Age | Commit message (Collapse) | Author |
|
Introduce AlwaysReturn<void> specialization, which always discards any result
of calling the specified callable with specified args.
Derive new Windows_SEH_exception from LLException, not std::runtime_error.
Put the various SEH functions in LL::seh nested namespace, e.g.
LL::seh::catcher() as the primary API.
Break out more levels of Windows SEH handler to work around the restrictions on
functions containing __try/__except.
The triadic catcher() overload now does little save declare a std::string
stacktrace before forwarding the call to catcher_inner(), passing a reference
to stacktrace along with the trycode, filter and handler functions.
catcher_inner() accepts the stacktrace and the three function template
arguments. It contains the __try/__except logic. It calls a new filter_()
wrapper template, which calls fill_stacktrace() before forwarding the call to
the caller's filter function. fill_stacktrace(), in the .cpp file, contains
the logic to populate the stacktrace string -- unless the Structured Exception
is stack overflow, in which case it puts an explanatory string instead.
catcher_inner()'s __except clause passes not only the code, but also the
stacktrace string, to the caller's handler function. It wraps the caller's
handler function in always_return<rtype>(), where rtype is the type returned
by the trycode function. This allows a handler to return a value, while also
supporting the void handler case, e.g. one that throws a C++ exception. (This
is why we need AlwaysReturn<void>: some trycode() functions are themselves
void.)
For the dyadic catcher() overload, introduce common_filter() containing the
logic to distinguish a C++ exception from any other kind of Structured
Exception. The fact that the stacktrace is captured before the filter function
is called should permit capturing a stacktrace for a C++ exception as well as
for most other Structured Exceptions.
As before, the monadic catcher() overload supplies the rethrow() handler, in
the .cpp file.
Change existing calls from seh_catcher() to LL::seh::catcher().
|
|
|
|
LF, and trim trailing whitespaces as needed
|
|
Under debug LL_ERRS will show a message as well, but release won't show
anything and will quit silently so show a notification when applicable.
|
|
source of the real crash for when the viewer inevitably crashes later.
|
|
|
|
|
|
The LLTHROW() abstraction allows us to enrich the subject exception with a
boost::stacktrace -- without having to propagate the boost/stacktrace.hpp
header throughout the code base.
To my delight, our existing use of
boost::current_exception_diagnostic_information() already reports the newly
added boost::stacktrace information -- we don't have to query it specifically!
|
|
LLError::abbreviateFile() is specifically to avoid cluttering log output with
the prefix of an absolute file path on the original build system, pointless
for anyone trying to read the log.
|
|
Raw lllog() doesn't work for varying log level, which is why LL_VLOGS()
exists.
|
|
|
|
Wrap coroutine call in try/catch in top-level coroutine wrapper function
LLCoros::toplevel(). Distinguish exception classes derived from
LLContinueError (log and continue) from all others (crash with LL_ERRS).
Enhance CRASH_ON_UNHANDLED_EXCEPTIONS() and LOG_UNHANDLED_EXCEPTIONS() macros
to accept a context string to supplement the log message. This lets us replace
many places that called boost::current_exception_diagnostic_information() with
LOG_UNHANDLED_EXCEPTIONS() instead, since the explicit calls were mostly to
log supplemental information.
Provide supplemental information (coroutine name, function parameters) for
some of the previous LOG_UNHANDLED_EXCEPTIONS() calls. This information
duplicates LL_DEBUGS() information at the top of these functions, but in a
typical log file we wouldn't see the LL_DEBUGS() message.
Eliminate a few catch (std::exception e) clauses: the information we get from
boost::current_exception_diagnostic_information() in a catch (...) clause
makes it unnecessary to distinguish.
In a few cases, add a final 'throw;' to a catch (...) clause: having logged
the local context info, propagate the exception to be caught by higher-level
try/catch.
In a couple places, couldn't resist reconciling indentation within a
particular function: tabs where the rest of the function uses tabs, spaces
where the rest of the function uses spaces.
In LLLogin::Impl::loginCoro(), eliminate some confusing comments about an
array of rewritten URIs that date back to a long-deleted implementation.
|
|
Turns out we have a surprising number of catch (...) clauses in the viewer
code base. If all we currently do is
LL_ERRS() << "unknown exception" << LL_ENDL;
then call CRASH_ON_UNHANDLED_EXCEPTION() instead. If what we do is
LL_WARNS() << "unknown exception" << LL_ENDL;
then call LOG_UNHANDLED_EXCEPTION() instead.
Since many places need LOG_UNHANDLED_EXCEPTION() and nobody catches
LLContinueError yet, eliminate LLContinueError& parameter from
LOG_UNHANDLED_EXCEPTION(). This permits us to use the same log message as
CRASH_ON_UNHANDLED_EXCEPTION(), just with a different severity level.
Where a catch (...) clause actually provides contextual information, or makes
an error string, add boost::current_exception_diagnostic_information() to try
to figure out actual exception class and message.
|
|
llexception_test.cpp is an unusual test source in that it need not be verified
on every build, so its invocation in indra/llcommon/CMakeLists.txt is
commented out with that remark. Its purpose is to help a developer decide what
base class(es) to use for LLException, how to throw and how to catch.
Our current conclusions are written up as comments in llexception_test.cpp.
Added CRASH_ON_UNHANDLED_EXCEPTION() and LOG_UNHANDLED_EXCEPTION() macros to
llexception.h -- macros to log __FILE__, __LINE__ and __PRETTY_FUNCTION__ of
the catch site. These invoke functions in llexception.cpp so we don't need to
#include llerror.h for every possible catch site.
|