Age | Commit message (Collapse) | Author |
|
|
|
|
|
Give ThreadPool and WorkQueue the ability to override default
ThreadSafeSchedule capacity.
Instantiate "mainloop" WorkQueue and "General" ThreadPool with very large
capacity because we never want to have to block trying to push to either.
|
|
Use the new WorkQueue::postIfOpen() method in LLImageGLThread::post(). That
makes the LLImageGLThread method a trivial wrapper, which can accept templated
work items and pass them through to the WorkQueue method, eliminating double
indirection due to multiple layers of std::function.
Eliminate LLImageGLThread's WorkQueue intended for work on the main queue.
Since the main loop already has a WorkQueue of its own, post work directly to
that WorkQueue instead of using a separate WorkQueue misleadingly embedded in
LLImageGLThread.
Instead of looking up the main thread's WorkQueue every time, capture a
pointer in LLImageGL's constructor.
We no longer need a fallback queue for when the main thread's WorkQueue is
full. We no longer need the main loop to poll LLImageGL to service the local
main-thread-targeted WorkQueue, or to copy work from the fallback queue to the
main queue. That eliminates LLImageGLThread::postCallback(), mCallbackQueue,
mPendingCallbackQ, executeCallbacks() -- and even LLImageGL::updateClass() and
LLAppViewer's call to it.
Change LLViewerFetchedTexture::scheduleCreateTexture() to post work to the
main thread's WorkQueue instead of calling LLImageGLThread::postCallback().
|
|
|
|
LLMemTracked, introduce alignas, hook most/all reamining allocs, disable synchronous occlusion, and convert frequently accessed LLSingletons to LLSimpleton
|
|
|
|
|
|
|
|
ThreadPool bundles a WorkQueue with the specified number of worker threads to
service it. Each ThreadPool has a name that can be used to locate its
WorkQueue.
Each worker thread calls WorkQueue::runUntilClose().
ThreadPool listens on the "LLApp" LLEventPump for shutdown notification. On
receiving that, it closes its WorkQueue and then join()s each of its worker
threads for orderly shutdown.
Add a settings.xml entry "ThreadPoolSizes", the first LLSD-valued settings
entry to expect a map: pool name->size. The expectation is that usually code
instantiating a particular ThreadPool will have a default size in mind, but it
should check "ThreadPoolSizes" for a user override.
Make idle_startup()'s STATE_SEED_CAP_GRANTED state instantiate a "General"
ThreadPool. This is function-static for lazy initialization.
Eliminate LLMainLoopRepeater, which is completely unreferenced. Any potential
future use cases are better addressed by posting to the main loop's WorkQueue.
Eliminate llappviewer.cpp's private LLDeferredTaskList class, which
implemented LLAppViewer::addOnIdleCallback(). Make addOnIdleCallback() post
work to the main loop's WorkQueue instead.
|
|
Make LLAppViewer::idle() call LL::WorkQueue::runFor() to dequeue and run some
or all of the pending responses from worker threads.
Add a MainWorkTime setting to specify the time slice the main loop may devote
each frame to servicing such responses.
|
|
|
|
VAOs by default.
|
|
|
|
It feels wrong to return a dumb LLInstanceTracker subclass* from getInstance()
when we use std::shared_ptr and std::weak_ptr internally. But tweak consumers
to use 'auto' or LLInstanceTracker::ptr_t in case we later revisit this
decision.
We did add a couple get() calls where it's important to obtain a dumb pointer.
|
|
|
|
|
|
|
|
message. Removed some possible crashes
|
|
|
|
|
|
|
|
|
|
because it causes frame stalls while logging.
|
|
|
|
|
|
|
|
|
|
|
|
broken frame limiter code (use vsync if you want to limit framerate).
|
|
noninteractive, including a fix for unwanted SLURL redirects
|
|
|
|
|
|
|
|
|
|
|
|
# Conflicts:
# autobuild.xml
# build.sh
# indra/CMakeLists.txt
# indra/newview/CMakeLists.txt
# indra/newview/llappviewermacosx.cpp
# indra/newview/llappviewerwin32.h
# indra/newview/viewer_manifest.py
# indra/win_crash_logger/llcrashloggerwindows.cpp
|
|
|
|
# Conflicts:
# indra/newview/app_settings/settings.xml
# indra/newview/llvoicevivox.cpp
|
|
|
|
|
|
|
|
|
|
|
|
Bring in Oz's tweaks to the way BugSplat is engaged and tested, plus a few
other miscellaneous goodies.
|
|
Introduce Oz's LLERROR_CRASH macro analogous to the old LLError::crashAndLoop()
function. Change LL_ENDL macro so that, after calling flush(), if the CallSite
is for LEVEL_ERROR, we invoke LLERROR_CRASH right there.
