summaryrefslogtreecommitdiff
path: root/indra/llcommon
AgeCommit message (Collapse)Author
2020-03-25DRTVWR-494: Streamline LLEventTimer::updateClass().Nat Goodspeed
No need to capture a separate list of completed LLEventTimer instances to delete after the primary loop, since at this point we're looping over a snapshot and can directly delete each completed timer.
2020-03-25DRTVWR-494: Add on_main_thread(), sibling to assert_main_thread().Nat Goodspeed
2020-03-25DRTVWR-494: Improve thread safety of LLSingleton machinery.Nat Goodspeed
Remove warnings about LLSingleton not being thread-safe because, at this point, we have devoted considerable effort to trying to make it thread-safe. Add LLSingleton<T>::Locker, a nested class which both provides a function- static mutex and a scoped lock that uses it. Instantiating Locker, which has a nullary constructor, replaces the somewhat cumbersome idiom of declaring a std::unique_lock<std::recursive_mutex> lk(getMutex); This eliminates (or rather, absorbs) the typedefs and getMutex() method from LLParamSingleton. Replace explicit std::unique_lock declarations in LLParamSingleton methods with Locker declarations. Remove LLSingleton<T>::SingletonInitializer nested struct. Instead of getInstance() relying on function-static initialization to protect (only) constructSingleton() calls, explicitly use a Locker instance to cover its whole scope, and make the UNINITIALIZED case call constructSingleton(). Rearrange cases so that after constructSingleton(), control falls through to the CONSTRUCTED case and the finishInitializing() call. Use a Locker instance in other public-facing methods too: instanceExists(), wasDeleted(), ~LLSingleton(). Make destructor protected so it can only be called via deleteSingleton() (but must be accessible to subclasses for overrides). Remove LLSingletonBase::get_master() and get_initializing(), which permitted directly manipulating the master list and the initializing stack without any locking mechanism. Replace with get_initializing_size(). Similarly, replace LLSingleton_manage_master::get_initializing() with get_initializing_size(). Use in constructSingleton() in place of get_initializing().size(). Remove LLSingletonBase::capture_dependency()'s list_t parameter, which accepted the list returned by get_initializing(). Encapsulate that retrieval within the scope of the new lock in capture_dependency(). Add LLSingleton_manage_master::capture_dependency(LLSingletonBase*, EInitState) to forward (or not) a call to LLSingletonBase::capture_dependency(). Nullary LLSingleton<T>::capture_dependency() calls new LLSingleton_manage_master method. Equip LLSingletonBase::MasterList with a mutex of its own, separate from the one donated by the LLSingleton machinery, to serialize use of MasterList data members. Introduce MasterList::Lock nested class to lock the MasterList mutex while providing a reference to the MasterList instance. Introduce subclasses LockedMaster, which provides a reference to the actual mMaster master list while holding the MasterList lock; and LockedInitializing, which does the same for the initializing list. Make mMaster and get_initializing_() private so that consuming code can *only* access those lists via LockedInitializing and LockedMaster. Make MasterList::cleanup_initializing_() private, with a LockedInitializing public forwarding method. This avoids another call to MasterList::instance(), and also mandates that the lock is currently held during every call. Similarly, move LLSingletonBase::log_initializing() to a LockedInitializing log() method. (transplanted from dca0f16266c7bddedb51ae7d7dca468ba87060d5)
2020-03-25DRTVWR-494: Quiet VS warnings about its own <mutex> header.Nat Goodspeed
2020-03-25DRTVWR-494: Defend LLInstanceTracker against multi-thread usage.Nat Goodspeed
The previous implementation went to some effort to crash if anyone attempted to create or destroy an LLInstanceTracker subclass instance during traversal. That restriction is manageable within a single thread, but becomes unworkable if it's possible that a given subclass might be used on more than one thread. Remove LLInstanceTracker::instance_iter, beginInstances(), endInstances(), also key_iter, beginKeys() and endKeys(). Instead, introduce key_snapshot() and instance_snapshot(), the only means of iterating over LLInstanceTracker instances. (These are intended to resemble functions, but in fact the current implementation simply presents the classes.) Iterating over a captured snapshot defends against container modifications during traversal. The term 'snapshot' reminds the coder that a new instance created during traversal will not be considered. To defend against instance deletion during traversal, a snapshot stores std::weak_ptrs which it lazily dereferences, skipping on the fly any that have expired. Dereferencing instance_snapshot::iterator gets you a reference rather than a pointer. Because some use cases want to delete all existing instances, add an instance_snapshot::deleteAll() method that extracts the pointer. Those cases used to require explicitly copying instance pointers into a separate container; instance_snapshot() now takes care of that. It remains the caller's responsibility to ensure that all instances of that LLInstanceTracker subclass were allocated on the heap. Replace unkeyed static LLInstanceTracker::getInstance(T*) -- which returned nullptr if that instance had been destroyed -- with new getWeak() method returning std::weak_ptr<T>. Caller must detect expiration of that weak_ptr. Adjust tests accordingly. Use of std::weak_ptr to detect expired instances requires engaging std::shared_ptr in the constructor. We now store shared_ptrs in the static containers (std::map for keyed, std::set for unkeyed). Make LLInstanceTrackerBase a template parameterized on the type of the static data it manages. For that reason, hoist static data class declarations out of the class definitions to an LLInstanceTrackerStuff namespace. Remove the static atomic sIterationNestDepth and its methods incrementDepth(), decrementDepth() and getDepth(), since they were used only to forbid creation and destruction during traversal. Add a std::mutex to static data. Introduce an internal LockStatic class that locks the mutex while providing a pointer to static data, making that the only way to access the static data. The LLINSTANCETRACKER_DTOR_NOEXCEPT macro goes away because we no longer expect ~LLInstanceTracker() to throw an exception in test programs. That affects LLTrace::StatBase as well as LLInstanceTracker itself. Adapt consumers to the new LLInstanceTracker API.
