Age | Commit message (Collapse) | Author |
|
|
|
off since that appears to be working well for us but others may want to turn in on
|
|
|
|
|
|
Request successfully sent at startup and also, whenever a relevant debug setting is changed. Going to send this build to Brett to test
|
|
|
|
and set our own values via Debug Settings - hardcoded currently for testing but will be pulled from global settings eventually
|
|
|
|
Vivox was using dead pump
|
|
|
|
|
|
|
|
|
|
# Conflicts:
# doc/contributions.txt
# indra/newview/llfloaterconversationpreview.cpp
# indra/newview/llinventorypanel.h
# indra/newview/llmeshrepository.h
# indra/newview/llvoicevivox.cpp
|
|
instead of when viewer is quiting
|
|
|
|
|
|
|
|
|
|
The observed failure is that SLVoice, on relaunch, produces an error that
bind() returned EADDRINUSE and terminates. Using a different port every time
we relaunch avoids that collision.
|
|
It can happen that we arrive at logoutOfVivox() with some other message
queued on the LLEventMailDrop in question. If logoutOfVivox() assumes that
other message is logout and exits, then subsequent code gets confused.
Introduce a loop to wait (with the existing timeout) for the real logout
message.
|
|
|
|
Instead of heap-allocating a CoroData instance per coroutine, storing the
pointer in a ptr_map and deleting it from the ptr_map once the
fiber_specific_ptr for that coroutine is cleaned up -- just declare a stack
instance on the top-level stack frame, the simplest C++ lifespan management.
Derive CoroData from LLInstanceTracker to detect potential name collisions and
to enumerate instances.
Continue registering each coroutine's CoroData instance in our
fiber_specific_ptr, but use a no-op deleter function.
Make ~LLCoros() directly pump the fiber scheduler a few times, instead of
having a special "LLApp" listener.
|
|
Overriding virtual LLEventPump::flush() for the semantic of discarding
LLEventMailDrop's queued events turns out not to be such a great idea, because
LLEventPumps::flush(), which calls every registered LLEventPump's flush()
method, is called every mainloop tick. The first time we hit a use case in
which we expected LLEventMailDrop to hold queued events across a mainloop tick,
we were baffled that they were never delivered.
Moving that logic to a separate method specific to LLEventMailDrop resolves
that problem. Naming it discard() clarifies its intended functionality.
|
|
The LLEventMailDrop used to communicate with the Vivox coroutine is a member
of LLVivoxVoiceClient. We don't need to keep looking it up by its string name
in LLEventPumps.
|
|
This changeset is meant to exemplify how to convert a "namespace" class whose
methods are static -- and whose data are module-static -- to an LLSingleton.
LLVersionInfo has no initClass() or cleanupClass() methods, but the general
idea is the same.
* Derive the class from LLSingleton<T>:
class LLSomeSingleton: public LLSingleton<LLSomeSingleton> { ... };
* Add LLSINGLETON(LLSomeSingleton); in the private section of the class. This
usage implies a separate LLSomeSingleton::LLSomeSingleton() definition, as
described in indra/llcommon/llsingleton.h.
* Move module-scope data in the .cpp file to non-static class members. Change
any sVariableName to mVariableName to avoid being outright misleading.
* Make static class methods non-static. Remove '//static' comments from method
definitions as needed.
* For LLVersionInfo specifically, the 'const std::string&' return type was
replaced with 'std::string'. Returning a reference to a static or a member,
const or otherwise, is an anti-pattern: the interface constrains the
implementation, prohibiting possibly later returning a temporary (an
expression).
* For LLVersionInfo specifically, 'const S32' return type was replaced with
simple 'S32'. 'const' is just noise in that usage.
* Simple member initialization (e.g. the original initializer expressions for
static variables) can be done with member{ value } initializers (no examples
here though).
* Delete initClass() method.
* LLSingleton's forté is of course lazy initialization. It might work to
simply delete any calls to initClass(). But if there are side effects that
must happen at that moment, replace LLSomeSingleton::initClass() with
(void)LLSomeSingleton::instance();
* Most initClass() initialization can be done in the constructor, as would
normally be the case.
* Initialization that might cause a circular LLSingleton reference should be
moved to initSingleton(). Override 'void initSingleton();' should be private.
* For LLVersionInfo specifically, certain initialization that used to be
lazily performed was made unconditional, due to its low cost.
* For LLVersionInfo specifically, certain initialization involved calling
methods that have become non-static. This was moved to initSingleton()
because, in a constructor body, 'this' does not yet point to the enclosing
class.
* Delete cleanupClass() method.
* There is already a generic LLSingletonBase::deleteAll() call in
LLAppViewer::cleanup(). It might work to let this new LLSingleton be cleaned
up with all the rest. But if there are side effects that must happen at that
moment, replace LLSomeSingleton::cleanupClass() with
LLSomeSingleton::deleteSingleton(). That said, much of the benefit of
converting to LLSingleton is deleteAll()'s guarantee that cross-LLSingleton
dependencies will be properly honored: we're trying to migrate the code base
away from the present fragile manual cleanup sequence.
* Most cleanupClass() cleanup can be done in the destructor, as would normally
be the case.
* Cleanup that might throw an exception should be moved to cleanupSingleton().
Override 'void cleanupSingleton();' should be private.
* Within LLSomeSingleton methods, remove any existing
LLSomeSingleton::methodName() qualification: simple methodName() is better.
* In the rest of the code base, convert most LLSomeSingleton::methodName()
references to LLSomeSingleton::instance().methodName(). (Prefer instance() to
getInstance() because a reference does not admit the possibility of NULL.)
* Of course, LLSomeSingleton::ENUM_VALUE can remain unchanged.
In general, for many successive references to an LLSingleton instance, it
can be useful to capture the instance() as in:
auto& versionInfo{LLVersionInfo::instance()};
// ... versionInfo.getVersion() ...
We did not do that here only to simplify the code review.
The STRINGIZE(expression) macro encapsulates:
std::ostringstream out;
out << expression;
return out.str();
We used that in a couple places.
For LLVersionInfo specifically, lllogininstance_test.cpp used to dummy out a
couple specific static methods. It's harder to dummy out
LLSingleton::instance() references, so we add the real class to that test.
|
|
|
|
button enabled.
|
|
|
|
|
|
mail drop does not have any outstanding events.
|
|
|
|
|
|
|
|
Clearly it's not obvious to maintainers that on the Mac, getAppRODataDir()
returns the app's Resources directory: in a number of places the code starts
with the executable directory and appends "../Resources" to find that.
|
|
MAINT-8991: only escape log message characters once, add unit test
remove extra log line created by LL_ERRS
document that tags may not contain spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
location
|
|
|
|
|