Age | Commit message (Collapse) | Author |
|
|
|
|
|
see fe8c976 for more info
Co-authored-by: Andrey Lihatskiy <alihatskiy@productengine.com>
|
|
release/2024.06-atlasaurus
|
|
see fe8c976 for more info
|
|
`listen()` still takes `LLEventListener`, a `callable(const LLSD&)`, but now
also accepts `LLAwareListener`, a `callable(const LLBoundListener&, const LLSD&)`.
This uses `boost::signals2::signal::connect_extended()`, which, when the
signal is called, passes to a connected listener the `LLBoundListener` (aka
`boost::signals2::connection`) representing its own connection. This allows a
listener to disconnect itself when done.
Internally, `listen_impl()` now always uses `connect_extended()`. When passed
a classic `LLEventListener`, `listen()` wraps it in a lambda that ignores the
passed `LLBoundListener`.
`listen()` also now accepts `LLVoidListener`, and internally wraps it in a lambda
that returns `false` on its behalf.
|
|
We couldn't discard the "p.s." fiber.run() call from LuaState::expr() until we
could count on fiber.lua's LL.atexit(fiber.run) call being executed after each
Lua script or chunk, and we couldn't count on that until we made
LLLUAmanager::runScriptFile() instantiate and destroy its LuaState on the C++
Lua-specific coroutine. Now that we've done that, use LL.atexit(fiber.run)
instead of the whole special-case "p.s." in LuaState::expr().
|
|
Remove LLLUAmanager::mumbleScriptLine() LuaState& parameters. Make
startScriptLine(), waitScriptLine() and runScriptLine() exactly parallel to
startScriptFile(), waitScriptFile() and runScriptFile(). That means that
runScriptLine()'s C++ coroutine instantiates and destroys its own LuaState,
which means that LL.atexit() functions will run on the Lua-specific C++
coroutine rather than (say) the viewer's main coroutine.
Introduce LLLUAmanager::script_result typedef for std::pair<int, LLSD> and use
in method returns.
Remove LuaState::initLuaState(); move its logic back into the constructor.
Remove initLuaState() calls in the expr() error cases: they're moot now that
we won't get subsequent expr() calls on the same LuaState instance.
Remove LLFloaterLUADebug "Use clean lua_State" checkbox and the cleanLuaState()
method. Remove mState member.
Remove explicit LuaState declarations from LLLUAmanager tests. Adapt one test
for implicit LuaState: it was directly calling LuaState::obtainListener() to
discover the LuaListener's reply-pump name. But since that test also captures
two leap.request() calls from the Lua script, it can just look at the "reply"
key in either of those requests.
|
|
Passing std::string::c_str() to a (const std::string&) function parameter is
worse than clutter, it's pointless overhead: it forces the compiler to
construct a new std::string instance, instead of passing a const reference to
the one you already have in hand.
|
|
Remove LL_TEST special case from require() code (to search in the viewer's
source tree). Instead, make llluamanager_test.cpp append to LuaRequirePath to
get the same effect.
|
|
This replaces type_tag<T>(), which searched and possibly extended the type_tags
unordered_map at runtime. If we called lua_emplace<T>() from different threads,
that would require locking type_tags.
In contrast, the compiler must instantiate a distinct TypeTag<T> for every
distinct T passed to lua_emplace<T>(), so each gets a distinct value at static
initialization time. No locking is required; no lookup; no allocations.
Add a test to llluamanager_test.cpp to verify that each distinct T passed to
lua_emplace<T>() gets its own TypeTag<T>::value, and that each gets its own
destructor -- but that different lua_emplace<T>() calls with the same T share
the same TypeTag<T>::value and the same destructor.
|
|
Instead, make fiber.lua call LL.atexit(fiber.run) to schedule that final run()
call at ~LuaState() time using the generic mechanism.