Change the meaning of LLError::FatalFunction. It used to be responsible for
the actual crash (hence crashAndLoop()). Now, instead, its role is to disrupt
control flow in some other way if you DON'T want to crash: throw an exception,
or call exit() or some such. Any FatalFunction that returns normally will fall
into the new crash in LL_ENDL.
Accordingly, the new default FatalFunction is a no-op lambda. This eliminates
the need to test for empty (not set) FatalFunction in Log::flush().
Remove LLError::crashAndLoop() because the official LL_ERRS crash is now in
LL_ENDL.
One of the two common use cases for setFatalFunction() used to be to intercept
control in the last moments before crashing -- not to crash or to avoid
crashing, but to capture the LL_ERRS message in some way. Especially when
that's temporary, though (e.g. LLLeap), saving and restoring the previous
FatalFunction only works when the lifespans of the relevant objects are
strictly LIFO.
Either way, that's a misuse of FatalFunction. Fortunately the Recorder
mechanism exactly addresses that case. Introduce a GenericRecorder template
subclass, with LLError::addGenericRecorder(callable) that accepts a callable
with suitable (level, message) signature, instantiates a GenericRecorder, adds
it to the logging machinery and returns the RecorderPtr for possible later use
with removeRecorder().
Change llappviewer.cpp's errorCallback() to an addGenericRecorder() callable.
Its role was simply to update gDebugInfo["FatalMessage"] with the LL_ERRS
message, then call writeDebugInfo(), before calling crashAndLoop() to finish
crashing. Remove the crashAndLoop() call, retaining the gDebugInfo logic. Pass
errorCallback() to LLError::addGenericRecorder() instead of setFatalFunction().
Oddly, errorCallback()'s crashAndLoop() call was conditional on a compile-time
SHADER_CRASH_NONFATAL symbol. The new mechanism provides no way to support
SHADER_CRASH_NONFATAL -- it is a Bad Idea to return normally from any LL_ERRS
invocation!
Rename LLLeapImpl::fatalFunction() to onError(). Instead of passing it to
LLError::setFatalFunction(), pass it to addGenericRecorder(). Capture the
returned RecorderPtr in mRecorder, replacing mPrevFatalFunction. Then
~LLLeapImpl() calls removeRecorder(mRecorder) instead of restoring
mPrevFatalFunction (which, as noted above, was order-sensitive).
Of course, every enabled Recorder is called with every log message. onError()
and errorCallback() must specifically test for calls with LEVEL_ERROR.
LLSingletonBase::logerrs() used to call LLError::getFatalFunction(), check the
return and call it if non-empty, else call LLError::crashAndLoop(). Replace
all that with LLERROR_CRASH.
Remove from llappviewer.cpp the watchdog_llerrs_callback() and
watchdog_killer_callback() functions. watchdog_killer_callback(), passed to
Watchdog::init(), used to setFatalFunction(watchdog_llerrs_callback) and then
invoke LL_ERRS() -- which seems a bit roundabout. watchdog_llerrs_callback(),
in turn, replicated much of the logic in the primary errorCallback() function
before replicating the crash from llwatchdog.cpp's default_killer_callback().
Instead, pass LLWatchdog::init() a lambda that invokes the LL_ERRS() message
formerly found in watchdog_killer_callback(). It no longer needs to override
FatalFunction with watchdog_llerrs_callback() because errorCallback() will
still be called as a Recorder, obviating watchdog_llerrs_callback()'s first
half; and LL_ENDL will handle the crash, obviating the second half.
Remove from llappviewer.cpp the static fast_exit() function, which was simply
an alias for _exit() acceptable to boost::bind(). Use a lambda directly
calling _exit() instead of using boost::bind() at all.
In the CaptureLog class in llcommon/tests/wrapllerrs.h, instead of statically
referencing the wouldHaveCrashed() function from test.cpp, simply save and
restore the current FatalFunction across the LLError::saveAndResetSettings()
call.
llerror_test.cpp calls setFatalFunction(fatalCall), where fatalCall() was a
function that simply set a fatalWasCalled bool rather than actually crashing
in any way. Of course, that implementation would now lead to crashing the test
program. Make fatalCall() throw a new FatalWasCalled exception. Introduce a
CATCH(LL_ERRS("tag"), "message") macro that expands to:
LL_ERRS("tag") << "message" << LL_ENDL;
within a try/catch block that catches FatalWasCalled and sets the same bool.
Change all existing LL_ERRS() in llerror_test.cpp to corresponding CATCH()
calls. In fact there's also an LL_DEBUGS(bad tag) invocation that exercises an
LL_ERRS internal to llerror.cpp; wrap that too.
|
|
|
|
|
|
# Conflicts:
# autobuild.xml
# doc/contributions.txt
# indra/llcommon/llcoros.cpp
# indra/llmessage/llcoproceduremanager.cpp
# indra/newview/llfloaterfixedenvironment.cpp
# indra/newview/llfloaterimsessiontab.cpp
|
|
|