Age | Commit message (Collapse) | Author |
|
|
|
The header file documents that no llrand function should ever return a value
equal to the passed extent, so the one test in llrand_test.cpp that checked
less than or equal to the high end of the range was anomalous.
But changing that to an exclusive range means that we no longer need separate
exclusive range and inclusive range functions. Replace
ensure_in_range_using(), ensure_in_exc_range() and ensure_in_inc_range() with
a grand unified (simplified) ensure_in_range() function.
|
|
It's frustrating and unactionable to have a failing test report merely that
the random value was greater than the specified high end. Okay, so what was
the value? If it's supposed to be less than the high end, did it happen to be
equal? Or was it garbage? We can't reproduce the failure by rerunning!
The new ensure_in_exc_range(), ensure_in_inc_range() mechanism is somewhat
complex because exactly one test allows equality with the high end of the
expected range, where the rest mandate that the function return less than the
high end. If that's a bug in the test -- if every llrand function is supposed
to return less than the high end -- then we could simplify the test logic.
|
|
On a low-powered GitHub Mac runner, the system doesn't wake up as soon as it
should, and we get spurious "too late" errors. Try a bigger time increment.
(cherry picked from commit 045342ba29aae186e13c711bd4dd84377d4a7e43)
|
|
Use whole seconds rather than tenths of seconds, since apparently the TeamCity
agent machine is having trouble waking up within tenths of seconds.
|
|
Move hexdump() and hexmix() stream formatters to new hexdump.h for potential
use by other tests.
In toPythonUsing() helper function, add a temp file to receive Python script
debug output, and direct debug output to that file. On test failure, dump the
contents of that file to the log.
Give NamedTempFile::peep() an optional target std::ostream; refactor
implementation as peep_via() that accepts a callable to process each text
line. Add operator<<() to stream the contents of a NamedTempFile object to
ostream -- but don't use that with LL_DEBUGS(), as it flattens the file
contents into a single log line. Instead add peep_log(), which streams each
individual text line to LL_DEBUGS().
|
|
|
|
|
|
|
|
|
|
Normalize the case of the name of the temp directory for string comparison.
|
|
|
|
Turns out that the pathname of the Python executable wasn't the issue.
This reverts commit 7dc6211ad5ea83685a35c6fff740278343aa8b9d.
|
|
On GitHub Windows runners, trying to make build.yaml set PYTHON=python in the
environment doesn't work: integration tests still fail with "Access is denied"
because they're still trying to execute the interpreter's full pathname.
Instead, make llprocess_test and llleap_test detect the case of GitHub Windows
and override the environment variable PYTHON with a baked-in string constant
"python".
|
|
instead of a new value for each LLProcess::create() invocation.
Since the internal apr_log() function only looks at APR_LOG once per process,
the first test (which succeeded, hence no log file dump) left the log file
open with that same original pathname. Resetting the APR_LOG environment
variable for subsequent runs only made the new code in llprocess_test look for
files that were never created.
|
|
Remove llcommon circular dependency on llfilesystem, which doesn't work for
this case anyway.
|
|
|
|
|
|
|
|
|
|
|
|
Introducing indirection via test_python_script.py did NOT address the "Access
is denied" errors on GitHub Windows runners.
|
|
|
|
It's cool to be able to write 'arg1 << "stuff" << var ...;' for a lambda
accepting a std::ostream reference, but cascading compile errors mean it's no
longer worth trying to make that work -- given actual C++ lambdas.
Also clean up a lingering BOOST_FOREACH() and a boost::bind() while at it.
|
|
It seems the problem addressed by aab769e wasn't some synergy between
Boost.Phoenix and Boost.Function, but rather the lack of a Phoenix header file
introducing operator<<().
|
|
On GitHub Windows Actions runners, we're getting permissions errors trying to
tell the Python interpreter to run a NamedTempFile script. Try using
NamedExtTempFile to give each such script a .py extension.
|
|
On a low-powered GitHub Mac runner, the system doesn't wake up as soon as it
should, and we get spurious "too late" errors. Try a bigger time increment.
|
|
|
|
|
|
|
|
# Conflicts:
# indra/llcommon/tests/llsdserialize_test.cpp
|
|
Newer C++ compilers have different semantics around LLSDArray's special copy
constructor, which was essential to proper LLSD nesting. In short, we can no
longer trust LLSDArray to behave correctly. Now that we have variadic
functions, get rid of LLSDArray and replace every reference with llsd::array().
|
|
|
|
|
|
# Conflicts:
# indra/cmake/CMakeLists.txt
# indra/llcommon/llsdserialize.cpp
# indra/llcommon/llsdserialize.h
# indra/llcommon/tests/llleap_test.cpp
# indra/newview/llfilepicker.h
# indra/newview/llfilepicker_mac.h
# indra/newview/llfilepicker_mac.mm
# indra/newview/skins/default/xui/en/strings.xml
|
|
# Conflicts:
# indra/cmake/CMakeLists.txt
# indra/newview/skins/default/xui/es/floater_tools.xml
|
|
|
|
|
|
|
|
|
|
When sending multiple LEAP packets in the same file (for testing convenience),
use a length prefix instead of delimiting with '\n'. Now that we allow a
serialization format that includes an LLSD format header (e.g.