Append an explicit fiber.run() call to a specific test in llluamanager_test.cpp
because the test code wants to interact with multiple Lua fibers *before* we
destroy the LuaState.
|
|
Instead of deriving LuaListener from LLInstanceTracker with an int key,
generating a unique int key and storing that key in the Registry, use new
lua_emplace<LuaState>() to store the LuaListener directly in a Lua userdata
object in the Lua Registry.
Because lua_emplace<T>() uses LL.atexit() to guarantee that ~LuaState will
destroy the T object, we no longer need ~LuaState() to make a special call
specifically to destroy the LuaListener, if any. So we no longer need
LuaState::getListener() separate from obtainListener().
Since LuaListener is no longer an LLInstanceTracker subclass, make
LuaState::obtainListener() return LuaListener& rather than LuaListener::ptr_t.
|
|
|
|
"possible loss of precision" warnings
|
|
|
|
# Conflicts:
# autobuild.xml
# indra/cmake/CMakeLists.txt
# indra/cmake/GoogleMock.cmake
# indra/llaudio/llaudioengine_fmodstudio.cpp
# indra/llaudio/llaudioengine_fmodstudio.h
# indra/llaudio/lllistener_fmodstudio.cpp
# indra/llaudio/lllistener_fmodstudio.h
# indra/llaudio/llstreamingaudio_fmodstudio.cpp
# indra/llaudio/llstreamingaudio_fmodstudio.h
# indra/llcharacter/llmultigesture.cpp
# indra/llcharacter/llmultigesture.h
# indra/llimage/llimage.cpp
# indra/llimage/llimagepng.cpp
# indra/llimage/llimageworker.cpp
# indra/llimage/tests/llimageworker_test.cpp
# indra/llmessage/tests/llmockhttpclient.h
# indra/llprimitive/llgltfmaterial.h
# indra/llrender/llfontfreetype.cpp
# indra/llui/llcombobox.cpp
# indra/llui/llfolderview.cpp
# indra/llui/llfolderviewmodel.h
# indra/llui/lllineeditor.cpp
# indra/llui/lllineeditor.h
# indra/llui/lltextbase.cpp
# indra/llui/lltextbase.h
# indra/llui/lltexteditor.cpp
# indra/llui/lltextvalidate.cpp
# indra/llui/lltextvalidate.h
# indra/llui/lluictrl.h
# indra/llui/llview.cpp
# indra/llwindow/llwindowmacosx.cpp
# indra/newview/app_settings/settings.xml
# indra/newview/llappearancemgr.cpp
# indra/newview/llappearancemgr.h
# indra/newview/llavatarpropertiesprocessor.cpp
# indra/newview/llavatarpropertiesprocessor.h
# indra/newview/llbreadcrumbview.cpp
# indra/newview/llbreadcrumbview.h
# indra/newview/llbreastmotion.cpp
# indra/newview/llbreastmotion.h
# indra/newview/llconversationmodel.h
# indra/newview/lldensityctrl.cpp
# indra/newview/lldensityctrl.h
# indra/newview/llface.inl
# indra/newview/llfloatereditsky.cpp
# indra/newview/llfloatereditwater.cpp
# indra/newview/llfloateremojipicker.h
# indra/newview/llfloaterimsessiontab.cpp
# indra/newview/llfloaterprofiletexture.cpp
# indra/newview/llfloaterprofiletexture.h
# indra/newview/llgesturemgr.cpp
# indra/newview/llgesturemgr.h
# indra/newview/llimpanel.cpp
# indra/newview/llimpanel.h
# indra/newview/llinventorybridge.cpp
# indra/newview/llinventorybridge.h
# indra/newview/llinventoryclipboard.cpp
# indra/newview/llinventoryclipboard.h
# indra/newview/llinventoryfunctions.cpp
# indra/newview/llinventoryfunctions.h
# indra/newview/llinventorygallery.cpp
# indra/newview/lllistbrowser.cpp
# indra/newview/lllistbrowser.h
# indra/newview/llpanelobjectinventory.cpp
# indra/newview/llpanelprofile.cpp
# indra/newview/llpanelprofile.h
# indra/newview/llpreviewgesture.cpp
# indra/newview/llsavedsettingsglue.cpp
# indra/newview/llsavedsettingsglue.h
# indra/newview/lltooldraganddrop.cpp
# indra/newview/llurllineeditorctrl.cpp
# indra/newview/llvectorperfoptions.cpp
# indra/newview/llvectorperfoptions.h
# indra/newview/llviewerparceloverlay.cpp
# indra/newview/llviewertexlayer.cpp
# indra/newview/llviewertexturelist.cpp
# indra/newview/macmain.h
# indra/test/test.cpp
|
