { mEnd = end; } - - void setScale(const F32 x, const F32 y) { mScale.setVec(x,y); } - void setScaleX(const F32 v) { mScale.mV[VX] = v; } - void setScaleY(const F32 v) { mScale.mV[VY] = v; } - void setShear(const F32 x, const F32 y) { mShear.setVec(x,y); } - void setShearX(const F32 v) { mShear.mV[VX] = v; } - void setShearY(const F32 v) { mShear.mV[VY] = v; } - - void setTwistBegin(const F32 twist_begin) { mTwistBegin = twist_begin; } - void setTwistEnd(const F32 twist_end) { mTwistEnd = twist_end; } - void setTwist(const F32 twist) { setTwistEnd(twist); } // deprecated - void setRadiusOffset(const F32 radius_offset){ mRadiusOffset = radius_offset; } - void setTaper(const F32 x, const F32 y) { mTaper.setVec(x,y); } - void setTaperX(const F32 v) { mTaper.mV[VX] = v; } - void setTaperY(const F32 v) { mTaper.mV[VY] = v; } - void setRevolutions(const F32 revolutions) { mRevolutions = revolutions; } - void setSkew(const F32 skew) { mSkew = skew; } - - friend std::ostream& operator<<(std::ostream &s, const LLPathParams &path_params); - -protected: - // Path params - U8 mCurveType; - F32 mBegin; - F32 mEnd; - LLVector2 mScale; - LLVector2 mShear; - - F32 mTwistBegin; - F32 mTwistEnd; - F32 mRadiusOffset; - LLVector2 mTaper; - F32 mRevolutions; - F32 mSkew; - - U32 mCRC; -}; - -inline bool LLPathParams::operator==(const LLPathParams ¶ms) const -{ - return - (getCurveType() == params.getCurveType()) && - (getScale() == params.getScale()) && - (getBegin() == params.getBegin()) && - (getEnd() == params.getEnd()) && - (getShear() == params.getShear()) && - (getTwist() == params.getTwist()) && - (getTwistBegin() == params.getTwistBegin()) && - (getRadiusOffset() == params.getRadiusOffset()) && - (getTaper() == params.getTaper()) && - (getRevolutions() == params.getRevolutions()) && - (getSkew() == params.getSkew()); -} - -inline bool LLPathParams::operator!=(const LLPathParams ¶ms) const -{ - return - (getCurveType() != params.getCurveType()) || - (getScale() != params.getScale()) || - (getBegin() != params.getBegin()) || - (getEnd() != params.getEnd()) || - (getShear() != params.getShear()) || - (getTwist() != params.getTwist()) || - (getTwistBegin() !=params.getTwistBegin()) || - (getRadiusOffset() != params.getRadiusOffset()) || - (getTaper() != params.getTaper()) || - (getRevolutions() != params.getRevolutions()) || - (getSkew() != params.getSkew()); -} - - -inline bool LLPathParams::operator<(const LLPathParams ¶ms) const -{ - if( getCurveType() != params.getCurveType()) - { - return getCurveType() < params.getCurveType(); - } - else - if( getScale() != params.getScale()) - { - return getScale() < params.getScale(); - } - else - if( getBegin() != params.getBegin()) - { - return getBegin() < params.getBegin(); - } - else - if( getEnd() != params.getEnd()) - { - return getEnd() < params.getEnd(); - } - else - if( getShear() != params.getShear()) - { - return getShear() < params.getShear(); - } - else - if( getTwist() != params.getTwist()) - { - return getTwist() < params.getTwist(); - } - else - if( getTwistBegin() != params.getTwistBegin()) - { - return getTwistBegin() < params.getTwistBegin(); - } - else - if( getRadiusOffset() != params.getRadiusOffset()) - { - return getRadiusOffset() < params.getRadiusOffset(); - } - else - if( getTaper() != params.getTaper()) - { - return getTaper() < params.getTaper(); - } - else - if( getRevolutions() != params.getRevolutions()) - { - return getRevolutions() < params.getRevolutions(); - } - else - { - return getSkew() < params.getSkew(); - } -} - -typedef LLVolumeParams* LLVolumeParamsPtr; -typedef const LLVolumeParams* const_LLVolumeParamsPtr; - -class LLVolumeParams -{ -public: - LLVolumeParams() - : mSculptType(LL_SCULPT_TYPE_NONE) - { - } - - LLVolumeParams(LLProfileParams &profile, LLPathParams &path, - LLUUID sculpt_id = LLUUID::null, U8 sculpt_type = LL_SCULPT_TYPE_NONE) - : mProfileParams(profile), mPathParams(path), mSculptID(sculpt_id), mSculptType(sculpt_type) - { - } - - bool operator==(const LLVolumeParams ¶ms) const; - bool operator!=(const LLVolumeParams ¶ms) const; - bool operator<(const LLVolumeParams ¶ms) const; - - - void copyParams(const LLVolumeParams ¶ms); - - const LLProfileParams &getProfileParams() const {return mProfileParams;} - LLProfileParams &getProfileParams() {return mProfileParams;} - const LLPathParams &getPathParams() const {return mPathParams;} - LLPathParams &getPathParams() {return mPathParams;} - - BOOL importFile(LLFILE *fp); - BOOL exportFile(LLFILE *fp) const; - - BOOL importLegacyStream(std::istream& input_stream); - BOOL exportLegacyStream(std::ostream& output_stream) const; - - LLSD sculptAsLLSD() const; - bool sculptFromLLSD(LLSD& sd); - - LLSD asLLSD() const; - operator LLSD() const { return asLLSD(); } - bool fromLLSD(LLSD& sd); - - bool setType(U8 profile, U8 path); - - //void setBeginS(const F32 beginS) { mProfileParams.setBegin(beginS); } // range 0 to 1 - //void setBeginT(const F32 beginT) { mPathParams.setBegin(beginT); } // range 0 to 1 - //void setEndS(const F32 endS) { mProfileParams.setEnd(endS); } // range 0 to 1, must be greater than begin - //void setEndT(const F32 endT) { mPathParams.setEnd(endT); } // range 0 to 1, must be greater than begin - - bool setBeginAndEndS(const F32 begin, const F32 end); // both range from 0 to 1, begin must be less than end - bool setBeginAndEndT(const F32 begin, const F32 end); // both range from 0 to 1, begin must be less than end - - bool setHollow(const F32 hollow); // range 0 to 1 - bool setRatio(const F32 x) { return setRatio(x,x); } // 0 = point, 1 = same as base - bool setShear(const F32 x) { return setShear(x,x); } // 0 = no movement, - bool setRatio(const F32 x, const F32 y); // 0 = point, 1 = same as base - bool setShear(const F32 x, const F32 y); // 0 = no movement - - bool setTwistBegin(const F32 twist_begin); // range -1 to 1 - bool setTwistEnd(const F32 twist_end); // range -1 to 1 - bool setTwist(const F32 twist) { return setTwistEnd(twist); } // deprecated - bool setTaper(const F32 x, const F32 y) { bool pass_x = setTaperX(x); bool pass_y = setTaperY(y); return pass_x && pass_y; } - bool setTaperX(const F32 v); // -1 to 1 - bool setTaperY(const F32 v); // -1 to 1 - bool setRevolutions(const F32 revolutions); // 1 to 4 - bool setRadiusOffset(const F32 radius_offset); - bool setSkew(const F32 skew); - bool setSculptID(const LLUUID sculpt_id, U8 sculpt_type); - - static bool validate(U8 prof_curve, F32 prof_begin, F32 prof_end, F32 hollow, - U8 path_curve, F32 path_begin, F32 path_end, - F32 scx, F32 scy, F32 shx, F32 shy, - F32 twistend, F32 twistbegin, F32 radiusoffset, - F32 tx, F32 ty, F32 revolutions, F32 skew); - - const F32& getBeginS() const { return mProfileParams.getBegin(); } - const F32& getBeginT() const { return mPathParams.getBegin(); } - const F32& getEndS() const { return mProfileParams.getEnd(); } - const F32& getEndT() const { return mPathParams.getEnd(); } - - const F32& getHollow() const { return mProfileParams.getHollow(); } - const F32& getTwist() const { return mPathParams.getTwist(); } - const F32& getRatio() const { return mPathParams.getScaleX(); } - const