2019-11-12Merged in lindenlab/viewer-releaseAndreyL ProductEngine
2019-10-15Merge from viewer-releaseandreykproductengine
2019-09-10Merged in lindenlab/viewer-releaseandreykproductengine
2019-09-05Merged in lindenlab/viewer-bearAndreyL ProductEngine
2019-09-05Merged in lindenlab/viewer-lynxAndreyL ProductEngine
2019-08-29Merge from lindenlab/viewer-releaseandreykproductengine
2019-08-26Merged in lindenlab/viewer-releaseAndreyL ProductEngine
2019-08-20Automated merge with ssh://bitbucket.org/andreykproductengine/drtvwr-493Nat Goodspeed
2019-08-20DRTVWR-493: Clarify capturing LLError::getFatalFunction() in a var.Nat Goodspeed
VS 2013 thought we were storing an initialization-list.
2019-08-20DRTVWR-493: Defend LL[Param]Singleton against ctor/init exceptions.Nat Goodspeed
An exception in the LLSingleton subclass constructor, or in its initSingleton() method, could leave the LLSingleton machinery in a bad state: the failing instance would remain in the MasterList, also on the stack of initializing LLSingletons. Catch exceptions in either and perform relevant cleanup. This problem is highlighted by test programs, in which LL_ERRS throws an exception rather than crashing the whole process. In the relevant catch clauses, clean up the initializing stack BEFORE logging. Otherwise we get tangled up recording bogus dependencies. Move capture_dependency() out of finishInitializing(): it must be called by every valid getInstance() call, both from LLSingleton and LLParamSingleton. Introduce new CONSTRUCTED EInitState value to distinguish "have called the constructor but not yet the initSingleton() method" from "currently within initSingleton() method." This is transient, but we execute the 'switch' on state within that moment. One could argue that the previous enum used INITIALIZING for current CONSTRUCTED, and INITIALIZED meant INITIALIZING too, but this is clearer. Introduce template LLSingletonBase::classname() helper methods to clarify verbose demangle(typeid(stuff).name()) calls. Similarly, introduce LLSingleton::pop_initializing() shorthand method.
2019-08-19DRTVWR-493: Improve exception safety of LLSingleton initialization.Nat Goodspeed
Add try/catch clauses to constructSingleton() (to catch exceptions in the subclass constructor) and finishInitializing() (to catch exceptions in the subclass initSingleton() method). Each of these catch clauses rethrows the exception -- they're for cleanup, not for ultimate handling. Introduce LLSingletonBase::reset_initializing(list_t::size_t). The idea is that since we can't know whether the exception happened before or after the push_initializing() call in LLSingletonBase's constructor, we can't just pop the stack. Instead, constructSingleton() captures the stack size before attempting to construct the new LLSingleton subclass. On exception, it calls reset_initializing() to restore the stack to that size. Naturally that requires a corresponding LLSingleton_manage_master method, whose MasterList specialization is a no-op. finishInitializing()'s exception handling is a bit simpler because it has a constructed LLSingleton subclass instance in hand, therefore push_initializing() has definitely been called, therefore it can call pop_initializing(). Break out new static capture_dependency() method from finishInitializing() because, in the previous LLSingleton::getInstance() implementation, the logic now wrapped in capture_dependency() was reached even in the INITIALIZED case. TODO: Add a new EInitState to differentiate "have been constructed, now calling initSingleton()" from "fully initialized, normal case" -- in the latter control path we should not be calling capture_dependency(). The LLSingleton_manage_master<LLSingletonBase::MasterList> specialization's get_initializing() function (which called get_initializing_from()) was potentially dangerous. get_initializing() is called by push_initializing(), which (in the general case) is called by LLSingletonBase's constructor. If somehow the MasterList's LLSingletonBase constructor ended up calling get_initializing(), it would have called get_initializing_from(), passing an LLSingletonBase which had not yet been constructed into the MasterList. In particular, its mInitializing map would not yet have been initialized at all. Since the MasterList must not, by design, depend on any other LLSingletons, LLSingleton_manage_master<LLSingletonBase::MasterList>::get_initializing() need not return a list from the official mInitializing map anyway. It can, and should, and now does, return a static dummy list. That obviates get_initializing_from(), which is removed. That in turn means we no longer need to pass get_initializing() an LLSingletonBase*. Remove that parameter.