|
|
|
LF, and trim trailing whitespaces as needed
|
|
|
|
|
|
# Conflicts:
# autobuild.xml
# indra/llimage/llimage.cpp
# indra/llui/llsearcheditor.cpp
# indra/llui/llview.cpp
# indra/newview/llagent.cpp
# indra/newview/llappviewer.cpp
# indra/newview/llfloatercamera.cpp
# indra/newview/llfloatereditsky.cpp
# indra/newview/llfloatereditwater.cpp
# indra/newview/llinventoryfunctions.cpp
# indra/newview/lloutfitgallery.cpp
# indra/newview/lloutfitslist.cpp
# indra/newview/llpanelgroupbulkban.cpp
# indra/newview/llsidepanelappearance.cpp
# indra/newview/llvovolume.cpp
|
|
Also tweak existing Lua interleaved-responses test to accommodate new Lua
periodic suspend behavior.
|
|
|
|
DRTVWR-600-maint-A
# Conflicts:
# indra/llcommon/llapp.cpp
# indra/llcommon/llapp.h
# indra/llimage/llimageworker.cpp
# indra/llui/llcontainerview.cpp
# indra/llui/llcontainerview.h
# indra/llui/llkeywords.cpp
# indra/llui/lltabcontainer.cpp
# indra/llui/lltextbase.cpp
# indra/newview/llappviewer.cpp
# indra/newview/llfavoritesbar.cpp
# indra/newview/llfavoritesbar.h
# indra/newview/llfloaterimnearbychathandler.cpp
# indra/newview/llfloaterpreference.cpp
# indra/newview/llhudnametag.h
# indra/newview/llinventorypanel.cpp
# indra/newview/llinventorypanel.h
# indra/newview/llmeshrepository.cpp
# indra/newview/lloutfitgallery.cpp
# indra/newview/lloutfitslist.cpp
# indra/newview/llpaneleditwearable.cpp
# indra/newview/llpanelprofilepicks.cpp
# indra/newview/llpanelvoicedevicesettings.h
# indra/newview/llpreviewscript.cpp
# indra/newview/llpreviewscript.h
# indra/newview/llselectmgr.cpp
# indra/newview/lltranslate.cpp
# indra/newview/llviewerassetupload.cpp
# indra/newview/llviewermessage.cpp
|
|
# Conflicts:
# autobuild.xml
# indra/llcommon/llsys.cpp
|
|
|
|
Make LuaListener listen for "LLApp" viewer shutdown events. On receiving such,
it closes its queue. Then the C++ coroutine calling getNext() wakes up with an
LLThreadSafeQueue exception, and calls LLCoros::checkStop() to throw one of
the exceptions recognized by LLCoros::toplevel().
Add an llluamanager_test.cpp test to verify this behavior.
|
|
|
|
This is a very common pattern, especially in test code, but elsewhere in the
viewer too.
Use it in llluamanager_test.cpp.
|
|
Recast fiber.yield() as internal function scheduler().
Move fiber.run() after it so it can call scheduler() as a local function.
Add new fiber.yield() that also calls scheduler(); the added value of this new
fiber.yield() over plain scheduler() is that if scheduler() returns before the
caller is ready (because the configured set_idle() function returned non-nil),
it produces an explicit error rather than returning to its caller. So the
caller can assume that when fiber.yield() returns normally, the calling fiber
is ready.
