Age | Commit message (Collapse) | Author |
|
|
|
|
|
|
|
|
|
bakes on objects. handle magic bake ids in LLViewerObject.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
On Windows, when logged in with a non-ASCII username, every one of the three
documented APIs -- SHGetSpecialFolderPath(), SHGetFolderPath() and
SHGetKnownFolderPath() -- fails to retrieve any pathname at all. We cannot
account for the fact that the oldest of these continues to work with the
release viewer and within a Python script (though not, curiously, from a
Python interactive session). With a non-ASCII username, they consistently fail
when called from an Alex Ivy viewer build: "The filename, directory name, or
volume label syntax is incorrect."
Empirically, with a non-ASCII username, the preset APPDATA and LOCALAPPDATA
environment variables are also useless, e.g. c:\Users\??????\AppData\Roaming
where those are, yup, actual question marks.
Empirically, the VMP is able to successfully call SHGetFolderPath() to
retrieve both AppData\Roaming and AppData\Local. Therefore, we make the VMP
set the APPDATA and LOCALAPPDATA environment variables to the UTF-8 encoded
correct pathnames. Instead of calling SHGetSomethingFolderPath() at all, make
LLDir_Win32 retrieve those environment variables.
Make LLFile::mkdir() treat "directory already exists" as a success case. Every
single call fell into one of two categories: either it didn't check success at
all, or it tested specially to exempt errno == EEXIST. Migrate that test into
mkdir(); eliminate it from call sites.
Make LLDir::append() and add() convenience functions accept variadic
arguments. Replace add(add()...) constructs, as well as clumsy concatenations
of directory names and getDirDelimiter(), with simple variadic add() calls.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
codes from core.
|
|
|
|
in Windows 8 compatibility mode)
|
|
|
|
|
|
|
|
|
|
|
|
clipboard
|
|
|
|
|
|
folder.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The new behavior is that it will flush when either the pending batch has grown
to the specified size, or the time interval has expired.
|
|
|
|
For some reason there wasn't an entry in indra/llcommon/CMakeLists.txt to run
the tests in indra/llcommon/tests/lleventfilter_test.cpp. It seems likely that
at some point it existed, since all previous tests built and ran successfully.
In any case, (re-)add lleventfilter_test.cpp to the set of llcommon tests.
Also alphabetize them to make it easier to find a particular test invocation.
Also add new tests for LLEventThrottle.
To support this, refactor the concrete LLEventThrottle class into
LLEventThrottleBase containing all the tricky logic, with pure virtual
methods for access to LLTimer and LLEventTimeout, and an LLEventThrottle
subclass containing the LLTimer and LLEventTimeout instances and corresponding
implementations of the new pure virtual methods.
That permits us to introduce TestEventThrottle, an alternate subclass with
dummy implementations of the methods related to LLTimer and LLEventTimeout. In
particular, we can explicitly advance simulated realtime to simulate
particular LLTimer and LLEventTimeout behaviors.
Finally, introduce Concat, a test LLEventPump listener class whose function is
to concatenate received string event data into a composite string so we can
readily test for particular sequences of events.
|
|
Drake points out that the OS X 64-bit-capable memory-query APIs recommended in
comments by some long-ago maintainer are by now themselves obsolete. He
offered this patch to update us to current macOS memory APIs.
|
|
|
|
|
|
LLInstanceTracker<T> performs validation in ~LLInstanceTracker(). Normally
validation failure logs an error and terminates the program, which is fine. In
the test executable, though, we want validation failure to throw an exception
instead so we can catch it and continue testing other failure conditions. But
since destructors in C++11 are implicitly noexcept(true), that exception never
made it out of ~LLInstanceTracker(): it crashed the test program instead.
Declaring ~LLInstanceTracker() noexcept(false) solves that, allowing the test
program to catch the exception and continue.
However, if we unconditionally declare that, then every destructor anywhere in
the inheritance hierarchy for any LLInstanceTracker subclass must also be
noexcept(false)! That's way too pervasive, especially for functionality we
only need (or want) in a specific test executable.
Instead, make the CMake macros LL_ADD_PROJECT_UNIT_TESTS() and
LL_ADD_INTEGRATION_TEST() -- with which we define all viewer build-time tests
-- define two new command-line macros: LL_TEST=testname and LL_TEST_testname.
That way, preprocessor logic in a header file can detect whether it's being
compiled for production code or for a test executable.
(While at it, encapsulate in a new GET_OPT_SOURCE_FILE_PROPERTY() CMake macro
an ugly repetitive pattern. The builtin GET_SOURCE_FILE_PROPERTY() sets the
target variable to "NOTFOUND" -- rather than an empty string -- if the
specified property wasn't set. Every call to GET_SOURCE_FILE_PROPERTY() in
LL_ADD_PROJECT_UNIT_TESTS() was followed by a test for NOTFOUND and an
assignment to "". Wrap all that in a macro whose 'unset' value is "".)
Now llinstancetracker.h can detect when we're building the LLInstanceTracker
unit test executable, and *only then* declare ~LLInstanceTracker() as
noexcept(false). We #define LLINSTANCETRACKER_DTOR_NOEXCEPT to expand either
empty or noexcept(false), also detecting clang in C++11 mode. (It all works
fine without noexcept(false) until we turn on C++11 mode.)
We also use that macro for the StatBase class in lltrace.h. Turns out some of
the infrastructure headers required for tests in general, including the
LLInstanceTracker test, use LLInstanceTracker. Fortunately that appears to be
the only other class we must annotate this way for the LLInstanceTracker tests.
|