Age | Commit message (Collapse) | Author |
|
|
|
mail drop does not have any outstanding events.
|
|
Previously, LLEventMailDrop would send only the first queued event to a
newly-connected listener. If you wanted to flush all queued events, you'd have
to "pump" the queue by repeatedly disconnecting and reconnecting -- with no
good way to know when you'd caught up.
The new behavior makes LLEventMailDrop resemble a multi-valued future: a
rendezvous between producer and consumer that, once connected, pushes values
rather than requiring them to be pulled (as with a simple queue) -- regardless
of the relative order in which post() and listen() are called.
|
|
LLEventPump's destructor was using LLEventPumps::instance() to unregister the
LLEventPump instance from LLEventPumps. Evidently, though, there are lingering
LLEventPump instances that persist even after the LLSingletonBase::deleteAll()
call destroys the LLEventPumps LLSingleton instance. These were resurrecting
LLEventPumps -- pointlessly, since a newly-resurrected LLEventPumps instance
can have no knowledge of the LLEventPump instance! Unregistering is
unnecessary!
What we want is a reference we can bind into each LLEventPump instance that
allows us to safely test whether the LLEventPumps instance still exists.
LLHandle is exactly that. Make LLEventPumps an LLHandleProvider and bind its
LLHandle in each LLEventPump's constructor; then the destructor can unregister
only when LLEventPumps still exists.
|
|
|
|
|
|
|
|
A shocking number of LLSingleton subclasses had public constructors -- and in
several instances, were being explicitly instantiated independently of the
LLSingleton machinery. This breaks the new LLSingleton dependency-tracking
machinery. It seems only fair that if you say you want an LLSingleton, there
should only be ONE INSTANCE!
Introduce LLSINGLETON() and LLSINGLETON_EMPTY_CTOR() macros. These handle the
friend class LLSingleton<whatevah>;
and explicitly declare a private nullary constructor.
To try to enforce the LLSINGLETON() convention, introduce a new pure virtual
LLSingleton method you_must_use_LLSINGLETON_macro() which is, as you might
suspect, defined by the macro. If you declare an LLSingleton subclass without
using LLSINGLETON() or LLSINGLETON_EMPTY_CTOR() in the class body, you can't
instantiate the subclass for lack of a you_must_use_LLSINGLETON_macro()
implementation -- which will hopefully remind the coder.
Trawl through ALL LLSingleton subclass definitions, sprinkling in
LLSINGLETON() or LLSINGLETON_EMPTY_CTOR() as appropriate. Remove all explicit
constructor declarations, public or private, along with relevant 'friend class
LLSingleton<myself>' declarations. Where destructors are declared, move them
into private section as well. Where the constructor was inline but nontrivial,
move out of class body.
Fix several LLSingleton abuses revealed by making ctors/dtors private:
LLGlobalEconomy was both an LLSingleton and the base class for
LLRegionEconomy, a non-LLSingleton. (Therefore every LLRegionEconomy instance
contained another instance of the LLGlobalEconomy "singleton.") Extract
LLBaseEconomy; LLGlobalEconomy is now a trivial subclass of that.
LLRegionEconomy, as you might suspect, now derives from LLBaseEconomy.
LLToolGrab, an LLSingleton, was also explicitly instantiated by
LLToolCompGun's constructor. Extract LLToolGrabBase, explicitly instantiated,
with trivial subclass LLToolGrab, the LLSingleton instance.
(WARNING: LLToolGrabBase methods have an unnerving tendency to go after
LLToolGrab::getInstance(). I DO NOT KNOW what should be the relationship
between the instance in LLToolCompGun and the LLToolGrab singleton instance.)
LLGridManager declared a variant constructor accepting (const std::string&),
with the comment:
// initialize with an explicity grid file for testing.
As there is no evidence of this being called from anywhere, delete it.
LLChicletBar's constructor accepted an optional (const LLSD&). As the LLSD
parameter wasn't used, and as there is no evidence of it being passed from
anywhere, delete the parameter.
LLViewerWindow::shutdownViews() was checking LLNavigationBar::
instanceExists(), then deleting its getInstance() pointer -- leaving a
dangling LLSingleton instance pointer, a land mine if any subsequent code
should attempt to reference it. Use deleteSingleton() instead.
~LLAppViewer() was calling LLViewerEventRecorder::instance() and then
explicitly calling ~LLViewerEventRecorder() on that instance -- leaving the
LLSingleton instance pointer pointing to an allocated-but-destroyed instance.
Use deleteSingleton() instead.
|
|
This means that an exception derived from LLContinueError thrown in an
LLEventPump listener won't prevent other listeners on the same LLEventPump
from receiving that event.
|
|
This also introduces LLContinueError for exceptions which should interrupt
some part of viewer processing (e.g. the current coroutine) but should attempt
to let the viewer session proceed.
Derive all existing viewer exception classes from LLException rather than from
std::runtime_error or std::logic_error.
Use BOOST_THROW_EXCEPTION() rather than plain 'throw' to enrich the thrown
exception with source file, line number and containing function.
|
|
tracking.
|
|
|
|
timeout it. Also some cleanup on LLSD construction in vivox.
|
|
|
|
delivery
|
|
|
|
conditional compile switches. Begin switch from statemachine to coroutine.
|
|
|
|
consolidated most indra-specific constants in llcommon under indra_constants.h
fixed issues with operations on mixed unit types (implicit and explicit)
made LL_INFOS() style macros variadic in order to subsume other logging methods
such as ll_infos
added optional tag output to error recorders
|
|
|
|
Each LLEventAPI method that generates a reply needs to extract the name of the
reply LLEventPump from the request, typically from a ["reply"] key, copy the
["reqid"] value from request to reply, locate the reply LLEventPump and send
the enriched reply object. Encapsulate in sendReply() function before we
proliferate doing all that by hand too many more times.
|
|
|
|
|
|
|
|
|
|
Replace LLEventPump's boost::scoped_ptr<LLStandardSignal> with
boost::shared_ptr. Take a local stack copy of that shared_ptr in post()
methods, and invoke the signal through that copy. This guards against scenario
in which LLEventPump gets destroyed during signal invocation. (See Jira for
details.) Re-enable Mani's test case that used to crash.
Introduce ll_template_cast<> to allow a template function to recognize a
parameter of a particular type.
Introduce LLListenerWrapper mechanism to support wrapper objects for
LLEventPump listeners. You instantiate an LLListenerWrapper subclass object
inline in the listen() call (typically with llwrap<>), passing it the real
listener, trusting it to forward the eventual call.
Introduce prototypical LLCoutListener and LLLogListener subclasses for
illustrative and diagnostic purposes. Test that LLLogListener doesn't block
recognizing LLEventTrackable base class bound into wrapped listener.
|
|
|
|
--HG--
branch : avatar-pipeline
|
|
The fix deletes all LLEventPumps boost::signal objects prior to unloading any dlls.
reviewed by Nat.
|
|
I'll need to rebuild that, plus a couple other minor clenaups.
|
|
Moves libllcommon.so to a staging dir for unit tests to work
and gets rid of LL_COMMON_API in forward declarations
|
|
merged all changes, post copy, from the following branches:
linden/brachnes/enable-o-v
user/cg/qar-1538
user/mani/viewer2-enable-o-v
|
|
up to viewer-2.0.0-3
|
|
|
|
ignore-dead-branch
|
|
svn merge -r 121797:121853 svn+ssh://svn.lindenlab.com/svn/linden/branches/merge-event-system-7
|