This allows any fiber, including the main thread, to call fiber.yield() or
fiber.wait(). This supports using leap.request(), which posts a request and
then waits on a WaitForReqid, which calls ErrorQueue:Dequeue(), which calls
fiber.wait().
WaitQueue:_wake_waiters() must call fiber.status() instead of
coroutine.status() so it understands the special token 'main'.
Add a new llluamanager_test.cpp test to exercise calling leap.request() from
Lua's main thread.
|
|
This fixes a hang if the Lua script explicitly calls fiber.run() before
LuaState::expr()'s implicit fiber.run() call.
Make fiber.run() remove the calling fiber from the ready list to avoid an
infinite loop when all other fibers have terminated: "You're ready!" "Okay,
yield()." "You're ready again!" ... But don't claim it's waiting, either,
because then when all other fibers have terminated, we'd call idle() in the
vain hope that something would make that one last fiber ready.
WaitQueue:_wake_waiters() needs to wake waiting fibers if the queue's not
empty OR it's been closed.
Introduce leap.WaitFor:close() to close the queue gracefully so that a looping
waiter can terminate, instead of using WaitFor:exception(), which stops the
whole script once it propagates. Make leap's cleanup() function call close().
Streamline fiber.get_name() by using 'or' instead of if ... then.
Streamline fiber.status() and fiber.set_waiting() by using table.find()
instead of a loop.
|
|
fiber.lua goes beyond coro.lua in that it distinguishes ready suspended
coroutines from waiting suspended coroutines, and presents a rudimentary
scheduler in fiber.yield(). yield() can determine that when all coroutines are
waiting, it's time to retrieve the next incoming event from the viewer.
Moreover, it can detect when all coroutines have completed and exit without
being explicitly told.
fiber.launch() associates a name with each fiber for debugging purposes.
fiber.get_name() retrieves the name of the specified fiber, or the running fiber.
fiber.status() is like coroutine.status(), but can return 'ready' or 'waiting'
instead of 'suspended'.
fiber.yield() leaves the calling fiber ready, but lets other ready fibers run.
fiber.wait() suspends the calling fiber and lets other ready fibers run.
fiber.wake(), called from some other coroutine, returns the passed fiber to
ready status for a future call to fiber.yield().
fiber.run() drives the scheduler to run all fibers to completion.
If, on completion of the subject Lua script, LuaState::expr() detects that the
script loaded fiber.lua, it calls fiber.run() to finish running any dangling
fibers. This lets a script make calls to fiber.launch() and then just fall off
the end, leaving the implicit fiber.run() call to run them all.
fiber.lua is designed to allow the main thread, as well as explicitly launched
coroutines, to make leap.request() calls. This part still needs debugging.
The leap.lua module now configures a fiber.set_idle() function that honors
leap.done(), but calls get_event_next() and dispatches the next incoming event.
leap.request() and generate() now leave the reqid stamp in the response. This
lets a caller handle subsequent events with the same reqid, e.g. for
LLLuaFloater.
Remove leap.process(): it has been superseded by fiber.run().
Remove leap.WaitFor:iterate(): unfortunately that would run afoul of the Luau
bug that prevents suspending the calling coroutine within a generic 'for'
iterator function.
Make leap.lua use weak tables to track WaitFor objects.
Make WaitQueue:Dequeue() call fiber.wait() to suspend its caller when the queue
is empty, and Enqueue() call fiber.wake() to set it ready again when a new
item is pushed.
Make llluamanager_test.cpp's leap test script use the fiber module to launch
coroutines, instead of the coro module. Fix a bug in which its drain()
function was inadvertently setting and testing the global 'item' variable
instead of one local to the function. Since some other modules had the same
bug, it was getting confused.
Also add printf.lua, providing a printf() function. printf() is short for
print(string.format()), but it can also print tables: anything not a number or
string is formatted using the inspect() function.