2019-08-14DRTVWR-493: Work around static initialization order problem.Nat Goodspeed
LLParamSingleton contained a static member mutex. Unfortunately that wasn't guaranteed to be initialized by the time its getInstance() was entered. Use a function-local static instead.
2019-08-13DRTVWR-493 Test fix for W64andreykproductengine
2019-08-12DRTVWR-493: Rely on recursive_mutex to handle circularityNat Goodspeed
from LLParamSingleton::initSingleton().
2019-08-12Automated merge with ssh://bitbucket.org/andreykproductengine/drtvwr-493Nat Goodspeed
2019-08-12DRTVWR-493: Permit LLParamSingleton::initSingleton() circularity.Nat Goodspeed
This was forbidden, but AndreyK points out cases in which LLParamSingleton:: initSingleton() should in fact be allowed to circle back to its own instance() method. Use a recursive_mutex instead of plain mutex to permit that; remove LL_ERRS preventing it. Add LLParamSingleton::instance() method that calls LLParamSingleton::getInstance(). Inheriting LLSingleton::instance() called LLSingleton::getInstance() -- not at all what we want. Add LLParamSingleton unit tests.
2019-08-12DRTVWR-493 LLWearableType to LLParamSingletonandreykproductengine
2019-08-12Automated merge with file:///Users/nat/linden/viewer-catchNat Goodspeed
2019-08-12DRTVWR-493: Streamline LLParamSingleton, LLLockedSingleton.Nat Goodspeed
Simplify LLSingleton::SingletonLifetimeManager to SingletonInitializer: that struct has not been responsible for deletion ever since LLSingletonBase acquired dependency-ordered deleteAll(). Move SingletonData::mInitState changes from SingletonLifetimeManager to constructSingleton() method. Similarly, constructSingleton() now sets SingletonData::mInstance instead of making its caller store the pointer. Add variadic arguments to LLSingleton::constructSingleton() so we can reuse it for LLParamSingleton. Add finishInitializing() method to encapsulate logic reused for getInstance()'s INITIALIZING and DELETED cases. Make LLParamSingleton a subclass of LLSingleton, just as LLLockedSingleton is a subclass of LLParamSingleton. Make LLParamSingleton a friend of LLSingleton, so it can access private members of LLSingleton without also granting access to any DERIVED_CLASS subclass. This eliminates the need for protected getInitState(). LLParamSingleton::initParamSingleton() reuses LLSingleton::constructSingleton() and finishInitializing(). Its getInstance() method completely replaces LLSingleton::getInstance(): in most EInitStates, LLParamSingleton::getInstance() is an error. Use a std::mutex to serialize calls to LLParamSingleton::initParamSingleton() and getInstance(). While LLSingleton::getInstance() relies on the "initialized exactly once" guarantee for block-scope static declarations, LLParamSingleton cannot rely on the same mechanism. LLLockedSingleton is now a very succinct subclass of LLParamSingleton -- they have very similar functionality. Giving the LLSINGLETON() macro variadic arguments eliminates the need for a separate LLPARAMSINGLETON() macro, while continuing to support existing usage.
2019-08-12DRTVWR-493: Make catch_llerrs() a member of WrapLLErrs.Nat Goodspeed
2019-08-10DRTVWR-493: Introduce test catch_what(), catch_llerrs() functions.Nat Goodspeed
Use them in place of awkward try/catch test boilerplate.
2019-08-06SL-10908 Test viewers should crash normallyandreykproductengine
2019-07-25DRTVWR-493 LLImage to LLParamSingletonandreykproductengine
2019-05-28SL-11231 Unused code and wrong macroandreykproductengine
2019-05-27SL-10908 Output class names we are clearing on startupandreykproductengine
2019-05-21MergeAnchor
2019-05-21Merged in lindenlab/viewer-bearAndreyL ProductEngine
2019-05-14Mac buildfixAndreyL ProductEngine
2019-05-10MergeAnchor
2019-04-26Merged SL-10400 and SL-10401AndreyL ProductEngine
2019-04-23SL-10401 - get agent attachment limit from SimulatorFeatures if availableBrad Payne (Vir Linden)
2019-03-08SL-10702: When attempting a new voice connection, ensure that the voicePump ↵Rider Linden
mail drop does not have any outstanding events.