"<?llsd/binary?>"), '\n' is part of the packet content. But in fact, testing
binary LLSD means we can't pick any delimiter guaranteed not to appear in the
packet content.
Using a length prefix also lets us pass a specific max_bytes to the subject
C++ LLSD parser.
Make llleap_test.cpp use new freestanding Python llsd package when available.
Update Python-side LEAP protocol code to work directly with encoded bytes
stream, avoiding bytes<->str encoding and decoding, which breaks binary LLSD.
Make LLSDSerialize::deserialize() recognize LLSD format header case-
insensitively. Python emits and checks for "llsd/binary", while LLSDSerialize
emits and checks for "LLSD/Binary". Once any of the headers is recognized,
pass corrected max_bytes to the specific parser.
Make deserialize() more careful about the no-header case: preserve '\n' in
content. Introduce debugging code (disabled) because it's a little tricky to
recreate.
Revert LLLeap child process stdout parser from LLSDSerialize::deserialize() to
the specific LLSDNotationParser(), as at present: the generic parser fails one
of LLLeap's integration tests for reasons that remain mysterious.
|
|
Since parsing binary LLSD is faster than parsing notation LLSD, send data from
the viewer to the LEAP plugin child process's stdin in binary instead of
notation.
Similarly, instead of parsing the child process's stdout using specifically a
notation parser, use the generic LLSDSerialize::deserialize() LLSD parser.
Add more LLSDSerialize Python compatibility tests.
|
|
Absent a header from LLSDSerialize::serialize(), make deserialize()
distinguish between XML or notation by recognizing an initial '<'.
|
|
LLSDSerialize::serialize() emits a header string, e.g. "<? llsd/notation ?>"
for notation format. Until now, LLSDSerialize::deserialize() has required that
header to properly decode the input stream.
But none of LLSDBinaryFormatter, LLSDXMLFormatter or LLSDNotationFormatter
emit that header themselves. Nor do any of the Python llsd.format_binary(),
format_xml() or format_notation() functions. Until now, you could not use
LLSD::deserialize() to parse an arbitrary-format LLSD stream serialized by
anything but LLSDSerialize::serialize().
Change LLSDSerialize::deserialize() so that if no header is recognized,
instead of failing, it attempts to parse as notation. Add tests to exercise
this case.
The tricky part about this processing is that deserialize() necessarily reads
some number of bytes from the input stream first, to try to recognize the
header. If it fails to do so, it must prepend the bytes it has already read to
the rest of the input stream since they're probably the beginning of the
serialized data.
To support this use case, introduce cat_streambuf, a std::streambuf subclass
that (virtually) concatenates other std::streambuf instances. When read by a
std::istream, the sequence of underlying std::streambufs appears to the
consumer as a single continuous stream.
|
|
|
|
|
|
|
|
|
|
|
|
Always search for python3[.exe] instead of plain 'python'. macOS Monterey no
longer bundles Python 2 at all.
Explicitly make PYTHON_EXECUTABLE a cached value so if the user edits it in
CMakeCache.txt, it won't be overwritten by indra/cmake/Python.cmake.
Do NOT set DYLD_LIBRARY_PATH for test executables! That has Bad Effects, as
discussed in https://stackoverflow.com/q/73418423/5533635. Instead, create
symlinks from build-mumble/sharedlibs/Resources -> Release/Resources and from
build-mumble/test/Resources -> ../sharedlibs/Release/Resources. For test
executables in sharedlibs/RelWithDebInfo and test/RelWithDebInfo, this
supports our dylibs' baked-in load path @executable_path/../Resources. That
load path assumes running in a standard app bundle (which the viewer in fact
does), but we've been avoiding creating an app bundle for every test program.
These symlinks allow us to continue doing that while avoiding
DYLD_LIBRARY_PATH.
Add indra/llcommon/apply.h. The LL::apply() function and its wrapper macro
VAPPLY were very useful in diagnosing the problem.
Tweak llleap_test.cpp. This source was modified extensively for diagnostic
purposes; these are the small improvements that remain.
|