Age | Commit message (Collapse) | Author |
|
Instead, make fiber.lua call LL.atexit(fiber.run) to schedule that final run()
call at ~LuaState() time using the generic mechanism.
Append an explicit fiber.run() call to a specific test in llluamanager_test.cpp
because the test code wants to interact with multiple Lua fibers *before* we
destroy the LuaState.
|
|
so cleanup happens in reverse order, as is conventional.
Streamline LL.atexit() function: luaL_newmetatable() performs all the
find-or-create named Registry table logic.
|
|
lua_emplace<T>() was passing LL.atexit() a closure binding the new userdata
with a cleanup function. The trouble with that was that a strong reference to
the new userdata would prevent it ever being garbage collected, even if that
was the only remaining reference.
Instead, create a new weak table referencing the userdata, and bind that into
the cleanup function's closure. Then if the only remaining reference to the
userdata is from the weak table, the userdata can be collected.
Make lua_emplace_call_gc<T>() check the bound weak table in case the userdata
has in fact been collected.
Also, in lua_toclass<T>(), use luaL_checkudata() to synopsize comparing the
putative userdata's metatable against the one synthesized by lua_emplace<T>().
This saves several explicit steps.
|
|
source_path() previously reported the path of the module containing the
current (lowest-level) Lua function. The effect was that the Floater.lua
module would always try to look up the XUI file relative to
scripts/lua/require.
It makes more intuitive sense to make source_path() return the path containing
the top-level script, so that a script engaging the Floater.lua module looks
for the XUI file relative to the script.
|
|
Instead of deriving LuaListener from LLInstanceTracker with an int key,
generating a unique int key and storing that key in the Registry, use new
lua_emplace<LuaState>() to store the LuaListener directly in a Lua userdata
object in the Lua Registry.
Because lua_emplace<T>() uses LL.atexit() to guarantee that ~LuaState will
destroy the T object, we no longer need ~LuaState() to make a special call
specifically to destroy the LuaListener, if any. So we no longer need
LuaState::getListener() separate from obtainListener().
Since LuaListener is no longer an LLInstanceTracker subclass, make
LuaState::obtainListener() return LuaListener& rather than LuaListener::ptr_t.
|
|
Publish new LL.atexit() function that accepts a Lua function (or C++ closure)
and saves it (in Registry["atexit"] table) to call later.
Make ~LuaState() walk the Registry["atexit"] table, if it exists, calling each
function appended to that table.
(Consider using that mechanism to clean up a LuaListener, if one was
instantiated. Possibly also use for p.s. leap.run()? But that's run after
every expr() call, instead of only at ~LuaState() time. Pragmatically, though,
the distinction only matters for a LUA Debug Console LUA string with "clean
lua_State" unchecked.)
For use by future lua_function() entry points, lua_emplace<T>(ctor args...)
pushes a Lua userdata object containing a newly-constructed T instance --
actually a std::optional<T> to avoid double destruction. lua_emplace<T>() is
specifically intended to be usable even for T with a nontrivial destructor: it
gives the userdata a metatable with a __gc function that destroys the
contained T instance when the userdata is garbage collected. But since garbage
collection doesn't guarantee to clean up global variables with __gc methods,
lua_emplace<T>() also uses LL.atexit() to ensure that ~T() will run when the
LuaState is destroyed.
The companion to lua_emplace<T>() is lua_toclass<T>(), which returns a
non-nullptr T* if the referenced index is in fact a userdata created by
lua_emplace<T>() for the same T, that has not yet been destroyed. This lets
C++ code access a T previously embedded in Lua userdata.
|
|
We have log messages when a coroutine terminates abnormally, but we don't
report either when it starts or when it terminates normally. Address that.
|
|
It's helpful to see when expr() is actually going to start running a
particular Lua chunk. We already report not only when it's done, but also
if/when we start and finish a p.s. fiber.run() call.
|
|
|
|
to pick up Featurettes promotion + Brad's GitHub Windows build workaround.
|
|
#648: Release/materials featurette
|
|
|
|
|
|
|
|
instead of using mutual recursion to exhaust the read buffer.
|
|
|
|
|
|
The reqid is only distinct within a particular calling script.
|
|
Since timers presents a timers.Timer Lua class supporting queries and
cancellation, make TimersListener::scheduleAfter() and scheduleEvery() respond
immediately so the newly constructed Timer object has the reqid necessary to
perform those subsequent operations.