2019-03-05MergeAnchor
2019-03-01Merged in lindenlab/viewer-releaseAndreyL ProductEngine
2019-02-20[SL-1360] - fix no alpha on default bake textures. uploaded new pngsAnchor
2019-01-29MergeAnchor
2019-01-15SL-10291 Replace apr thread with standard C++11 functionalityandreykproductengine
2019-01-15SL-10291 Replace apr_atomic with standard C++11 functionalityandreykproductengine
2019-01-17SL-10291 cleanup-mutexandreykproductengine
2019-01-14SL-10291 Replace apr_mutex with standard C++11 functionalityandreykproductengine
2018-12-15SL-10153: auto name{expression} declares an initializer_listNat Goodspeed
instead of a variable of type decltype(expression). Using SHGetKnownFolderPath(FOLDERID_Fonts) in LLFontGL::getFontPathSystem() requires new Windows #include files. A variable with a constructor can't be declared within the braces of a switch statement, even outside any of its case clauses.
2018-12-14SL-10153: VS 2013 isn't so fond of ?: involving std::string.Nat Goodspeed
2018-12-14SL-10153: Review and rationalize fetching paths from environment.Nat Goodspeed
Use LLStringUtil::getenv() or getoptenv() whenever we fetch a string that will be used as a pathname. Use LLFile::tmpdir() instead of getenv("TEMP"). As an added extra-special bonus, finally clean up $TMP/llcontrol-test-zzzzzz directories that have been accumulating every time we run a local build!
2018-12-14SL-10153: Fix previous commit for non-Windows systems.Nat Goodspeed
Move Windows-flavored llstring_getoptenv() to Windows-specific section of llstring.cpp. boost::optional type must be stated explicitly to initialize with a value. On platforms where llwchar is the same as wchar_t, LLWString is the same as std::wstring, so ll_convert specializations for std::wstring would duplicate those for LLWString. Defend against that. The compilers we use don't like 'return condition? { expr } : {}', in which we hope to construct and return an instance of the declared return type without having to restate the type. It works to use an explicit 'if' statement.
2018-12-14SL-10153: Introduce ll_convert, windows_message() templates.Nat Goodspeed
Add ll_convert<TO, FROM> template, used as (e.g.): ll_convert<std::string>(value_of_some_other_string_type); There is no generic template implementation -- the template exists solely to provide generic aliases for a bewildering family of llstring.h string- conversion functions with highly-specific names. There's a generic implementation, though, for the degenerate case where FROM and TO are identical. Add ll_convert<> specialization aliases for most of the string-conversion functions declared in llstring.h, including the Windows-specific ones involving llutf16string and std::wstring. Add a mini-lecture in llstring.h about appropriate use of string types on Windows. Add LL_WCHAR_T_NATIVE llpreprocessor.h macro so we can detect whether to provide separate conversions for llutf16string and std::wstring, or whether those would collide because the types are identical. Add inline ll_convert_wide_to_string(const std::wstring&) overloads so caller isn't required to call arg.c_str(), which naturally permits an ll_convert alias. Add ll_convert_wide_to_wstring(), ll_convert_wstring_to_wide() as placeholders for converting between Windows std::wstring and Linden LLWString, with corresponding ll_convert aliases. We don't yet have library code to perform such conversions officially; for now, just copy characters. Add LLStringUtil::getenv(key) and getoptenv(key) functions. The latter returns boost::optional<string_type> in case the caller needs to detect absence of a given environment variable rather than simply accepting a default value. Naturally getenv(), which accepts a default, is implemented using getoptenv(). getoptenv(), in turn, is implemented using an underlying llstring_getoptenv(). On Windows, llstring_getoptenv() returns boost::optional<std::wstring> (based on GetEnvironmentVariableW()), whereas elsewhere, llstring_getoptenv() returns boost::optional<std::string> (based on classic Posix getenv()). The beauty of generic ll_convert is that the portable LLStringUtilBase<T>:: getoptenv() template can call the platform-specific llstring_getoptenv() and transparently perform whatever conversion is necessary to return the desired string_type. Add windows_message<T>(error) template, with an overload that implicitly calls GetLastError(). We provide a single concrete windows_message<std::wstring>() implementation because that's what we get from Windows FormatMessageW() -- everything else is a generic conversion to the desired target string type. This obviates llprocess.cpp's previous WindowsErrorString() implementation -- reimplement using windows_message<std::string>().