Age | Commit message (Collapse) | Author |
|
|
|
Poller.
|
|
|
|
|
|
times by multiple events.
|
|
|
|
LLCoprocedureManager
|
|
LLError::shouldLogToStderr() behavior under xcode.
|
|
|
|
been fulfilled.
|
|
useful for debugging;
|
|
xcode's PATH
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Delete the test for SRV timeout: lllogin no longer issues an SRV query. That
test only confuses the test program without exercising any useful paths in
production code.
As with other tests dating from the previous LLCoros implementation, we need a
few llcoro::suspend() calls sprinkled in so that a fiber marked ready -- by
fulfilling the future for which it is waiting -- gets a chance to run.
Clear LLEventPumps between test functions.
|
|
which is, of course, different in Visual Studio (__FUNCSIG__).
Use LL_PRETTY_FUNCTION in DEBUG output instead of plain __FUNCTION__.
|
|
This is like the existing reset() method, except that reset() is specifically
intended for shutdown: it disables every existing LLEventPump in such a way
that it cannot be subsequently reused. (The original idea was to disconnect
listeners in DLLs unloaded at shutdown.)
clear() forcibly disconnects all existing listeners, but leaves LLEventPumps
ready for reuse. This is useful (e.g.) for test programs to reset the state of
LLEventPumps between individual test functions.
|
|
Longtime fans will remember that the "dcoroutine" library is a Google Summer
of Code project by Giovanni P. Deretta. He originally called it
"Boost.Coroutine," and we originally added it to our 3p-boost autobuild
package as such. But when the official Boost.Coroutine library came along
(with a very different API), and we still needed the API of the GSoC project,
we renamed the unofficial one "dcoroutine" to allow coexistence.
The "dcoroutine" library had an internal low-level API more or less analogous
to Boost.Context. We later introduced an implementation of that internal API
based on Boost.Context, a step towards eliminating the GSoC code in favor of
official, supported Boost code.
However, recent versions of Boost.Context no longer support the API on which
we built the shim for "dcoroutine." We started down the path of reimplementing
that shim using the current Boost.Context API -- then realized that it's time
to bite the bullet and replace the "dcoroutine" API with the Boost.Fiber API,
which we've been itching to do for literally years now.
Naturally, most of the heavy lifting is in llcoros.{h,cpp} and
lleventcoro.{h,cpp} -- which is good: the LLCoros layer abstracts away most of
the differences between "dcoroutine" and Boost.Fiber.
The one feature Boost.Fiber does not provide is the ability to forcibly
terminate some other fiber. Accordingly, disable LLCoros::kill() and
LLCoprocedureManager::shutdown(). The only known shutdown() call was in
LLCoprocedurePool's destructor.
We also took the opportunity to remove postAndSuspend2() and its associated
machinery: FutureListener2, LLErrorEvent, errorException(), errorLog(),
LLCoroEventPumps. All that dual-LLEventPump stuff was introduced at a time
when the Responder pattern was king, and we assumed we'd want to listen on one
LLEventPump with the success handler and on another with the error handler. We
have never actually used that in practice. Remove associated tests, of course.
There is one other semantic difference that necessitates patching a number of
tests: with "dcoroutine," fulfilling a future IMMEDIATELY resumes the waiting
coroutine. With Boost.Fiber, fulfilling a future merely marks the fiber as
ready to resume next time the scheduler gets around to it. To observe the test
side effects, we've inserted a number of llcoro::suspend() calls -- also in
the main loop.
For a long time we retained a single unit test exercising the raw "dcoroutine"
API. Remove that.
Eliminate llcoro_get_id.{h,cpp}, which provided llcoro::get_id(), which was a
hack to emulate fiber-local variables. Since Boost.Fiber has an actual API for
that, remove the hack.
In fact, use (new alias) LLCoros::local_ptr for LLSingleton's dependency
tracking in place of llcoro::get_id().
In CMake land, replace BOOST_COROUTINE_LIBRARY with BOOST_FIBER_LIBRARY. We
don't actually use the Boost.Coroutine for anything (though there exist
plausible use cases).
|
|
|
|
|
|
We used to have to use #if LL_WINDOWS logic to pass std::mem_fun1() to
llbind2nd() instead of std::mem_fun() elsewhere. VS 2017 no longer supports
std::mem_fun1(), which means we can eliminate the special case for Windows.
|
|
The Microsoft _open_osfhandle() opens a HANDLE to produce a C-style int file
descriptor suitable for passing to _fdopen(). We used to cast the HANDLEs
returned by GetStdHandle() to long to pass to _open_osfhandle(). Since HANDLE
is an alias for a pointer, this no longer works.
