Age | Commit message (Collapse) | Author |
|
|
|
Others are fine without the error turned off, and the flag might not
even be available on some other's Clang.
|
|
|
|
Encountered when using Clang on Linux.
Switched to Clang cause sometimes errors can be less escapable on GCC.
|
|
|
|
|
|
Useful when installed as shared libraries, so other viewer executables
can share these libraries.
|
|
|
|
I had added this to CMAKE_CXX_FLAGS in 00-Common before, and only when
the compiler was Clang. But it turned out that GCC was treating them as
errors too, that the addition would need to be applied to all compilers.
So I prefer to put it here in llcommon with the scope set to PUBLIC
cause the errors would show up again when compiling other LL libraries
if the scope is set to something else.
|
|
|
|
|
|
|
|
|
|
# Conflicts:
# indra/cmake/CMakeLists.txt
# indra/newview/skins/default/xui/es/floater_tools.xml
|
|
speed matters. (#64)
This commit adds the HBXX64 and HBXX128 classes for use as a drop-in
replacement for the slow LLMD5 hashing class, where speed matters and
backward compatibility (with standard hashing algorithms) and/or
cryptographic hashing qualities are not required.
It also replaces LLMD5 with HBXX* in a few existing hot (well, ok, just
"warm" for some) paths meeting the above requirements, while paving the way for
future use cases, such as in the DRTVWR-559 and sibling branches where the slow
LLMD5 is used (e.g. to hash materials and vertex buffer cache entries), and
could be use such a (way) faster algorithm with very significant benefits and
no negative impact.
Here is the comment I added in indra/llcommon/hbxx.h:
// HBXXH* classes are to be used where speed matters and cryptographic quality
// is not required (no "one-way" guarantee, though they are likely not worst in
// this respect than MD5 which got busted and is now considered too weak). The
// xxHash code they are built upon is vectorized and about 50 times faster than
// MD5. A 64 bits hash class is also provided for when 128 bits of entropy are
// not needed. The hashes collision rate is similar to MD5's.
// See https://github.com/Cyan4973/xxHash#readme for details.
|
|
speed matters. (#64)
This commit adds the HBXX64 and HBXX128 classes for use as a drop-in
replacement for the slow LLMD5 hashing class, where speed matters and
backward compatibility (with standard hashing algorithms) and/or
cryptographic hashing qualities are not required.
It also replaces LLMD5 with HBXX* in a few existing hot (well, ok, just
"warm" for some) paths meeting the above requirements, while paving the way for
future use cases, such as in the DRTVWR-559 and sibling branches where the slow
LLMD5 is used (e.g. to hash materials and vertex buffer cache entries), and
could be use such a (way) faster algorithm with very significant benefits and
no negative impact.
Here is the comment I added in indra/llcommon/hbxx.h:
// HBXXH* classes are to be used where speed matters and cryptographic quality
// is not required (no "one-way" guarantee, though they are likely not worst in
// this respect than MD5 which got busted and is now considered too weak). The
// xxHash code they are built upon is vectorized and about 50 times faster than
// MD5. A 64 bits hash class is also provided for when 128 bits of entropy are
// not needed. The hashes collision rate is similar to MD5's.
// See https://github.com/Cyan4973/xxHash#readme for details.
|
|
|
|
|
|
For work queues that don't need timestamped tasks, eliminate the overhead of a
priority queue ordered by timestamp. Timestamped task support moves to
WorkSchedule. WorkQueue is a simpler queue that just waits for work.
Both WorkQueue and WorkSchedule can be accessed via new WorkQueueBase API. Of
course the WorkQueueBase API doesn't deal with timestamps, but a WorkSchedule
can be accessed directly to post timestamped tasks and then handled normally
(e.g. by ThreadPool) to run them.
Most ThreadPool functionality migrates to new ThreadPoolBase class, with
template subclass ThreadPoolUsing<WorkQueue> or ThreadPoolUsing<WorkSchedule>
depending on need. ThreadPool is now an alias for ThreadPoolUsing<WorkQueue>.
Importantly, ThreadPoolUsing::getQueue() delivers a reference to the specific
queue subclass type, so you can post timestamped tasks on a queue retrieved
from ThreadPoolUsing<WorkSchedule>::getQueue().
Since ThreadPool is no longer a simple class but an alias for a particular
template specialization, introduce threadpool_fwd.h to forward-declare it.
Recast workqueue_test.cpp to exercise WorkSchedule, since some of the tests
are time-based. A future todo would be to exercise each applicable test with
both WorkQueue and WorkSchedule.
|
|
Deriving your tracked class T from LLInstanceTracker<T> gives you
T::getInstance() et al. But what about a subclass S derived from T?
S::getInstance() still delivers a pointer to T, requiring explicit downcast.
And so on for other LLInstanceTracker methods.
