summaryrefslogtreecommitdiff
path: root/indra/llcommon/hbxxh.h
AgeCommit message (Collapse)Author
2024-04-29#824 Process source files in bulk: replace tabs with spaces, convert CRLF to ↵Andrey Lihatskiy
LF, and trim trailing whitespaces as needed
2023-02-07SL-19110 Make HBXXH* classes no-copy. (#72)Henri Beauchamp
These classes are not trivially copyable because of the mState pointer on an internal XXH3 state that would have to be explicitely copied. While it would be possible to add custom copy constructor and operator for them, it does not really make sense to allow copying an instance of these classes, since all we care about storing and copying is the digest (which is either an U64 or an LLUUID).
2023-01-31SL-19110 Fix coding policyAndrey Kleshchev
2023-01-31SL-19110 Fast hashing classes for use in place of the slow LLMD5, where ↵Henri Beauchamp
speed matters. (#64) This commit adds the HBXX64 and HBXX128 classes for use as a drop-in replacement for the slow LLMD5 hashing class, where speed matters and backward compatibility (with standard hashing algorithms) and/or cryptographic hashing qualities are not required. It also replaces LLMD5 with HBXX* in a few existing hot (well, ok, just "warm" for some) paths meeting the above requirements, while paving the way for future use cases, such as in the DRTVWR-559 and sibling branches where the slow LLMD5 is used (e.g. to hash materials and vertex buffer cache entries), and could be use such a (way) faster algorithm with very significant benefits and no negative impact. Here is the comment I added in indra/llcommon/hbxx.h: // HBXXH* classes are to be used where speed matters and cryptographic quality // is not required (no "one-way" guarantee, though they are likely not worst in // this respect than MD5 which got busted and is now considered too weak). The // xxHash code they are built upon is vectorized and about 50 times faster than // MD5. A 64 bits hash class is also provided for when 128 bits of entropy are // not needed. The hashes collision rate is similar to MD5's. // See https://github.com/Cyan4973/xxHash#readme for details.