Age | Commit message (Collapse) | Author |
|
When we reimplemented LLProcess on APR, necessitating APR's funny callback
mechanism to sense child-process status, every isRunning() or getStatus() call
called the APR poll function that calls ALL registered LLProcess callbacks. In
other words, every time any consumer called any LLProcess::isRunning() method,
all LLProcess callbacks were redundantly fired. Change that so that the single
APR poll function is called once per frame, courtesy of the "mainloop"
LLEventPump. Once per viewer frame should be well within the realtime duration
in which it's reasonable to expect child-process status to change.
In effect, this changes LLProcess's public API to introduce a dependency on
"mainloop" ticks. Add such ticks to llprocess_test.cpp as well.
|
|
|
|
Once again we've been bitten by comparison failure between "c:\somepath" and
"C:\somepath". Normalize paths in both Python helper scripts to make that
comparison more robust.
|
|
Include logic to engage Linden apr_procattr_autokill_set() extension: on
Windows, magic CreateProcess() flag must be pushed down into apr_proc_create()
level. When using an APR package without that extension, present
implementation should lock (e.g.) SLVoice.exe lifespan to viewer's on Windows
XP but probably won't on Windows 7: need magic flag on CreateProcess().
Using APR child-termination callback requires us to define state (e.g.
LLProcess::RUNNING). Take the opportunity to present Status, capturing state
and (if terminated) rc or signal number; but since most of the time all caller
really wants is to log the outcome, also present status string, encapsulating
logic to examine state and describe exited-with-rc vs. killed-by-signal.
New Status logic may report clearer results in the case of a Windows child
process killed by exception.
Clarify that static LLProcess::isRunning(handle) overload is only for use when
the original LLProcess object has been destroyed: really only for unit tests.
We necessarily retain our original platform-specific implementations for just
that one method. (Nonstatic isRunning() no longer calls static method.)
Clarify log output from llprocess_test.cpp in a couple places.
|
|
On Posix, these and the corresponding getProcessID()/getProcessHandle()
accessors produce the same pid_t value; but on Windows, it's useful to
distinguish an int-like 'id' useful to human log readers versus an opaque
'handle' for passing to platform-specific API functions. So make the
distinction in a platform-independent way.
|
|
Using a Params block gives compile-time checking against attribute typos. One
might inadvertently set myLLSD["autofill"] = false and only discover it when
things behave strangely at runtime; but trying to set myParams.autofill will
produce a compile error.
However, it's excellent that the same LLProcess::create() method can accept
either LLProcess::Params or a properly-constructed LLSD block.
|
|
LLProcessLauncher had the somewhat fuzzy mandate of (1) accumulating
parameters with which to launch a child process and (2) sometimes tracking the
lifespan of the ensuing child process. But a valid LLProcessLauncher object
might or might not have ever been associated with an actual child process.
LLProcess specifically tracks a child process. In effect, it's a fairly thin
wrapper around a process HANDLE (on Windows) or pid_t (elsewhere), with
lifespan management thrown in. A static LLProcess::create() method launches a
new child; create() accepts an LLSD bundle with child parameters. So building
up a parameter bundle is deferred to LLSD rather than conflated with the
process management object.
Reconcile all known LLProcessLauncher consumers in the viewer code base,
notably the class unit tests.
|
|
Apparently our TeamCity build machines are still not up to Python 2.6.
|
|
|
|
|
|
Instead of free python() and python_out() functions containing a local
temporary LLProcessLauncher instance, with a 'tweak' callback param to
"do stuff" to that inaccessible object, change to a PythonProcessLauncher
class that sets up a (public) LLProcessLauncher member, then allows you to
run() or run() and then readfile() the output. Now you can construct an
instance and tweak to your heart's content -- without funky callback syntax --
before running the script.
Move all such helpers from TUT fixture struct to namespace scope. While
fixture-struct methods can freely call one another, introducing a nested class
gets awkward: constructor must explicitly require and bind a fixture-struct
pointer or reference. Namespace scope solves this.
(Truthfully, I only put them in the fixture struct originally because I
thought it necessary for calling ensure() et al. But ensure() and friends are
free functions; need only qualify them with tut:: namespace.)
|
|
Run INTEGRATION_TEST_llprocesslauncher using setpython.py so we can find the
Python interpreter of interest.
Introduce python() function to run a Python script specified using
NamedTempFile conventions.
Introduce a convention by which we can read output from a Python script using
only the limited pre-January-2012 LLProcessLauncher API. Introduce
python_out() function to leverage that convention.
