Age | Commit message (Collapse) | Author |
|
# Conflicts:
# autobuild.xml
# indra/cmake/LLCommon.cmake
# indra/llcommon/CMakeLists.txt
# indra/llrender/llgl.cpp
# indra/newview/llappviewer.cpp
# indra/newview/llface.cpp
# indra/newview/llflexibleobject.cpp
# indra/newview/llvovolume.cpp
|
|
|
|
|
|
# Conflicts:
# autobuild.xml
# doc/contributions.txt
# indra/cmake/GLOD.cmake
# indra/llcommon/tests/llprocess_test.cpp
# indra/newview/VIEWER_VERSION.txt
# indra/newview/lldrawpoolavatar.cpp
# indra/newview/llfloatermodelpreview.cpp
# indra/newview/llmodelpreview.cpp
# indra/newview/llviewertexturelist.cpp
# indra/newview/llvovolume.cpp
# indra/newview/viewer_manifest.py
|
|
really bad idea ...
|
|
|
|
|
|
|
|
(decruftify settings, compatibility pass).
|
|
LLMemTracked, introduce alignas, hook most/all reamining allocs, disable synchronous occlusion, and convert frequently accessed LLSingletons to LLSimpleton
|
|
VAOs by default.
|
|
|
|
|
|
results in a version of the DRTVWR-519 that matches what was presemt before it was deployed as a release viewer *plus* 3 small fixes from Maxim (See commits). This branch can now be used for additional fixes before eventually being used to release D-519 as normal
|
|
DRTVWR-519"
This reverts commit e61f485a04dc8c8ac6bcf6a24848359092884d14, reversing
changes made to 00c47d079f7e958e473ed4083a7f7691fa02dcd5.
|
|
new lldiskcache implementation
|
|
scripts to use a different name - lldiskcache - since that more closely resembles what it is (or will be) now that the VFA is no more
|
|
changes to remove LLVFS and LLVFSThread classes along with the associated source files. The existing llvfs folder is renamed to llcache. Also includes changes to CMake script in many places to reflect changes. Eventually, llvfile source file and class will be renamed but that is not in this change.
|
|
|
|
|
|
|
|
|
|
|
|
There were two distinct LLMemory methods getCurrentRSS() and
getWorkingSetSize(). It was pointless to have both: on Windows they were
completely redundant; on other platforms getWorkingSetSize() always returned
0. (Amusingly, though the Windows implementations both made exactly the same
GetProcessMemoryInfo() call and used exactly the same logic, the code was
different in the two -- as though the second was implemented without awareness
of the first, even though they were adjacent in the source file.)
One of the actual MAINT-6996 problems was due to the fact that
getWorkingSetSize() returned U32, where getCurrentRSS() returns U64. In other
words, getWorkingSetSize() was both useless *and* wrong. Remove it, and change
its one call to getCurrentRSS() instead.
The other culprit was that in several places, the 64-bit WorkingSetSize
returned by the Windows GetProcessMemoryInfo() call (and by getCurrentRSS())
was explicitly cast to a 32-bit data type. That works only when explicitly or
implicitly (using LLUnits type conversion) scaling the value to kilobytes or
megabytes. When the size in bytes is desired, use 64-bit types instead.
In addition to the symptoms, LLMemory was overdue for a bit of cleanup.
There was a 16K block of memory called reserveMem, the comment on which read:
"reserve 16K for out of memory error handling." Yet *nothing* was ever done
with that block! If it were going to be useful, one would think someone would
at some point explicitly free the block. In fact there was a method
freeReserve(), apparently for just that purpose -- which was never called. As
things stood, reserveMem served only to *prevent* the viewer from ever using
that chunk of memory. Remove reserveMem and the unused freeReserve().
The only function of initClass() and cleanupClass() was to allocate and free
reserveMem. Remove initClass(), cleanupClass() and the LLCommon calls to them.
In a similar vein, there was an LLMemoryInfo::getPhysicalMemoryClamped()
method that returned U32Bytes. Its job was simply to return a size in bytes
that could fit into a U32 data type, returning U32_MAX if the 64-bit value
exceeded 4GB. Eliminate that; change all its calls to getPhysicalMemoryKB()
(which getPhysicalMemoryClamped() used internally anyway). We no longer care
about any platform that cannot handle 64-bit data types.
|
|
|
|
|
|
|
|
|
|
|
|
jellybaby avatars when ALM is enabled
FIXED
- remove global identifier for the black texture
- add black texture 2x2x3 localy on apllication startup
- add special flag to LLViewerFetchedTexture for protect from removing
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
texture list.
|
|
|
|
|
|
change host == LLHost() to host.isInvalid()
|
|
The problem was that class-static LLUrlEntryParcel::sRegionHost was being
initialized by copying class-static LLHost::invalid. Naturally, these two
statics are initialized in different source files. Since C++ makes no promises
about the relative order in which objects in different object files are
initialized, it seems we hit a case in which we were trying to initialize
sRegionHost by copying a completely uninitialized LLHost::invalid.
In general we might attempt to address such cross-translation-unit issues by
introducing an LLSingleton. But in this particular case, the punch line is
that LLHost::invalid is explicitly constructed identically to a
default-constructed LLHost! In other words, LLHost::invalid provides nothing
we couldn't get from LLHost(). All it gives us is an opportunity for glitches
such as the above.
Remove LLHost::invalid and all references, replacing with LLHost().
|
|
|
|
wide char paths; on other platforms they are now just typedefs to the std classes
|