Instead, derive S from LLInstanceTrackerSubclass<S, T>. This implies that S is
a grandchild class of T, but it also recasts the LLInstanceTracker methods to
deliver results for S rather than for T.
|
|
|
|
In theory it is fine to do that, in practice it does break gatekeeper in subtle ways
due to https://developer.apple.com/library/archive/technotes/tn2206/_index.html#//apple_ref/doc/uid/DTS40007919-CH1-TNTAG207
Having bugsplat linked to all executables results in executables with an embedded rpath that is invalid for Gatekeeper. Luckily
it shows this is in the worst possible way. The viewer cannot be started with a non helpful message of teh viewer being unable to
verified. While at the same time spctl and codesign both show no errors at all.
|
|
# Conflicts:
# indra/llrender/llgl.cpp
# indra/llrender/llrendertarget.cpp
# indra/newview/VIEWER_VERSION.txt
# indra/newview/app_settings/shaders/class1/deferred/materialF.glsl
# indra/newview/llfloaterpreference.cpp
# indra/newview/llviewercontrol.cpp
# indra/newview/llviewermenu.cpp
# indra/newview/llviewertexturelist.cpp
# indra/newview/llvovolume.cpp
|
|
|
|
|
|
|
|
According to bugsplat get_thread_recorder was null
Replaced apr based LLThreadLocalPointer with thread_local
|
|
# Conflicts:
# doc/contributions.txt
# indra/newview/llviewercontrol.cpp
|
|
|
|
Introduce CommonControl, which in a running viewer (or any program containing
an LLViewerControlListener instance) gives access to LLViewerControl
functionality, e.g. getting, setting or enumerating control variables --
without introducing a link dependency on newview.
Make ThreadPool's constructor consult CommonControl to check for an override
for the width of the new ThreadPool in the Global (i.e. gSavedSettings)
setting ThreadPoolSizes, and honor that if found.
Introduce static ThreadPool methods getConfiguredWidth(), to query for such an
override on any particular ThreadPool name; and getWidth(), to ask for the
width of an instance if that instance already exists, else the width with
which it *would* be instantiated.
|
|
DRTVWR-543-maint_cmake
|
|
# Conflicts:
# autobuild.xml
# indra/cmake/LLCommon.cmake
# indra/llcommon/CMakeLists.txt
# indra/llrender/llgl.cpp
# indra/newview/llappviewer.cpp
# indra/newview/llface.cpp
# indra/newview/llflexibleobject.cpp
# indra/newview/llvovolume.cpp
|
|
|
|
sets the property on those.
|
|
All 3Ps include dirs are treated as SYSTEM, this will stop compilers
stop emitting warnings from those files and greatly helps having high
warning levels and not being swamped by warnings that come from
external libraries.
|
|
- Fix usage of bugsplat::bugsplat by using ll::bugsplat
- Use bugsplat define by importing target not by using hand crafted magic
|
|
|
|
compiled on.
This gets rid of the a few OS specific set and uses variables (which some even seemed mostly
duplicate like WINDOWS_LIBRARIES ans UI_LIBRARIES) and it also solves the problem of
having them to tack on every target, as of no they come as a transitive dependency from llcommon
|
|
with the same name (that's why 3ps had names like apr::apr),
but it's safer and saner to put the LL 3ps under the ll:: prefix.
This also allows means it is possible to get rid of that bad "if( TRAGET ...) return() endif()" pattern and rather use include_guard().
|
|
|
|
Change projects to cmake targetsto get rid of havig to hardcore
include directories and link libraries in consumer projects.
|
|
|
|
Reverting a merge is sticky: it tells git you never want to see that branch
again. Merging the DRTVWR-546 branch, which contained the revert, into the
glthread branch undid much of the development work on that branch. To restore
it we must revert the revert.
This reverts commit 029b41c0419e975bbb28454538b46dc69ce5d2ba.
|
|
# Conflicts:
# indra/newview/llagentwearables.cpp
# indra/newview/llvoicevivox.cpp
|
|
|
|
This reverts commit 5188a26a8521251dda07ac0140bb129f28417e49, reversing
changes made to 819088563e13f1d75e048311fbaf0df4a79b7e19.
|
|
|
|
ThreadPool bundles a WorkQueue with the specified number of worker threads to
service it. Each ThreadPool has a name that can be used to locate its
WorkQueue.
Each worker thread calls WorkQueue::runUntilClose().
ThreadPool listens on the "LLApp" LLEventPump for shutdown notification. On
receiving that, it closes its WorkQueue and then join()s each of its worker
threads for orderly shutdown.
Add a settings.xml entry "ThreadPoolSizes", the first LLSD-valued settings
entry to expect a map: pool name->size. The expectation is that usually code
instantiating a particular ThreadPool will have a default size in mind, but it
should check "ThreadPoolSizes" for a user override.
Make idle_startup()'s STATE_SEED_CAP_GRANTED state instantiate a "General"
ThreadPool. This is function-static for lazy initialization.
Eliminate LLMainLoopRepeater, which is completely unreferenced. Any potential
future use cases are better addressed by posting to the main loop's WorkQueue.
Eliminate llappviewer.cpp's private LLDeferredTaskList class, which
implemented LLAppViewer::addOnIdleCallback(). Make addOnIdleCallback() post
work to the main loop's WorkQueue instead.
|
|
|
|
|