F32& getRatioX() const { return mPathParams.getScaleX(); } - const F32& getRatioY() const { return mPathParams.getScaleY(); } - const F32& getShearX() const { return mPathParams.getShearX(); } - const F32& getShearY() const { return mPathParams.getShearY(); } - - const F32& getTwistBegin()const { return mPathParams.getTwistBegin(); } - const F32& getRadiusOffset() const { return mPathParams.getRadiusOffset(); } - const F32& getTaper() const { return mPathParams.getTaperX(); } - const F32& getTaperX() const { return mPathParams.getTaperX(); } - const F32& getTaperY() const { return mPathParams.getTaperY(); } - const F32& getRevolutions() const { return mPathParams.getRevolutions(); } - const F32& getSkew() const { return mPathParams.getSkew(); } - const LLUUID& getSculptID() const { return mSculptID; } - const U8& getSculptType() const { return mSculptType; } - bool isSculpt() const; - bool isMeshSculpt() const; - BOOL isConvex() const; - - // 'begin' and 'end' should be in range [0, 1] (they will be clamped) - // (begin, end) = (0, 1) will not change the volume - // (begin, end) = (0, 0.5) will reduce the volume to the first half of its profile/path (S/T) - void reduceS(F32 begin, F32 end); - void reduceT(F32 begin, F32 end); - - struct compare - { - bool operator()( const const_LLVolumeParamsPtr& first, const const_LLVolumeParamsPtr& second) const - { - return (*first < *second); - } - }; - - friend std::ostream& operator<<(std::ostream &s, const LLVolumeParams &volume_params); - - // debug helper functions - void setCube(); - -protected: - LLProfileParams mProfileParams; - LLPathParams mPathParams; - LLUUID mSculptID; - U8 mSculptType; -}; - - -class LLProfile -{ -public: - LLProfile() - : mOpen(FALSE), - mConcave(FALSE), - mDirty(TRUE), - mTotalOut(0), - mTotal(2) - { - } - - ~LLProfile(); - - S32 getTotal() const { return mTotal; } - S32 getTotalOut() const { return mTotalOut; } // Total number of outside points - BOOL isFlat(S32 face) const { return (mFaces[face].mCount == 2); } - BOOL isOpen() const { return mOpen; } - void setDirty() { mDirty = TRUE; } - BOOL generate(const LLProfileParams& params, BOOL path_open, F32 detail = 1.0f, S32 split = 0, - BOOL is_sculpted = FALSE, S32 sculpt_size = 0); - BOOL isConcave() const { return mConcave; } -public: - struct Face - { - S32 mIndex; - S32 mCount; - F32 mScaleU; - BOOL mCap; - BOOL mFlat; - LLFaceID mFaceID; - }; - - std::vector mProfile; - std::vector mNormals; - std::vector mFaces; - std::vector mEdgeNormals; - std::vector mEdgeCenters; - - friend std::ostream& operator<<(std::ostream &s, const LLProfile &profile); - -protected: - void genNormals(const LLProfileParams& params); - void genNGon(const LLProfileParams& params, S32 sides, F32 offset=0.0f, F32 bevel = 0.0f, F32 ang_scale = 1.f, S32 split = 0); - - Face* addHole(const LLProfileParams& params, BOOL flat, F32 sides, F32 offset, F32 box_hollow, F32 ang_scale, S32 split = 0); - Face* addCap (S16 faceID); - Face* addFace(S32 index, S32 count, F32 scaleU, S16 faceID, BOOL flat); - -protected: - BOOL mOpen; - BOOL mConcave; - BOOL mDirty; - - S32 mTotalOut; - S32 mTotal; -}; - -//------------------------------------------------------------------- -// SWEEP/EXTRUDE PATHS -//------------------------------------------------------------------- - -class LLPath -{ -public: - struct PathPt - { - LLVector3 mPos; - LLVector2 mScale; - LLQuaternion mRot; - F32 mTexT; - PathPt() { mPos.setVec(0,0,0); mTexT = 0; mScale.setVec(0,0); mRot.loadIdentity(); } - }; - -public: - LLPath() - : mOpen(FALSE), - mTotal(0), - mDirty(TRUE), - mStep(1) - { - } - - virtual ~LLPath(); - - void genNGon(const LLPathParams& params, S32 sides, F32 offset=0.0f, F32 end_scale = 1.f, F32 twist_scale = 1.f); - virtual BOOL generate(const LLPathParams& params, F32 detail=1.0f, S32 split = 0, - BOOL is_sculpted = FALSE, S32 sculpt_size = 0); - - BOOL isOpen() const { return mOpen; } - F32 getStep() const { return mStep; } - void setDirty() { mDirty = TRUE; } - - S32 getPathLength() const { return (S32)mPath.size(); } - - void resizePath(S32 length) { mPath.resize(length); } - - friend std::ostream& operator<<(std::ostream &s, const LLPath &path); - -public: - std::vector mPath; - -protected: - BOOL mOpen; - S32 mTotal; - BOOL mDirty; - F32 mStep; -}; - -class LLDynamicPath : public LLPath -{ -public: - LLDynamicPath() : LLPath() { } - /*virtual*/ BOOL generate(const LLPathParams& params, F32 detail=1.0f, S32 split = 0, - BOOL is_sculpted = FALSE, S32 sculpt_size = 0); -}; - -// Yet another "face" class - caches volume-specific, but not instance-specific data for faces) -class LLVolumeFace -{ -public: - class VertexData - { - enum - { - POSITION = 0, - NORMAL = 1 - }; - - private: - void init(); - public: - VertexData(); - VertexData(const VertexData& rhs); - const VertexData& operator=(const VertexData& rhs); - - ~VertexData(); - LLVector4a& getPosition(); - LLVector4a& getNormal(); - const LLVector4a& getPosition() const; - const LLVector4a& getNormal() const; - void setPosition(const LLVector4a& pos); - void setNormal(const LLVector4a& norm); - - - LLVector2 mTexCoord; - - bool operator<(const VertexData& rhs) const; - bool operator==(const VertexData& rhs) const; - bool compareNormal(const VertexData& rhs, F32 angle_cutoff) const; - - private: - LLVector4a* mData; - }; - - LLVolumeFace(); - LLVolumeFace(const LLVolumeFace& src); - LLVolumeFace& operator=(const LLVolumeFace& rhs); - - ~LLVolumeFace(); -private: - void freeData(); -public: - - BOOL create(LLVolume* volume, BOOL partial_build = FALSE); - void createBinormals(); - - void appendFace(const LLVolumeFace& face, LLMatrix4& transform, LLMatrix4& normal_tranform); - - void resizeVertices(S32 num_verts); - void allocateBinormals(S32 num_verts); - void allocateWeights(S32 num_verts); - void resizeIndices(S32 num_indices); - void fillFromLegacyData(std::vector& v, std::vector& idx); - - void pushVertex(const VertexData& cv); - void pushVertex(const LLVector4a& pos, const LLVector4a& norm, const LLVector2& tc); - void pushIndex(const U16& idx); - - void swapData(LLVolumeFace& rhs); - - void getVertexData(U16 indx, LLVolumeFace::VertexData& cv); - - class VertexMapData : public LLVolumeFace::VertexData - { - public: - U16 mIndex; - - bool operator==(const LLVolumeFace::VertexData& rhs) const; - - struct ComparePosition - { - bool operator()(const LLVector3& a, const LLVector3& b) const; - }; - - typedef std::map, VertexMapData::ComparePosition > PointMap; - }; - - void optimize(F32 angle_cutoff = 2.f); - void cacheOptimize(); - - void createOctree(F32 scaler = 0.25f, const LLVector4a& center = LLVector4a(0,0,0), const LLVector4a& size = LLVector4a(0.5f,0.5f,0.5f)); - - enum - { - SINGLE_MASK = 0x0001, - CAP_MASK = 0x0002, - END_MASK = 0x0004, - SIDE_MASK = 0x0008, - INNER_MASK = 0x0010, - OUTER_MASK = 0x0020, - HOLLOW_MASK = 0x0040, - OPEN_MASK = 0x0080, - FLAT_MASK = 0x0100, - TOP_MASK = 0x0200, - BOTTOM_MASK = 0x0400 - }; - -public: - S32 mID; - U32 mTypeMask; - - // Only used for INNER/OUTER faces - S32 mBeginS; - S32 mBeginT; - S32 mNumS; - S32 