Exercise a couple of LLProcessLauncher methods using all the above.
|
|
Specifically:
Introduce ManageAPR class in indra/test/manageapr.h. This is useful for a
simple test program without lots of static constructors.
Extract NamedTempFile from llsdserialize_test.cpp to indra/test/
namedtempfile.h. Refactor to use APR file operations rather than platform-
dependent APIs.
Use NamedTempFile for llprocesslauncher_test.cpp.
|
|
|
|
Add unit tests to verify basic functionality.
|
|
|
|
Defend test against the ambiguous answer to that question by not recording, or
testing for, EOF history events.
Enrich output for history-verification failures: display whole history array.
|
|
|
|
Previous logic was vulnerable to the case in which both pipes reached EOF in
the same loop iteration. Now we use std::list instead of std::vector, allowing
us to iterate and delete with a single pass.
|
|
Otherwise the unreferenced declaration causes a fatal warning.
|
|
Quiet the temporary child_status_callback() output.
Add a bit of diagnostic info if apr_proc_wait() returns anything but
APR_CHILD_DONE.
|
|
At least on OS X 10.7, a call to apr_proc_wait(APR_NOWAIT) in fact seems to
block the caller. So instead of polling apr_proc_wait(), use APR callback
mechanism (apr_proc_other_child_register() et al.) and poll that using
apr_proc_other_child_refresh_all().
Evidently this polls the underlying system waitpid(), but the internal call
seems to better support nonblocking. On arrival in the
child_status_callback(APR_OC_REASON_DEATH) call, though, apr_proc_wait()
produces ECHILD: the child process in question has already been reaped.
The OS-encoded wait() status does get passed to the callback, but then we have
to use OS-dependent macros to tease apart voluntary termination vs. killed by
signal... a bit of a hole in APR's abstraction layer.
Wrap ensure_equals() calls with a macro to explain which comparison failed.
|
|
Fix EOL issues: "\r\n" vs. "\n".
On Windows, requesting a read in nonblocking mode can produce EAGAIN instead
of EWOULDBLOCK.
|
|
That is, where before we just flung stuff to stdout with the expectation that
a human user would verify, replace with assertions in the test code itself.
Quiet previous noise on stdout.
Introduce a temp script file that produces output on both stdout and stderr,
with sleep() calls so we predictably have to wait for it. Track and then
verify the history of our interaction with the child process, noting
especially EWOULDBLOCK attempts.
|
|
|
|
As always with llcommon, this is expressed as an "integration test" to
sidestep a circular dependency: the llcommon build depends on its unit tests,
but all our unit tests depend on llcommon.
Initial test code is more for human verification than automated verification:
does APR's child-process management in fact support nonblocking operations?
|
|
|
|
|
|
|
|
The recent class-static LLInstanceTracker::instance_iter and key_iter
reference count is intended to guard against deleting an instance of an
LLInstanceTracker subclass during iteration. Add tests for that functionality.
|
|
interface.
|
|
|
|
Added a simple unit test to verify the functionality of the deleteSingleton method.
|
|
|
|
Fix LLInstanceTracker::key_iter constructor param; accepting
InstanceMap::iterator by non-const reference relied on Microsoft extension
that accepts non-const reference to an rvalue. Given typical iterator
implementation, simply accept by value instead, which makes gcc happy too.
|
|
|
|
string replacement, e.g. [[FOO]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Instead of low-level open(O_CREAT | O_EXCL) loop on all platforms, use
GetTempFileName() on Windows and mkstemp() elsewhere.
Don't append a final newline to NamedTempFile: use caller's data literally.
Tweak a couple comments.
|
|
|
|
Consider this pathname for llsdserialize_test.cpp:
C:\nats\indra\llcommon\tests\llsdserialize_test.cpp
Embed that in a Python string literal:
'C:\nats\indra\llcommon\tests\llsdserialize_test.cpp'
and you get a string containing:
C:
ats\indra\llcommon ests\llsdserialize_test.cpp
where the \n became a newline and the \t became a tab character.
Hopefully Python raw-string syntax r'C:\etc\etc' works better.
|
|
In this case, the Python code in question is being written from a C++ string
literal to a temp script file in a platform-dependent temp directory -- so the
Python __file__ value tells you nothing about the location of the repository
checkout. Embedding __FILE__ from the containing C++ source file works better.
|
|
And at that point, the Python logic needed to bring in the llsd module is big
enough to warrant capturing it in a separate string variable common to
multiple tests.
|
|
|
|
|