This requires that Lua invocations of these operations avoid calling the
caller's callback with that initial response.
Reinvent leap.generate() to return a Lua object supporting next() and done()
methods. A plain Lua coroutine that (indirectly) calls fiber.wait() confuses
the fiber scheduler, so avoid implementing generate() as a Lua coroutine.
Add a bit more leap.lua diagnostic output.
|
|
|
|
|
|
Otherwise we fall into the trap of destroying a joinable std::thread, which
calls std::terminate() and hence our crash-on-terminate() handler.
The previous ~ThreadPool() logic only joined threads if the queue wasn't
already closed, but evidently we can reach the destructor with the queue
closed but the threads not yet joined.
Fixes #1534.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Conflicts:
# doc/contributions.txt
# indra/newview/llfloaterimagepreview.cpp
|
|
|
|
|
|
Maintenance X
|
|
|
|
|
|
Instead of making LLEventPumps an LLHandleProvider, and storing an
LLHandle<LLEventPumps> in each LLEventPump instance, just make ~LLEventPump()
query LLEventPumps::instanceExists() before calling instance().
|
|
Rename LL::Timers::scheduleRepeating() to scheduleEvery().
|
|
(cherry picked from commit dc0b3aed4782e4e4835fd6b9d59d1d70b78be4a7)
|
|
|
|
|
|
|
|
|
|
In the previous design, the tick() method ran each task exactly once.
doPeriodically() was implemented by posting a functor that would, after
calling the specified callable, repost itself at (timestamp + interval).
The trouble with that design is that it required (interval > 0). A nonpositive
interval would result in looping over any timers with nonpositive repetition
intervals without ever returning from the tick() method.
To avoid that, doPeriodically() contained an llassert(interval > 0).
Unfortunately the viewer failed that constraint immediately at login, leading
to the suspicion that eliminating every such usage might require a protracted
search.
Lifting that restriction required a redesign. Now the priority queue stores a
callable returning bool, and the tick() method itself contains the logic to
repost a recurring task -- but defers doing so until after it stops looping
over ready tasks, ensuring that a task with a nonpositive interval will at
least wait until the following tick() call.
This simplifies not only doPeriodically(), but also doAtTime(). The previous
split of doAtTime() into doAtTime1() and doAtTime2() was only to accommodate
the needs of the Periodic functor class. Ditch Periodic.
Per feedback from NickyD, rename doAtTime() to scheduleAt(), which wraps its
passed nullary callable into a callable that unconditionally returns true (so
tick() will run it only once).
Rename the doAfterInterval() method to scheduleAfter(), which similarly wraps
its nullary callable. However, the legacy doAfterInterval() free function
remains. scheduleAfter() also loses its llassert(seconds > 0).
Rename the doPeriodically() method to scheduleRepeating(). However, the legacy
doPeriodically() free function remains.
Add internal scheduleAtRepeating(), whose role is to accept both a specific
timestamp and a repetition interval (which might be ignored, depending on the
callable). scheduleAtRepeating() now contains the real logic to add a task.
Rename getRemaining() to timeUntilCall(), hopefully resolving the question of
"remaining what?"
Expand the std::pair metadata stored in Timers's auxiliary unordered_map to a
Metadata struct containing the repetition interval plus two bools to mediate
deferred cancel() processing. Rename HandleMap to MetaMap, mHandles to mMeta.
Defend against the case when cancel(handle) is reached during the call to that
handle's callable. Meta::mRunning is set for the duration of that call. When
cancel() sees mRunning, instead of immediately deleting map entries, it sets
mCancel. Upon return from a task's callable, tick() notices mCancel and
behaves as if the callable returned true to stop the series of calls.
To guarantee that mRunning doesn't inadvertently remain set even in the case
of an exception, introduce local RAII class TempSet whose constructor accepts
a non-const variable reference and a desired value. The constructor captures
the current value and sets the desired value; the destructor restores the
previous value.
Defend against exception in a task's callable, and stop calling that task. Use
LOG_UNHANDLED_EXCEPTION() to report it.
|