mNumT; - - LLVector4a* mExtents; //minimum and maximum point of face - LLVector4a* mCenter; - LLVector2 mTexCoordExtents[2]; //minimum and maximum of texture coordinates of the face. - - S32 mNumVertices; - S32 mNumIndices; - - LLVector4a* mPositions; - LLVector4a* mNormals; - LLVector4a* mBinormals; - LLVector2* mTexCoords; - U16* mIndices; - - std::vector mEdge; - - //list of skin weights for rigged volumes - // format is mWeights[vertex_index].mV[influence] = . - // mWeights.size() should be empty or match mVertices.size() - LLVector4a* mWeights; - - LLOctreeNode* mOctree; - -private: - BOOL createUnCutCubeCap(LLVolume* volume, BOOL partial_build = FALSE); - BOOL createCap(LLVolume* volume, BOOL partial_build = FALSE); - BOOL createSide(LLVolume* volume, BOOL partial_build = FALSE); -}; - -class LLVolume : public LLRefCount -{ - friend class LLVolumeLODGroup; - -protected: - ~LLVolume(); // use unref - -public: - struct Point - { - LLVector3 mPos; - }; - - struct FaceParams - { - LLFaceID mFaceID; - S32 mBeginS; - S32 mCountS; - S32 mBeginT; - S32 mCountT; - }; - - LLVolume(const LLVolumeParams ¶ms, const F32 detail, const BOOL generate_single_face = FALSE, const BOOL is_unique = FALSE); - - U8 getProfileType() const { return mParams.getProfileParams().getCurveType(); } - U8 getPathType() const { return mParams.getPathParams().getCurveType(); } - S32 getNumFaces() const; - S32 getNumVolumeFaces() const { return mVolumeFaces.size(); } - F32 getDetail() const { return mDetail; } - const LLVolumeParams& getParams() const { return mParams; } - LLVolumeParams getCopyOfParams() const { return mParams; } - const LLProfile& getProfile() const { return *mProfilep; } - LLPath& getPath() const { return *mPathp; } - void resizePath(S32 length); - const std::vector& getMesh() const { return mMesh; } - const LLVector3& getMeshPt(const U32 i) const { return mMesh[i].mPos; } - - void setDirty() { mPathp->setDirty(); mProfilep->setDirty(); } - - void regen(); - void genBinormals(S32 face); - - BOOL isConvex() const; - BOOL isCap(S32 face); - BOOL isFlat(S32 face); - BOOL isUnique() const { return mUnique; } - - S32 getSculptLevel() const { return mSculptLevel; } - void setSculptLevel(S32 level) { mSculptLevel = level; } - - S32 *getTriangleIndices(U32 &num_indices) const; - - // returns number of triangle indeces required for path/profile mesh - S32 getNumTriangleIndices() const; - - S32 getNumTriangles() const; - - void generateSilhouetteVertices(std::vector &vertices, - std::vector &normals, - std::vector &segments, - const LLVector3& view_vec, - const LLMatrix4& mat, - const LLMatrix3& norm_mat, - S32 face_index); - - //get the face index of the face that intersects with the given line segment at the point - //closest to start. Moves end to the point of intersection. Returns -1 if no intersection. - //Line segment must be in volume space. - S32 lineSegmentIntersect(const LLVector3& start, const LLVector3& end, - S32 face = -1, // which face to check, -1 = ALL_SIDES - LLVector3* intersection = NULL, // return the intersection point - LLVector2* tex_coord = NULL, // return the texture coordinates of the intersection point - LLVector3* normal = NULL, // return the surface normal at the intersection point - LLVector3* bi_normal = NULL // return the surface bi-normal at the intersection point - ); - - S32 lineSegmentIntersect(const LLVector4a& start, const LLVector4a& end, - S32 face = 1, - LLVector3* intersection = NULL, - LLVector2* tex_coord = NULL, - LLVector3* normal = NULL, - LLVector3* bi_normal = NULL); - - // The following cleans up vertices and triangles, - // getting rid of degenerate triangles and duplicate vertices, - // and allocates new arrays with the clean data. - static BOOL cleanupTriangleData( const S32 num_input_vertices, - const std::vector &input_vertices, - const S32 num_input_triangles, - S32 *input_triangles, - S32 &num_output_vertices, - LLVector3 **output_vertices, - S32 &num_output_triangles, - S32 **output_triangles); - LLFaceID generateFaceMask(); - - BOOL isFaceMaskValid(LLFaceID face_mask); - static S32 sNumMeshPoints; - - friend std::ostream& operator<<(std::ostream &s, const LLVolume &volume); - friend std::ostream& operator<<(std::ostream &s, const LLVolume *volumep); // HACK to bypass Windoze confusion over - // conversion if *(LLVolume*) to LLVolume& - const LLVolumeFace &getVolumeFace(const S32 f) const {return mVolumeFaces[f];} // DO NOT DELETE VOLUME WHILE USING THIS REFERENCE, OR HOLD A POINTER TO THIS VOLUMEFACE - - U32 mFaceMask; // bit array of which faces exist in this volume - LLVector3 mLODScaleBias; // vector for biasing LOD based on scale - - void sculpt(U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data, S32 sculpt_level); - void copyVolumeFaces(const LLVolume* volume); - void cacheOptimize(); - -private: - void sculptGenerateMapVertices(U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data, U8 sculpt_type); - F32 sculptGetSurfaceArea(); - void sculptGeneratePlaceholder(); - void sculptCalcMeshResolution(U16 width, U16 height, U8 type, S32& s, S32& t); - - -protected: - BOOL generate(); - void createVolumeFaces(); -public: - virtual BOOL createVolumeFacesFromFile(const std::string& file_name); - virtual BOOL createVolumeFacesFromStream(std::istream& is); - virtual bool unpackVolumeFaces(std::istream& is, S32 size); - - virtual void makeTetrahedron(); - virtual BOOL isTetrahedron(); - - protected: - BOOL mUnique; - F32 mDetail; - S32 mSculptLevel; - BOOL mIsTetrahedron; - - LLVolumeParams mParams; - LLPath *mPathp; - LLProfile *mProfilep; - std::vector mMesh; - - BOOL mGenerateSingleFace; - typedef std::vector face_list_t; - face_list_t mVolumeFaces; - -public: - LLVector4a* mHullPoints; - U16* mHullIndices; - S32 mNumHullPoints; - S32 mNumHullIndices; -}; - -std::ostream& operator<<(std::ostream &s, const LLVolumeParams &volume_params); - -void calc_binormal_from_triangle( - LLVector4a& binormal, - const LLVector4a& pos0, - const LLVector2& tex0, - const LLVector4a& pos1, - const LLVector2& tex1, - const LLVector4a& pos2, - const LLVector2& tex2); - -BOOL LLLineSegmentBoxIntersect(const F32* start, const F32* end, const F32* center, const F32* size); -BOOL LLLineSegmentBoxIntersect(const LLVector3& start, const LLVector3& end, const LLVector3& center, const LLVector3& size); -BOOL LLLineSegmentBoxIntersect(const LLVector4a& start, const LLVector4a& end, const LLVector4a& center, const LLVector4a& size); - -BOOL LLTriangleRayIntersect(const LLVector3& vert0, const LLVector3& vert1, const LLVector3& vert2, const LLVector3& orig, const LLVector3& dir, - F32& intersection_a, F32& intersection_b, F32& intersection_t, BOOL two_sided); - -BOOL LLTriangleRayIntersect(const LLVector4a& vert0, const LLVector4a& vert1, const LLVector4a& vert2, const LLVector4a& orig, const LLVector4a& dir, - F32& intersection_a, F32& intersection_b, F32& intersection_t); -BOOL LLTriangleRayIntersectTwoSided(const LLVector4a& vert0, const LLVector4a& vert1, const LLVector4a& vert2, const LLVector4a& orig, const LLVector4a& dir, - F32& intersection_a, F32& intersection_b, F32& intersection_t); - - - -#endif +/** + * @file llvolume.h + * @brief LLVolume base class. + * + * $LicenseInfo:firstyear=2002&license=viewerlgpl$ + * Second Life Viewer Source Code + * Copyright (C) 2010, Linden Research, Inc. + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; + * version 2.1 of the License only. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA + * $/LicenseInfo$ + */ + +#ifndef LL_LLVOLUME_H +#define LL_LLVOLUME_H + +#include + +class LLProfileParams; +class LLPathParams; +class LLVolumeParams; +class LLProfile; +class LLPath; + +template class LLOctreeNode; + +class LLVector4a; +class LLVolumeFace; +class LLVolume; +class LLVolumeTriangle; + +#include "lldarray.h" +#include "lluuid.h" +#include "v4color.h" +//#include "vmath.h" +#include "v2math.h" +#include "v3math.h" +#include "v3dmath.h" +#include "v4math.h" +#include "llquaternion.h" +#include "llstrider.h" +#include "v4coloru.h" +#include "llrefcount.h" +#include "llfile.h" + +//============================================================================ + +const S32 MIN_DETAIL_FACES = 6; +const S32 MIN_LOD = 0; +const S32 MAX_LOD = 3; + +// These are defined here but are not enforced at this level, +// rather they are here for the convenience of code that uses +// the LLVolume class. +const F32 MIN_VOLUME_PROFILE_WIDTH = 0.05f; +const F32 MIN_VOLUME_PATH_WIDTH = 0.05f; + +const F32 CUT_QUANTA = 0.00002f; +const F32 SCALE_QUANTA = 0.01f; +const F32 SHEAR_QUANTA = 0.01f; +const F32 TAPER_QUANTA = 0.01f; +const F32 REV_QUANTA = 0.015f; +const F32 HOLLOW_QUANTA = 0.00002f; + +const S32 MAX_VOLUME_TRIANGLE_INDICES = 10000; + +//============================================================================ + +// useful masks +const LLPCode LL_PCODE_HOLLOW_MASK = 0x80; // has a thickness +const LLPCode LL_PCODE_SEGMENT_MASK = 0x40; // segments (1 angle) +const LLPCode LL_PCODE_PATCH_MASK = 0x20; // segmented segments (2 angles) +const LLPCode LL_PCODE_HEMI_MASK = 0x10; // half-primitives get their own type per PR's dictum +const LLPCode LL_PCODE_BASE_MASK = 0x0F; + + // primitive shapes +const LLPCode LL_PCODE_CUBE = 1; +const LLPCode LL_PCODE_PRISM = 2; +const LLPCode LL_PCODE_TETRAHEDRON = 3; +const LLPCode LL_PCODE_PYRAMID = 4; +const LLPCode LL_PCODE_CYLINDER = 5; +const LLPCode LL_PCODE_CONE = 6; +const LLPCode LL_PCODE_SPHERE = 7; +const LLPCode LL_PCODE_TORUS = 8; +const LLPCode LL_PCODE_VOLUME = 9; + + // surfaces +//const LLPCode LL_PCODE_SURFACE_TRIANGLE = 10; +//const LLPCode LL_PCODE_SURFACE_SQUARE = 11; +//const LLPCode LL_PCODE_SURFACE_DISC = 12; + +const LLPCode LL_PCODE_APP = 14; // App specific pcode (for viewer/sim side only objects) +const LLPCode LL_PCODE_LEGACY = 15; + +// Pcodes for legacy objects +//const LLPCode LL_PCODE_LEGACY_ATOR = 0x10 | LL_PCODE_LEGACY; // ATOR +const LLPCode LL_PCODE_LEGACY_AVATAR = 0x20 | LL_PCODE_LEGACY; // PLAYER +//const LLPCode LL_PCODE_LEGACY_BIRD = 0x30 | LL_PCODE_LEGACY; // BIRD +//const LLPCode LL_PCODE_LEGACY_DEMON = 0x40 | LL_PCODE_LEGACY; // DEMON +const LLPCode LL_PCODE_LEGACY_GRASS = 0x50 | LL_PCODE_LEGACY; // GRASS +const LLPCode LL_PCODE_TREE_NEW = 0x60 | LL_PCODE_LEGACY; // new trees +//const LLPCode LL_PCODE_LEGACY_ORACLE = 0x70 | LL_PCODE_LEGACY; // ORACLE +const LLPCode LL_PCODE_LEGACY_PART_SYS = 0x80 | LL_PCODE_LEGACY; // PART_SYS +const LLPCode LL_PCODE_LEGACY_ROCK = 0x90 | LL_PCODE_LEGACY; // ROCK +//const LLPCode LL_PCODE_LEGACY_SHOT = 0xA0 | LL_PCODE_LEGACY; // BASIC_SHOT +//const LLPCode LL_PCODE_LEGACY_SHOT_BIG = 0xB0 | LL_PCODE_LEGACY; +//const LLPCode LL_PCODE_LEGACY_SMOKE = 0xC0 | LL_PCODE_LEGACY; // SMOKE +//const LLPCode LL_PCODE_LEGACY_SPARK = 0xD0 | LL_PCODE_LEGACY;// SPARK +const LLPCode LL_PCODE_LEGACY_TEXT_BUBBLE = 0xE0 | LL_PCODE_LEGACY; // TEXTBUBBLE +const LLPCode LL_PCODE_LEGACY_TREE = 0xF0 | LL_PCODE_LEGACY; // TREE + + // hemis +const LLPCode LL_PCODE_CYLINDER_HEMI = LL_PCODE_CYLINDER | LL_PCODE_HEMI_MASK; +const LLPCode LL_PCODE_CONE_HEMI = LL_PCODE_CONE | LL_PCODE_HEMI_MASK; +const LLPCode LL_PCODE_SPHERE_HEMI = LL_PCODE_SPHERE | LL_PCODE_HEMI_MASK; +const LLPCode LL_PCODE_TORUS_HEMI = LL_PCODE_TORUS | LL_PCODE_HEMI_MASK; + + +// Volumes consist of a profile at the base that is swept around +// a path to make a volume. +// The profile code +const U8 LL_PCODE_PROFILE_MASK = 0x0f; +const U8 LL_PCODE_PROFILE_MIN = 0x00; +const U8 LL_PCODE_PROFILE_CIRCLE = 0x00; +const U8 LL_PCODE_PROFILE_SQUARE = 0x01; +const U8 LL_PCODE_PROFILE_ISOTRI = 0x02; +const U8 LL_PCODE_PROFILE_EQUALTRI = 0x03; +const U8 LL_PCODE_PROFILE_RIGHTTRI = 0x04; +const U8 LL_PCODE_PROFILE_CIRCLE_HALF = 0x05; +const U8 LL_PCODE_PROFILE_MAX = 0x05; + +// Stored in the profile byte +const U8 LL_PCODE_HOLE_MASK = 0xf0; +const U8 LL_PCODE_HOLE_MIN = 0x00; +const U8 LL_PCODE_HOLE_SAME = 0x00; // same as outside profile +const U8 LL_PCODE_HOLE_CIRCLE = 0x10; +const U8 LL_PCODE_HOLE_SQUARE = 0x20; +const U8 LL_PCODE_HOLE_TRIANGLE = 0x30; +const U8 LL_PCODE_HOLE_MAX = 0x03; // min/max needs to be >> 4 of real min/max + +const U8 LL_PCODE_PATH_IGNORE = 0x00; +const U8 LL_PCODE_PATH_MIN = 0x01; // min/max needs to be >> 4 of real min/max +const U8 LL_PCODE_PATH_LINE = 0x10; +const U8 LL_PCODE_PATH_CIRCLE = 0x20; +const U8 LL_PCODE_PATH_CIRCLE2 = 0x30; +const U8 LL_PCODE_PATH_TEST = 0x40; +const U8 LL_PCODE_PATH_FLEXIBLE = 0x80; +const U8 LL_PCODE_PATH_MAX = 0x08; + +//============================================================================ + +// face identifiers +typedef U16 LLFaceID; + +const LLFaceID LL_FACE_PATH_BEGIN = 0x1 << 0; +const LLFaceID LL_FACE_PATH_END = 0x1 << 1; +const LLFaceID LL_FACE_INNER_SIDE = 0x1 << 2; +const LLFaceID LL_FACE_PROFILE_BEGIN = 0x1 << 3; +const LLFaceID LL_FACE_PROFILE_END = 0x1 << 4; +const LLFaceID LL_FACE_OUTER_SIDE_0 = 0x1 << 5; +const LLFaceID LL_FACE_OUTER_SIDE_1 = 0x1 << 6; +const LLFaceID LL_FACE_OUTER_SIDE_2 = 0x1 << 7; +const LLFaceID LL_FACE_OUTER_SIDE_3 = 0x1 << 8; + +//============================================================================ + +// sculpt types + flags + +const U8 LL_SCULPT_TYPE_NONE = 0; +const U8 LL_SCULPT_TYPE_SPHERE = 1; +const U8 LL_SCULPT_TYPE_TORUS = 2; +const U8 LL_SCULPT_TYPE_PLANE = 3; +const U8 LL_SCULPT_TYPE_CYLINDER = 4; +const U8 LL_SCULPT_TYPE_MESH = 5; +const U8 LL_SCULPT_TYPE_MASK = LL_SCULPT_TYPE_SPHERE | LL_SCULPT_TYPE_TORUS | LL_SCULPT_TYPE_PLANE | + LL_SCULPT_TYPE_CYLINDER | LL_SCULPT_TYPE_MESH; + +const U8 LL_SCULPT_FLAG_INVERT = 64; +const U8 LL_SCULPT_FLAG_MIRROR = 128; + +const S32 LL_SCULPT_MESH_MAX_FACES = 8; + +class LLProfileParams +{ +public: + LLProfileParams() + : mCurveType(LL_PCODE_PROFILE_SQUARE), + mBegin(0.f), + mEnd(1.f), + mHollow(0.f), + mCRC(0) + { + } + + LLProfileParams(U8 curve, F32 begin, F32 end, F32 hollow) + : mCurveType(curve), + mBegin(begin), + mEnd(end), + mHollow(hollow), + mCRC(0) + { + } + + LLProfileParams(U8 curve, U16 begin, U16 end, U16 hollow) + { + mCurveType = curve; + F32 temp_f32 = begin * CUT_QUANTA; + if (temp_f32 > 1.f) + { + temp_f32 = 1.f; + } + mBegin = temp_f32; + temp_f32 = end * CUT_QUANTA; + if (temp_f32 > 1.f) + { + temp_f32 = 1.f; + } + mEnd = 1.f - temp_f32; + temp_f32 = hollow * HOLLOW_QUANTA; + if (temp_f32 > 1.f) + { + temp_f32 = 1.f; + } + mHollow = temp_f32; + mCRC = 0; + } + + bool operator==(const LLProfileParams ¶ms) const; + bool operator!