Fortunately _open_osfhandle() now accepts intptr_t, so we can change the
relevant GetStdHandle() calls. (But why not simply accept HANDLE in the first
place?)
|
|
VS 2017 complains about the same thing that clang does: casting S32 to GLvoid*
can't possibly produce a valid pointer value because S32 can't fit a whole
64-bit pointer. To appease it, not only must we use reinterpret_cast, but we
must first cast S32 to intptr_t and then reinterpret_cast THAT.
|
|
VS 2017 was complaining about truncating the value.
|
|
With VS 2017, these produced fatal warnings.
|
|
llcorehttp's test_allocator.{h,cpp} overrides global operator new(), operator
new[](), operator delete() and operator delete[](). The two operator new()
functions used to be declared with throw(std::bad_alloc). Worse, for VS 2013
and previous, we needed _THROW0() and _THROW1(std::bad_alloc) instead,
requiring #if logic.
But with dynamic throw declarations deprecated, we must actually remove those.
That obviates the THROW_BAD_ALLOC() / THROW_NOTHING() workarounds in
test_allocator.cpp.
|
|
In three different places we use the same pattern: an ssl_thread_id_callback()
function (a static member of LLCrashLogger, in that case) that used to be
passed to CRYPTO_set_id_callback() and therefore returned an unsigned long
representing the ID of the current thread.
But GetCurrentThread() is a HANDLE, an alias for a pointer, and you can't
uniquely cram a 64-bit pointer into an unsigned long.
Fortunately OpenSSL has a more modern API for retrieving thread ID. Pass
each ssl_thread_id_callback() function to CRYPTO_THREADID_set_callback()
instead, converting it to accept CRYPTO_THREADID* and call
CRYPTO_THREADID_set_pointer() or CRYPTO_THREADID_set_numeric() as appropriate().
|
|
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/snprintf-snprintf-snprintf-l-snwprintf-snwprintf-l?view=vs-2017
"Beginning with the UCRT in Visual Studio 2015 and Windows 10, snprintf is no
longer identical to _snprintf. The snprintf function behavior is now C99
standard compliant."
In other words, VS 2015 et ff. snprintf() now promises to nul-terminate the
buffer even in the overflow case, which is what snprintf_hack::snprintf() was
for.
This removal was motivated by ambiguous-call errors generated by VS 2017 for
library snprintf() vs. snprintf_hack::snprintf().
|
|
Also, on Windows, put build output into
build-vc$AUTOBUILD_VSVER-$AUTOBUILD_ADDRSIZE instead of hard-coding
build-vc120-$AUTOBUILD_ADDRSIZE.
|
|
Add code to login-fail handler to provide release notes URL from
SLVersionChecker handshake event.
|
|
|
|
Now, when the viewer decides it's appropriate to display release notes on the
login screen, wait for SLVersionChecker to post the release-notes URL before
opening the web floater.
|
|
Make LLAppViewer retrieve release notes from LLVersionInfo, rather than
synthesizing the release-notes URL itself based on the viewer version string.
|
|
getStateTable returns a list of the EStartupState symbolic names, implicitly
mapping each to its index (its enum numeric value).
|
|
Before this change, you had to literally pass LLSD::emptyArray() to get no-op
behavior.
|
|
The default string returned by getReleaseNotes() is empty. It must be set by
posting the relevant release-notes URL string to a new LLEventMailDrop
instance named "relnotes".
Add unique_ptr<LLEventMailDrop> and unique_ptr<LLStoreListener<std::string>>
to LLVersionInfo -- using unique_ptr to leave those classes opaque to
header-file consumers. Introduce an out-of-line destructor to handle the
unique_ptr<opaque> idiom.
Initialize the LLEventMailDrop with the desired name; initialize the
LLStoreListener with that LLEventMailDrop and the data member returned by
getReleaseNotes().
|
|
LLStoreListener is an adapter initialized with a reference to an LLEventPump
on which to listen, a reference to a variable into which to store received
data, and an optional llsd::drill() path to extract desired data from each
event received on the subject LLEventPump.
In effect, LLStoreListener is like a miniature LLEventAPI whose only operation
is to store to its destination variable.
|
|
We include both const and non-const overloads. The latter returns LLSD&, so
you can assign to the located element.
In fact we already implemented the non-const logic in a less public form as
storeToLLSDPath() in lleventcoro.cpp. Reimplement the latter to use the new
llsd::drill() function.
|