Clean up some LL_DEBUGS() output left over from debugging lua_tollsd().
|
|
request() test ensures that the response for a given reqid is routed to the
correct coroutine even when responses arrive out of order.
|
|
|
|
Sketch in an initial test that requires one of our bundled Lua modules.
Each time we run Lua, report any error returned by the Lua engine.
Use llcoro::suspendUntilEventOn(LLEventMailDrop) as shorthand for initializing
an explicit LLTempBoundListener with a listen() call with a lambda.
|
|
|
|
Don't set up a Lua callback to receive incoming events, a la listen_events().
Don't listen on an arbitrary event pump, a la await_event().
Instead, the new get_event_pumps() entry point simply delivers the reply pump
and command pump names (as listen_events() did) without storing a Lua
callback.
Make LuaListener capture incoming events on the reply pump in a queue. This
avoids the problem of multiple events arriving too quickly for the Lua script
to retrieve. If the queue gets too big, discard the excess instead of blocking
the caller of post().
Then the new get_event_next() entry point retrieves the next (pump, data) pair
from the queue, blocking the Lua script until a suitable event arrives. This
is closer to the use of stdin for a LEAP plugin. It also addresses the
question: what should the Lua script's C++ coroutine do while waiting for an
incoming reply pump event?
Recast llluamanager_test.cpp for this new, more straightforward API.
Move LLLeap's and LuaListener's reply LLEventPump into LLLeapListener, which
they both use. This simplifies LLLeapListener's API, which was a little
convoluted: the caller supplied a connect callback to allow LLLeapListener to
connect some listener to the caller's reply pump. Now, instead, the caller
simply passes a bool(pumpname, data) callback to receive events incoming on
LLLeapListener's own reply pump.
Fix a latent bug in LLLeapListener: if a plugin called listen() more than once
with the same listener name, the new connection would not have been saved.
While at it, replace some older Boost features in LLLeapListener and LLLeap.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Add a new test<1>() that tests returning values from a Lua chunk using
LLLUAmanager::waitScriptLine(). This exercises lua_tollsd() without yet
involving LLEventPump machinery.
For that purpose, extract from test<2>() the sequence of (description,
expression, LLSD expected) triples into a static C array. The new test<1>()
returns each such expression as a result; test<2>() posts each such expression
to a test LLEventPump.
test<2>() now uses waitScriptLine() instead of pumping the coroutine scheduler
a few times and hoping. The pump-and-hope tactic worked before, but no longer
does. waitScriptLine() is more robust anyway.
Move the former test<1>() to test<3>() because it exercises still more
machinery, specifically listen_events() and await_event(). Because this test
involves a handshake with C++ code, use startScriptLine() to launch the Lua
coroutine while providing a definite way to wait for completion later. Again,
startScriptLine() followed by get() on the returned future is more robust
than the previous pump-and-hope code.
Similarly, the former test<3>(), now renamed test<4>(), uses startScriptLine()
and Future::get() instead of pump-and-hope.
|
|
|
|
|
|
# Conflicts:
# indra/llrender/llgl.cpp
# indra/llrender/llvertexbuffer.cpp
# indra/llui/llflatlistview.cpp
# indra/newview/lldrawpoolground.cpp
# indra/newview/llspatialpartition.cpp
# indra/newview/lltexturefetch.cpp
# indra/newview/llviewergenericmessage.cpp
# indra/newview/llviewertexture.cpp
# indra/newview/llvosky.cpp
# indra/newview/skins/default/xui/en/floater_preferences_graphics_advanced.xml
# indra/newview/skins/default/xui/en/floater_stats.xml
# indra/newview/skins/default/xui/en/floater_texture_fetch_debugger.xml
# indra/newview/skins/default/xui/en/notifications.xml
# indra/newview/skins/default/xui/en/panel_performance_preferences.xml
|
|
If not, the resulting error message is so mysterious that it's worth adding an
error check to explain how to avoid it.
|