=(const LLProfileParams ¶ms) const; + bool operator<(const LLProfileParams ¶ms) const; + + void copyParams(const LLProfileParams ¶ms); + + BOOL importFile(LLFILE *fp); + BOOL exportFile(LLFILE *fp) const; + + BOOL importLegacyStream(std::istream& input_stream); + BOOL exportLegacyStream(std::ostream& output_stream) const; + + LLSD asLLSD() const; + operator LLSD() const { return asLLSD(); } + bool fromLLSD(LLSD& sd); + + const F32& getBegin () const { return mBegin; } + const F32& getEnd () const { return mEnd; } + const F32& getHollow() const { return mHollow; } + const U8& getCurveType () const { return mCurveType; } + + void setCurveType(const U32 type) { mCurveType = type;} + void setBegin(const F32 begin) { mBegin = (begin >= 1.0f) ? 0.0f : ((int) (begin * 100000))/100000.0f;} + void setEnd(const F32 end) { mEnd = (end <= 0.0f) ? 1.0f : ((int) (end * 100000))/100000.0f;} + void setHollow(const F32 hollow) { mHollow = ((int) (hollow * 100000))/100000.0f;} + + friend std::ostream& operator<<(std::ostream &s, const LLProfileParams &profile_params); + +protected: + // Profile params + U8 mCurveType; + F32 mBegin; + F32 mEnd; + F32 mHollow; + + U32 mCRC; +}; + +inline bool LLProfileParams::operator==(const LLProfileParams ¶ms) const +{ + return + (getCurveType() == params.getCurveType()) && + (getBegin() == params.getBegin()) && + (getEnd() == params.getEnd()) && + (getHollow() == params.getHollow()); +} + +inline bool LLProfileParams::operator!=(const LLProfileParams ¶ms) const +{ + return + (getCurveType() != params.getCurveType()) || + (getBegin() != params.getBegin()) || + (getEnd() != params.getEnd()) || + (getHollow() != params.getHollow()); +} + + +inline bool LLProfileParams::operator<(const LLProfileParams ¶ms) const +{ + if (getCurveType() != params.getCurveType()) + { + return getCurveType() < params.getCurveType(); + } + else + if (getBegin() != params.getBegin()) + { + return getBegin() < params.getBegin(); + } + else + if (getEnd() != params.getEnd()) + { + return getEnd() < params.getEnd(); + } + else + { + return getHollow() < params.getHollow(); + } +} + +#define U8_TO_F32(x) (F32)(*((S8 *)&x)) + +class LLPathParams +{ +public: + LLPathParams() + : + mCurveType(LL_PCODE_PATH_LINE), + mBegin(0.f), + mEnd(1.f), + mScale(1.f,1.f), + mShear(0.f,0.f), + mTwistBegin(0.f), + mTwistEnd(0.f), + mRadiusOffset(0.f), + mTaper(0.f,0.f), + mRevolutions(1.f), + mSkew(0.f), + mCRC(0) + { + } + + LLPathParams(U8 curve, F32 begin, F32 end, F32 scx, F32 scy, F32 shx, F32 shy, F32 twistend, F32 twistbegin, F32 radiusoffset, F32 tx, F32 ty, F32 revolutions, F32 skew) + : mCurveType(curve), + mBegin(begin), + mEnd(end), + mScale(scx,scy), + mShear(shx,shy), + mTwistBegin(twistbegin), + mTwistEnd(twistend), + mRadiusOffset(radiusoffset), + mTaper(tx,ty), + mRevolutions(revolutions), + mSkew(skew), + mCRC(0) + { + } + + LLPathParams(U8 curve, U16 begin, U16 end, U8 scx, U8 scy, U8 shx, U8 shy, U8 twistend, U8 twistbegin, U8 radiusoffset, U8 tx, U8 ty, U8 revolutions, U8 skew) + { + mCurveType = curve; + mBegin = (F32)(begin * CUT_QUANTA); + mEnd = (F32)(100.f - end) * CUT_QUANTA; + if (mEnd > 1.f) + mEnd = 1.f; + mScale.setVec((F32) (200 - scx) * SCALE_QUANTA,(F32) (200 - scy) * SCALE_QUANTA); + mShear.setVec(U8_TO_F32(shx) * SHEAR_QUANTA,U8_TO_F32(shy) * SHEAR_QUANTA); + mTwistBegin = U8_TO_F32(twistbegin) * SCALE_QUANTA; + mTwistEnd = U8_TO_F32(twistend) * SCALE_QUANTA; + mRadiusOffset = U8_TO_F32(radiusoffset) * SCALE_QUANTA; + mTaper.setVec(U8_TO_F32(tx) * TAPER_QUANTA,U8_TO_F32(ty) * TAPER_QUANTA); + mRevolutions = ((F32)revolutions) * REV_QUANTA + 1.0f; + mSkew = U8_TO_F32(skew) * SCALE_QUANTA; + + mCRC = 0; + } + + bool operator==(const LLPathParams ¶ms) const; + bool operator!=(const LLPathParams ¶ms) const; + bool operator<(const LLPathParams ¶ms) const; + + void copyParams(const LLPathParams ¶ms); + + BOOL importFile(LLFILE *fp); + BOOL exportFile(LLFILE *fp) const; + + BOOL importLegacyStream(std::istream& input_stream); + BOOL exportLegacyStream(std::ostream& output_stream) const; + + LLSD asLLSD() const; + operator LLSD() const { return asLLSD(); } + bool fromLLSD(LLSD& sd); + + const F32& getBegin() const { return mBegin; } + const F32& getEnd() const { return mEnd; } + const LLVector2 &getScale() const { return mScale; } + const F32& getScaleX() const { return mScale.mV[0]; } + const F32& getScaleY() const { return mScale.mV[1]; } + const LLVector2 getBeginScale() const; + const LLVector2 getEndScale() const; + const LLVector2 &getShear() const { return mShear; } + const F32& getShearX() const { return mShear.mV[0]; } + const F32& getShearY() const { return mShear.mV[1]; } + const U8& getCurveType () const { return mCurveType; } + + const F32& getTwistBegin() const { return mTwistBegin; } + const F32& getTwistEnd() const { return mTwistEnd; } + const F32& getTwist() const { return mTwistEnd; } // deprecated + const F32& getRadiusOffset() const { return mRadiusOffset; } + const LLVector2 &getTaper() const { return mTaper; } + const F32& getTaperX() const { return mTaper.mV[0]; } + const F32& getTaperY() const { return mTaper.mV[1]; } + const F32& getRevolutions() const { return mRevolutions; } + const F32& getSkew() const { return mSkew; } + + void setCurveType(const U8 type) { mCurveType = type; } + void setBegin(const F32 begin) { mBegin = begin; } + void setEnd(const F32 end) { mEnd = end; } + + void setScale(const F32 x, const F32 y) { mScale.setVec(x,y); } + void setScaleX(const F32 v) { mScale.mV[VX] = v; } + void setScaleY(const F32 v) { mScale.mV[VY] = v; } + void setShear(const F32 x, const F32 y) { mShear.setVec(x,y); } + void setShearX(const F32 v) { mShear.mV[VX] = v; } + void setShearY(const F32 v) { mShear.mV[VY] = v; } + + void setTwistBegin(const F32 twist_begin) { mTwistBegin = twist_begin; } + void setTwistEnd(const F32 twist_end) { mTwistEnd = twist_end; } + void setTwist(const F32 twist) { setTwistEnd(twist); } // deprecated + void setRadiusOffset(const F32 radius_offset){ mRadiusOffset = radius_offset; } + void setTaper(const F32 x, const F32 y) { mTaper.setVec(x,y); } + void setTaperX(const F32 v) { mTaper.mV[VX] = v; } + void setTaperY(const F32 v) { mTaper.mV[VY] = v; } + void setRevolutions(const F32 revolutions) { mRevolutions = revolutions; } + void setSkew(const F32 skew) { mSkew = skew; } + + friend std::ostream& operator<<(std::ostream &s, const LLPathParams &path_params); + +protected: + // Path params + U8 mCurveType; + F32 mBegin; + F32 mEnd; + LLVector2 mScale; + LLVector2 mShear; + + F32 mTwistBegin; + F32 mTwistEnd; + F32 mRadiusOffset; + LLVector2 mTaper; + F32 mRevolutions; + F32 mSkew; + + U32 mCRC; +}; + +inline bool LLPathParams::operator==(const LLPathParams ¶ms) const +{ + return + (getCurveType() == params.getCurveType()) && + (getScale() == params.getScale()) && + (getBegin() == params.getBegin()) && + (getEnd() == params.getEnd()) && + (getShear() == params.getShear()) && + (getTwist() == params.getTwist()) && + (getTwistBegin() == params.getTwistBegin()) && + (getRadiusOffset() == params.getRadiusOffset()) && + (getTaper() == params.getTaper()) && + (getRevolutions() == params.getRevolutions()) && + (getSkew() == params.getSkew()); +} + +inline bool LLPathParams::operator!