summaryrefslogtreecommitdiff
path: root/indra/newview/pipeline.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'indra/newview/pipeline.cpp')
-rw-r--r--indra/newview/pipeline.cpp52
1 files changed, 26 insertions, 26 deletions
diff --git a/indra/newview/pipeline.cpp b/indra/newview/pipeline.cpp
index e324d60fec..8c989ca77f 100644
--- a/indra/newview/pipeline.cpp
+++ b/indra/newview/pipeline.cpp
@@ -397,7 +397,7 @@ void validate_framebuffer_object();
bool addDeferredAttachments(LLRenderTarget& target)
{
return target.addColorAttachment(GL_RGBA) && //specular
- target.addColorAttachment(GL_RGBA); //normal+z
+ target.addColorAttachment(GL_RGB10_A2); //normal+z
}
LLPipeline::LLPipeline() :
@@ -863,7 +863,7 @@ bool LLPipeline::allocateScreenBuffer(U32 resX, U32 resY, U32 samples)
if (!mDeferredScreen.allocate(resX, resY, GL_RGBA, TRUE, TRUE, LLTexUnit::TT_RECT_TEXTURE, FALSE, samples)) return false;
if (!mDeferredDepth.allocate(resX, resY, 0, TRUE, FALSE, LLTexUnit::TT_RECT_TEXTURE, FALSE, samples)) return false;
if (!addDeferredAttachments(mDeferredScreen)) return false;
-
+
if (!mScreen.allocate(resX, resY, GL_RGBA, FALSE, FALSE, LLTexUnit::TT_RECT_TEXTURE, FALSE, samples)) return false;
if (samples > 0)
{
@@ -1206,6 +1206,11 @@ void LLPipeline::createGLBuffers()
gBumpImageList.restoreGL();
}
+F32 lerpf(F32 a, F32 b, F32 w)
+{
+ return a + w * (b - a);
+}
+
void LLPipeline::createLUTBuffers()
{
if (sRenderDeferred)
@@ -1214,45 +1219,40 @@ void LLPipeline::createLUTBuffers()
{
U32 lightResX = gSavedSettings.getU32("RenderSpecularResX");
U32 lightResY = gSavedSettings.getU32("RenderSpecularResY");
- U8* ls = new U8[lightResX*lightResY];
- F32 specExp = gSavedSettings.getF32("RenderSpecularExponent");
- // Calculate the (normalized) Blinn-Phong specular lookup texture.
+ F32* ls = new F32[lightResX*lightResY];
+ //F32 specExp = gSavedSettings.getF32("RenderSpecularExponent"); // Note: only use this when creating new specular lighting functions.
+ // Calculate the (normalized) Gaussian specular lookup texture. (with a few tweaks)
for (U32 y = 0; y < lightResY; ++y)
{
for (U32 x = 0; x < lightResX; ++x)
{
ls[y*lightResX+x] = 0;
F32 sa = (F32) x/(lightResX-1);
- F32 spec = (F32) y/(lightResY-1);
- F32 n = spec * spec * specExp;
+ F32 spec = (F32) y/(lightResY);
+ F32 n = spec;
- // Nothing special here. Just your typical blinn-phong term.
- spec = powf(sa, n);
+ float angleNormalHalf = acosf(sa);
+ float exponent = angleNormalHalf / ((1 - n));
+ exponent = -(exponent * exponent);
+ spec = expf(exponent);
// Apply our normalization function.
- // Note: This is the full equation that applies the full normalization curve, not an approximation.
- // This is fine, given we only need to create our LUT once per buffer initialization.
- // The only trade off is we have a really low dynamic range.
- // This means we have to account for things not being able to exceed 0 to 1 in our shaders.
- spec *= (((n + 2) * (n + 4)) / (8 * F_PI * (powf(2, -n/2) + n)));
+ // This is based around the phong normalization function, trading n+2 for n+1 instead.
+ // Since we're using a gaussian model here, we actually don't really need as large of an exponent as blinn-phong shading.
+ // Instead, we assume that the correct exponent is 8 here.
+ // This was achieved through much tweaking to find a decent "middleground" with our specular highlights with the gaussian term.
+ // Bigger highlights don't look too soft, smaller highlights don't look too bright, and everything in the middle seems to have a well maintained highlight curvature.
+ // There isn't really much theory behind this one. This was done purely to produce a nice and mostly customizable BRDF.
- // Always sample at a 1.0/2.2 curve.
- // This "Gamma corrects" our specular term, boosting our lower exponent reflections.
- spec = powf(spec, 1.f/2.2f);
+ spec = lerpf(spec, spec * (n * 8 + 1) / 4.5, n);
- // Easy fix for our dynamic range problem: divide by 6 here, multiply by 6 in our shaders.
- // This allows for our specular term to exceed a value of 1 in our shaders.
- // This is something that can be important for energy conserving specular models where higher exponents can result in highlights that exceed a range of 0 to 1.
- // Technically, we could just use an R16F texture, but driver support for R16F textures can be somewhat spotty at times.
- // This works remarkably well for higher specular exponents, though banding can sometimes be seen on lower exponents.
- // Combined with a bit of noise and trilinear filtering, the banding is hardly noticable.
- ls[y*lightResX+x] = (U8)(llclamp(spec * (1.f / 6), 0.f, 1.f) * 255);
+ ls[y*lightResX+x] = spec;
}
}
- LLImageGL::generateTextures(LLTexUnit::TT_TEXTURE, GL_R8, 1, &mLightFunc);
+ LLImageGL::generateTextures(LLTexUnit::TT_TEXTURE, GL_R16F, 1, &mLightFunc);
gGL.getTexUnit(0)->bindManual(LLTexUnit::TT_TEXTURE, mLightFunc);
- LLImageGL::setManualImage(LLTexUnit::getInternalType(LLTexUnit::TT_TEXTURE), 0, GL_R8, lightResX, lightResY, GL_RED, GL_UNSIGNED_BYTE, ls, false);
+ LLImageGL::setManualImage(LLTexUnit::getInternalType(LLTexUnit::TT_TEXTURE), 0, GL_R16F, lightResX, lightResY, GL_RED, GL_FLOAT, ls, false);
gGL.getTexUnit(0)->setTextureAddressMode(LLTexUnit::TAM_CLAMP);
gGL.getTexUnit(0)->setTextureFilteringOption(LLTexUnit::TFO_TRILINEAR);