=(const LLPathParams ¶ms) const +{ + return + (getCurveType() != params.getCurveType()) || + (getScale() != params.getScale()) || + (getBegin() != params.getBegin()) || + (getEnd() != params.getEnd()) || + (getShear() != params.getShear()) || + (getTwist() != params.getTwist()) || + (getTwistBegin() !=params.getTwistBegin()) || + (getRadiusOffset() != params.getRadiusOffset()) || + (getTaper() != params.getTaper()) || + (getRevolutions() != params.getRevolutions()) || + (getSkew() != params.getSkew()); +} + + +inline bool LLPathParams::operator<(const LLPathParams ¶ms) const +{ + if( getCurveType() != params.getCurveType()) + { + return getCurveType() < params.getCurveType(); + } + else + if( getScale() != params.getScale()) + { + return getScale() < params.getScale(); + } + else + if( getBegin() != params.getBegin()) + { + return getBegin() < params.getBegin(); + } + else + if( getEnd() != params.getEnd()) + { + return getEnd() < params.getEnd(); + } + else + if( getShear() != params.getShear()) + { + return getShear() < params.getShear(); + } + else + if( getTwist() != params.getTwist()) + { + return getTwist() < params.getTwist(); + } + else + if( getTwistBegin() != params.getTwistBegin()) + { + return getTwistBegin() < params.getTwistBegin(); + } + else + if( getRadiusOffset() != params.getRadiusOffset()) + { + return getRadiusOffset() < params.getRadiusOffset(); + } + else + if( getTaper() != params.getTaper()) + { + return getTaper() < params.getTaper(); + } + else + if( getRevolutions() != params.getRevolutions()) + { + return getRevolutions() < params.getRevolutions(); + } + else + { + return getSkew() < params.getSkew(); + } +} + +typedef LLVolumeParams* LLVolumeParamsPtr; +typedef const LLVolumeParams* const_LLVolumeParamsPtr; + +class LLVolumeParams +{ +public: + LLVolumeParams() + : mSculptType(LL_SCULPT_TYPE_NONE) + { + } + + LLVolumeParams(LLProfileParams &profile, LLPathParams &path, + LLUUID sculpt_id = LLUUID::null, U8 sculpt_type = LL_SCULPT_TYPE_NONE) + : mProfileParams(profile), mPathParams(path), mSculptID(sculpt_id), mSculptType(sculpt_type) + { + } + + bool operator==(const LLVolumeParams ¶ms) const; + bool operator!=(const LLVolumeParams ¶ms) const; + bool operator<(const LLVolumeParams ¶ms) const; + + + void copyParams(const LLVolumeParams ¶ms); + + const LLProfileParams &getProfileParams() const {return mProfileParams;} + LLProfileParams &getProfileParams() {return mProfileParams;} + const LLPathParams &getPathParams() const {return mPathParams;} + LLPathParams &getPathParams() {return mPathParams;} + + BOOL importFile(LLFILE *fp); + BOOL exportFile(LLFILE *fp) const; + + BOOL importLegacyStream(std::istream& input_stream); + BOOL exportLegacyStream(std::ostream& output_stream) const; + + LLSD sculptAsLLSD() const; + bool sculptFromLLSD(LLSD& sd); + + LLSD asLLSD() const; + operator LLSD() const { return asLLSD(); } + bool fromLLSD(LLSD& sd); + + bool setType(U8 profile, U8 path); + + //void setBeginS(const F32 beginS) { mProfileParams.setBegin(beginS); } // range 0 to 1 + //void setBeginT(const F32 beginT) { mPathParams.setBegin(beginT); } // range 0 to 1 + //void setEndS(const F32 endS) { mProfileParams.setEnd(endS); } // range 0 to 1, must be greater than begin + //void setEndT(const F32 endT) { mPathParams.setEnd(endT); } // range 0 to 1, must be greater than begin + + bool setBeginAndEndS(const F32 begin, const F32 end); // both range from 0 to 1, begin must be less than end + bool setBeginAndEndT(const F32 begin, const F32 end); // both range from 0 to 1, begin must be less than end + + bool setHollow(const F32 hollow); // range 0 to 1 + bool setRatio(const F32 x) { return setRatio(x,x); } // 0 = point, 1 = same as base + bool setShear(const F32 x) { return setShear(x,x); } // 0 = no movement, + bool setRatio(const F32 x, const F32 y); // 0 = point, 1 = same as base + bool setShear(const F32 x, const F32 y); // 0 = no movement + + bool setTwistBegin(const F32 twist_begin); // range -1 to 1 + bool setTwistEnd(const F32 twist_end); // range -1 to 1 + bool setTwist(const F32 twist) { return setTwistEnd(twist); } // deprecated + bool setTaper(const F32 x, const F32 y) { bool pass_x = setTaperX(x); bool pass_y = setTaperY(y); return pass_x && pass_y; } + bool setTaperX(const F32 v); // -1 to 1 + bool setTaperY(const F32 v); // -1 to 1 + bool setRevolutions(const F32 revolutions); // 1 to 4 + bool setRadiusOffset(const F32 radius_offset); + bool setSkew(const F32 skew); + bool setSculptID(const LLUUID sculpt_id, U8 sculpt_type); + + static bool validate(U8 prof_curve, F32 prof_begin, F32 prof_end, F32 hollow, + U8 path_curve, F32 path_begin, F32 path_end, + F32 scx, F32 scy, F32 shx, F32 shy, + F32 twistend, F32 twistbegin, F32 radiusoffset, + F32 tx, F32 ty, F32 revolutions, F32 skew); + + const F32& getBeginS() const { return mProfileParams.getBegin(); } + const F32& getBeginT() const { return mPathParams.getBegin(); } + const F32& getEndS() const { return mProfileParams.getEnd(); } + const F32& getEndT() const { return mPathParams.getEnd(); } + + const F32& getHollow() const { return mProfileParams.getHollow(); } + const F32& getTwist() const { return mPathParams.getTwist(); } + const F32& getRatio() const { return mPathParams.getScaleX(); } + const F32& getRatioX() const { return mPathParams.getScaleX(); } + const F32& getRatioY() const { return mPathParams.getScaleY(); } + const F32& getShearX() const { return mPathParams.getShearX(); } + const F32& getShearY() const { return mPathParams.getShearY(); } + + const F32& getTwistBegin()const { return mPathParams.getTwistBegin(); } + const F32& getRadiusOffset() const { return mPathParams.getRadiusOffset(); } + const F32& getTaper() const { return mPathParams.getTaperX(); } + const F32& getTaperX() const { return mPathParams.getTaperX(); } + const F32& getTaperY() const { return mPathParams.getTaperY(); } + const F32& getRevolutions() const { return mPathParams.getRevolutions(); } + const F32& getSkew() const { return mPathParams.getSkew(); } + const LLUUID& getSculptID() const { return mSculptID; } + const U8& getSculptType() const { return mSculptType; } + bool isSculpt() const; + bool isMeshSculpt() const; + BOOL isConvex() const; + + // 'begin' and 'end' should be in range [0, 1] (they will be clamped) + // (begin, end) = (0, 1) will not change the volume + // (begin, end) = (0, 0.5) will reduce the volume to the first half of its profile/path (S/T) + void reduceS(F32 begin, F32 end); + void reduceT(F32 begin, F32 end); + + struct compare + { + bool operator()( const const_LLVolumeParamsPtr& first, const const_LLVolumeParamsPtr& second) const + { + return (*first < *second); + } + }; + + friend std::ostream& operator<<(std::ostream &s, const LLVolumeParams &volume_params); + + // debug helper functions + void setCube(); + +protected: + LLProfileParams mProfileParams; + LLPathParams mPathParams; + LLUUID mSculptID; + U8 mSculptType; +}; + + +class LLProfile +{ +public: + LLProfile() + : mOpen(FALSE), + mConcave(FALSE), + mDirty(TRUE), + mTotalOut(0), + mTotal(2) + { + } + + ~LLProfile(); + + S32 getTotal() const { return mTotal; } + S32 getTotalOut() const { return mTotalOut; } // Total number of outside points + BOOL isFlat(S32 face) const { return (mFaces[face].mCount == 2); } + BOOL isOpen() const { return mOpen; } + void setDirty() { mDirty = TRUE; } + BOOL generate(const LLProfileParams& params, BOOL path_open, F32 detail = 1.0f, S32 split = 0, + BOOL is_sculpted = FALSE, S32 sculpt_size = 0); + BOOL isConcave() const { return mConcave; } +public: + struct Face + { + S32 mIndex; + S32 mCount; + F32 mScaleU; + BOOL mCap; + BOOL mFlat; + LLFaceID mFaceID; + }; + + std::vector mProfile; + std::vector mNormals; + std::vector mFaces; + std::vector mEdgeNormals; + std::vector mEdgeCenters; + + friend std::ostream& operator<<(std::ostream &s, const LLProfile &profile); + +protected: + void genNormals(const LLProfileParams& params); + void genNGon(const LLProfileParams& params, S32 sides, F32 offset=0.0f, F32 bevel = 0.0f, F32 ang_scale = 1.f, S32 split = 0); + + Face* addHole(const LLProfileParams& params, BOOL flat, F32 sides, F32 offset, F32 box_hollow, F32 ang_scale, S32 split = 0); + Face* addCap (S16 faceID); + Face* addFace(S32 index, S32 count, F32 scaleU, S16 faceID, BOOL flat); + +protected: + BOOL mOpen; + BOOL mConcave; + BOOL mDirty; + + S32 mTotalOut; + S32 mTotal; +}; + +//------------------------------------------------------------------- +// SWEEP/EXTRUDE PATHS +//------------------------------------------------------------------- + +class LLPath +{ +public: + struct PathPt + { + LLVector3 mPos; + LLVector2 mScale; + LLQuaternion mRot; + F32 mTexT; + PathPt() { mPos.setVec(0,0,0); mTexT = 0; mScale.setVec(0,0); mRot.loadIdentity(); } + }; + +public: + LLPath() + : mOpen(FALSE), + mTotal(0), + mDirty(TRUE), + mStep(1) + { + } + + virtual ~LLPath(); + + void genNGon(const LLPathParams& params, S32 sides, F32 offset=0.0f, F32 end_scale = 1.f, F32 twist_scale = 1.f); + virtual BOOL generate(const LLPathParams& params, F32 detail=1.0f, S32 split = 0, + BOOL is_sculpted = FALSE, S32 sculpt_size = 0); + + BOOL isOpen() const { return mOpen; } + F32 getStep() const { return mStep; } + void setDirty() { mDirty = TRUE; } + + S32 getPathLength() const { return (S32)mPath.size(); } + + void resizePath(S32 length) { mPath.resize(length); } + + friend std::ostream& operator<<(std::ostream &s, const LLPath &path); + +public: + std::vector mPath; + +protected: + BOOL mOpen; + S32 mTotal; + BOOL mDirty; + F32 mStep; +}; + +class LLDynamicPath : public LLPath +{ +public: + LLDynamicPath() : LLPath() { } + /*virtual*/ BOOL generate(const LLPathParams& params, F32 detail=1.0f, S32 split = 0, + BOOL is_sculpted = FALSE, S32 sculpt_size = 0); +}; + +// Yet another "face" class - caches volume-specific, but not instance-specific data for faces) +class LLVolumeFace +{ +public: + class VertexData + { + enum + { + POSITION = 0, + NORMAL = 1 + }; + + private: + void init(); + public: + VertexData(); + VertexData(const VertexData& rhs); + const VertexData& operator=(const VertexData& rhs); + + ~VertexData(); + LLVector4a& getPosition(); + LLVector4a& getNormal(); + const LLVector4a& getPosition() const; + const LLVector4a& getNormal() const; + void setPosition(const LLVector4a& pos); + void setNormal(const LLVector4a& norm); + + + LLVector2 mTexCoord; + + bool operator<(const VertexData& rhs) const; + bool operator==(const VertexData& rhs) const; + bool compareNormal(const VertexData& rhs, F32 angle_cutoff) const; + + private: + LLVector4a* mData; + }; + + LLVolumeFace(); + LLVolumeFace(const LLVolumeFace& src); + LLVolumeFace& operator=(const LLVolumeFace& rhs); + + ~LLVolumeFace(); +private: + void freeData(); +public: + + BOOL create(LLVolume* volume, BOOL partial_build = FALSE); + void createBinormals(); + + void appendFace(const LLVolumeFace& face, LLMatrix4& transform, LLMatrix4& normal_tranform); + + void resizeVertices(S32 num_verts); + void allocateBinormals(S32 num_verts); + void allocateWeights(S32 num_verts); + void resizeIndices(S32 num_indices); + void fillFromLegacyData(std::vector& v, std::vector& idx); + + void pushVertex(const VertexData& cv); + void pushVertex(const LLVector4a& pos, const LLVector4a& norm, const LLVector2& tc); + void pushIndex(const U16& idx); + + void swapData(LLVolumeFace& rhs); + + void getVertexData(U16 indx, LLVolumeFace::VertexData& cv); + + class VertexMapData : public LLVolumeFace::VertexData + { + public: + U16 mIndex; + + bool operator==(const LLVolumeFace::VertexData& rhs) const; + + struct ComparePosition + { + bool operator()(const LLVector3& a, const LLVector3& b) const; + }; + + typedef std::map, VertexMapData::ComparePosition > PointMap; + }; + + void optimize(F32 angle_cutoff = 2.f); + void cacheOptimize(); + + void createOctree(F32 scaler = 0.25f, const LLVector4a& center = LLVector4a(0,0,0), const LLVector4a& size = LLVector4a(0.5f,0.5f,0.5f)); + + enum + { + SINGLE_MASK = 0x0001, + CAP_MASK = 0x0002, + END_MASK = 0x0004, + SIDE_MASK = 0x0008, + INNER_MASK = 0x0010, + OUTER_MASK = 0x0020, + HOLLOW_MASK = 0x0040, + OPEN_MASK = 0x0080, + FLAT_MASK = 0x0100, + TOP_MASK = 0x0200, + BOTTOM_MASK = 0x0400 + }; + +public: + S32 mID; + U32 mTypeMask; + + // Only used for INNER/OUTER faces + S32 mBeginS; + S32 mBeginT; + S32 mNumS; + S32 mNumT; + + LLVector4a* mExtents; //minimum and maximum point of face + LLVector4a* mCenter; + LLVector2 mTexCoordExtents[2]; //minimum and maximum of texture coordinates of the face. + + S32 mNumVertices; + S32 mNumIndices; + + LLVector4a* mPositions; + LLVector4a* mNormals; + LLVector4a* mBinormals; + LLVector2* mTexCoords; + U16* mIndices; + + std::vector mEdge; + + //list of skin weights for rigged volumes + // format is mWeights[vertex_index].mV[influence] = . + // mWeights.size() should be empty or match mVertices.size() + LLVector4a* mWeights; + + LLOctreeNode* mOctree; + +private: + BOOL createUnCutCubeCap(LLVolume* volume, BOOL partial_build = FALSE); + BOOL createCap(LLVolume* volume, BOOL partial_build = FALSE); + BOOL createSide(LLVolume* volume, BOOL partial_build = FALSE); +}; + +class LLVolume : public LLRefCount +{ + friend class LLVolumeLODGroup; + +protected: + ~LLVolume(); // use unref + +public: + struct Point + { + LLVector3 mPos; + }; + + struct FaceParams + { + LLFaceID mFaceID; + S32 mBeginS; + S32 mCountS; + S32 mBeginT; + S32 mCountT; + }; + + LLVolume(const LLVolumeParams ¶ms, const F32 detail, const BOOL generate_single_face = FALSE, const BOOL is_unique = FALSE); + + U8 getProfileType() const { return mParams.getProfileParams().getCurveType(); } + U8 getPathType() const { return mParams.getPathParams().getCurveType(); } + S32 getNumFaces() const; + S32 getNumVolumeFaces() const { return mVolumeFaces.size(); } + F32 getDetail() const { return mDetail; } + const LLVolumeParams& getParams() const { return mParams; } + LLVolumeParams getCopyOfParams() const { return mParams; } + const LLProfile& getProfile() const { return *mProfilep; } + LLPath& getPath() const { return *mPathp; } + void resizePath(S32 length); + const std::vector& getMesh() const { return mMesh; } + const LLVector3& getMeshPt(const U32 i) const { return mMesh[i].mPos; } + + void setDirty() { mPathp->setDirty(); mProfilep->setDirty(); } + + void regen(); + void genBinormals(S32 face); + + BOOL isConvex() const; + BOOL isCap(S32 face); + BOOL isFlat(S32 face); + BOOL isUnique() const { return mUnique; } + + S32 getSculptLevel() const { return mSculptLevel; } + void setSculptLevel(S32 level) { mSculptLevel = level; } + + S32 *getTriangleIndices(U32 &num_indices) const; + + // returns number of triangle indeces required for path/profile mesh + S32 getNumTriangleIndices() const; + + S32 getNumTriangles() const; + + void generateSilhouetteVertices(std::vector &vertices, + std::vector &normals, + std::vector &segments, + const LLVector3& view_vec, + const LLMatrix4& mat, + const LLMatrix3& norm_mat, + S32 face_index); + + //get the face index of the face that intersects with the given line segment at the point + //closest to start. Moves end to the point of intersection. Returns -1 if no intersection. + //Line segment must be in volume space. + S32 lineSegmentIntersect(const LLVector3& start, const LLVector3& end, + S32 face = -1, // which face to check, -1 = ALL_SIDES + LLVector3* intersection = NULL, // return the intersection point + LLVector2* tex_coord = NULL, // return the texture coordinates of the intersection point + LLVector3* normal = NULL, // return the surface normal at the intersection point + LLVector3* bi_normal = NULL // return the surface bi-normal at the intersection point + ); + + S32 lineSegmentIntersect(const LLVector4a& start, const LLVector4a& end, + S32 face = 1, + LLVector3* intersection = NULL, + LLVector2* tex_coord = NULL, + LLVector3* normal = NULL, + LLVector3* bi_normal = NULL); + + // The following cleans up vertices and triangles, + // getting rid of degenerate triangles and duplicate vertices, + // and allocates new arrays with the clean data. + static BOOL cleanupTriangleData( const S32 num_input_vertices, + const std::vector &input_vertices, + const S32 num_input_triangles, + S32 *input_triangles, + S32 &num_output_vertices, + LLVector3 **output_vertices, + S32 &num_output_triangles, + S32 **output_triangles); + LLFaceID generateFaceMask(); + + BOOL isFaceMaskValid(LLFaceID face_mask); + static S32 sNumMeshPoints; + + friend std::ostream& operator<<(std::ostream &s, const LLVolume &volume); + friend std::ostream& operator<<(std::ostream &s, const LLVolume *volumep); // HACK to bypass Windoze confusion over + // conversion if *(LLVolume*) to LLVolume& + const LLVolumeFace &getVolumeFace(const S32 f) const {return mVolumeFaces[f];} // DO NOT DELETE VOLUME WHILE USING THIS REFERENCE, OR HOLD A POINTER TO THIS VOLUMEFACE + + U32 mFaceMask; // bit array of which faces exist in this volume + LLVector3 mLODScaleBias; // vector for biasing LOD based on scale + + void sculpt(U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data, S32 sculpt_level); + void copyVolumeFaces(const LLVolume* volume); + void cacheOptimize(); + +private: + void sculptGenerateMapVertices(U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data, U8 sculpt_type); + F32 sculptGetSurfaceArea(); + void sculptGeneratePlaceholder(); + void sculptCalcMeshResolution(U16 width, U16 height, U8 type, S32& s, S32& t); + + +protected: + BOOL generate(); + void createVolumeFaces(); +public: + virtual BOOL createVolumeFacesFromFile(const std::string& file_name); + virtual BOOL createVolumeFacesFromStream(std::istream& is); + virtual bool unpackVolumeFaces(std::istream& is, S32 size); + + virtual void makeTetrahedron(); + virtual BOOL isTetrahedron(); + + protected: + BOOL mUnique; + F32 mDetail; + S32 mSculptLevel; + BOOL mIsTetrahedron; + + LLVolumeParams mParams; + LLPath *mPathp; + LLProfile *mProfilep; + std::vector mMesh; + + BOOL mGenerateSingleFace; + typedef std::vector face_list_t; + face_list_t mVolumeFaces; + +public: + LLVector4a* mHullPoints; + U16* mHullIndices; + S32 mNumHullPoints; + S32 mNumHullIndices; +}; + +std::ostream& operator<<(std::ostream &s, const LLVolumeParams &volume_params); + +void calc_binormal_from_triangle( + LLVector4a& binormal, + const LLVector4a& pos0, + const LLVector2& tex0, + const LLVector4a& pos1, + const LLVector2& tex1, + const LLVector4a& pos2, + const LLVector2& tex2); + +BOOL LLLineSegmentBoxIntersect(const F32* start, const F32* end, const F32* center, const F32* size); +BOOL LLLineSegmentBoxIntersect(const LLVector3& start, const LLVector3& end, const LLVector3& center, const LLVector3& size); +BOOL LLLineSegmentBoxIntersect(const LLVector4a& start, const LLVector4a& end, const LLVector4a& center, const LLVector4a& size); + +BOOL LLTriangleRayIntersect(const LLVector3& vert0, const LLVector3& vert1, const LLVector3& vert2, const LLVector3& orig, const LLVector3& dir, + F32& intersection_a, F32& intersection_b, F32& intersection_t, BOOL two_sided); + +BOOL LLTriangleRayIntersect(const LLVector4a& vert0, const LLVector4a& vert1, const LLVector4a& vert2, const LLVector4a& orig, const LLVector4a& dir, + F32& intersection_a, F32& intersection_b, F32& intersection_t); +BOOL LLTriangleRayIntersectTwoSided(const LLVector4a& vert0, const LLVector4a& vert1, const LLVector4a& vert2, const LLVector4a& orig, const LLVector4a& dir, + F32& intersection_a, F32& intersection_b, F32& intersection_t); + + + +#endif diff --git a/indra/llmath/llvolumeoctree.h b/indra/llmath/llvolumeoctree.h index f696cbd976..688d91dc40 100644 --- a/indra/llmath/llvolumeoctree.h +++ b/indra/llmath/llvolumeoctree.h @@ -34,6 +34,41 @@ #include "llvolume.h" #include "llvector4a.h" +class LLVolumeTriangle : public LLRefCount +{ +public: + LLVolumeTriangle() + { + + } + + LLVolumeTriangle(const LLVolumeTriangle& rhs) + { + *this = rhs; + } + + const LLVolumeTriangle& operator=(const LLVolumeTriangle& rhs) + { + llerrs << "Illegal operation!" << llendl; + return *this; + } + + ~LLVolumeTriangle() + { + + } + + LLVector4a mPositionGroup; + + const LLVector4a* mV[3]; + U16 mIndex[3]; + + F32 mRadius; + + virtual const LLVector4a& getPositionGroup() const; + virtual const F32& getBinRadius() const; +}; + class LLVolumeOctreeListener : public LLOctreeListener { public: @@ -91,41 +126,6 @@ public: virtual void visit(const LLOctreeNode* node); }; -class LLVolumeTriangle : public LLRefCount -{ -public: - LLVolumeTriangle() - { - - } - - LLVolumeTriangle(const LLVolumeTriangle& rhs) - { - *this = rhs; - } - - const LLVolumeTriangle& operator=(const LLVolumeTriangle& rhs) - { - llerrs << "Illegal operation!" << llendl; - return *this; - } - - ~LLVolumeTriangle() - { - - } - - LLVector4a mPositionGroup; - - const LLVector4a* mV[3]; - U16 mIndex[3]; - - F32 mRadius; - - virtual const LLVector4a& getPositionGroup() const; - virtual const F32& getBinRadius() const; -}; - class LLVolumeOctreeValidate : public LLOctreeTraveler { virtual void visit(const LLOctreeNode* branch); -- cgit v1.2.3