diff options
Diffstat (limited to 'indra/newview/lllegacyatmospherics.cpp')
-rw-r--r-- | indra/newview/lllegacyatmospherics.cpp | 853 |
1 files changed, 853 insertions, 0 deletions
diff --git a/indra/newview/lllegacyatmospherics.cpp b/indra/newview/lllegacyatmospherics.cpp new file mode 100644 index 0000000000..a2acb3efe2 --- /dev/null +++ b/indra/newview/lllegacyatmospherics.cpp @@ -0,0 +1,853 @@ +/** + * @file lllegacyatmospherics.cpp + * @brief LLAtmospherics class implementation + * + * $LicenseInfo:firstyear=2001&license=viewerlgpl$ + * Second Life Viewer Source Code + * Copyright (C) 2010, Linden Research, Inc. + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; + * version 2.1 of the License only. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA + * $/LicenseInfo$ + */ + +#include "llviewerprecompiledheaders.h" + +#include "lllegacyatmospherics.h" + +#include "llfeaturemanager.h" +#include "llviewercontrol.h" +#include "llframetimer.h" + +#include "llagent.h" +#include "llagentcamera.h" +#include "lldrawable.h" +#include "llface.h" +#include "llglheaders.h" +#include "llsky.h" +#include "llviewercamera.h" +#include "llviewertexturelist.h" +#include "llviewerobjectlist.h" +#include "llviewerregion.h" +#include "llworld.h" +#include "pipeline.h" +#include "v3colorutil.h" + +#include "llsettingssky.h" +#include "llenvironment.h" +#include "lldrawpoolwater.h" + +class LLFastLn +{ +public: + LLFastLn() + { + mTable[0] = 0; + for( S32 i = 1; i < 257; i++ ) + { + mTable[i] = log((F32)i); + } + } + + F32 ln( F32 x ) + { + const F32 OO_255 = 0.003921568627450980392156862745098f; + const F32 LN_255 = 5.5412635451584261462455391880218f; + + if( x < OO_255 ) + { + return log(x); + } + else + if( x < 1 ) + { + x *= 255.f; + S32 index = llfloor(x); + F32 t = x - index; + F32 low = mTable[index]; + F32 high = mTable[index + 1]; + return low + t * (high - low) - LN_255; + } + else + if( x <= 255 ) + { + S32 index = llfloor(x); + F32 t = x - index; + F32 low = mTable[index]; + F32 high = mTable[index + 1]; + return low + t * (high - low); + } + else + { + return log( x ); + } + } + + F32 pow( F32 x, F32 y ) + { + return (F32)LL_FAST_EXP(y * ln(x)); + } + + +private: + F32 mTable[257]; // index 0 is unused +}; + +static LLFastLn gFastLn; + + +// Functions used a lot. + +inline F32 LLHaze::calcPhase(const F32 cos_theta) const +{ + const F32 g2 = mG * mG; + const F32 den = 1 + g2 - 2 * mG * cos_theta; + return (1 - g2) * gFastLn.pow(den, -1.5); +} + +inline void color_pow(LLColor3 &col, const F32 e) +{ + col.mV[0] = gFastLn.pow(col.mV[0], e); + col.mV[1] = gFastLn.pow(col.mV[1], e); + col.mV[2] = gFastLn.pow(col.mV[2], e); +} + +inline LLColor3 color_norm(const LLColor3 &col) +{ + const F32 m = color_max(col); + if (m > 1.f) + { + return 1.f/m * col; + } + else return col; +} + +inline void color_gamma_correct(LLColor3 &col) +{ + const F32 gamma_inv = 1.f/1.2f; + if (col.mV[0] != 0.f) + { + col.mV[0] = gFastLn.pow(col.mV[0], gamma_inv); + } + if (col.mV[1] != 0.f) + { + col.mV[1] = gFastLn.pow(col.mV[1], gamma_inv); + } + if (col.mV[2] != 0.f) + { + col.mV[2] = gFastLn.pow(col.mV[2], gamma_inv); + } +} + +static LLColor3 calc_air_sca_sea_level() +{ + static LLColor3 WAVE_LEN(675, 520, 445); + static LLColor3 refr_ind = refr_ind_calc(WAVE_LEN); + static LLColor3 n21 = refr_ind * refr_ind - LLColor3(1, 1, 1); + static LLColor3 n4 = n21 * n21; + static LLColor3 wl2 = WAVE_LEN * WAVE_LEN * 1e-6f; + static LLColor3 wl4 = wl2 * wl2; + static LLColor3 mult_const = fsigma * 2.0f/ 3.0f * 1e24f * (F_PI * F_PI) * n4; + static F32 dens_div_N = F32( ATM_SEA_LEVEL_NDENS / Ndens2); + return dens_div_N * mult_const.divide(wl4); +} + +// static constants. +LLColor3 const LLHaze::sAirScaSeaLevel = calc_air_sca_sea_level(); +F32 const LLHaze::sAirScaIntense = color_intens(LLHaze::sAirScaSeaLevel); +F32 const LLHaze::sAirScaAvg = LLHaze::sAirScaIntense / 3.f; + +/*************************************** + Atmospherics +***************************************/ + +LLAtmospherics::LLAtmospherics() +: mCloudDensity(0.2f), + mWind(0.f), + mWorldScale(1.f) +{ + /// WL PARAMS + mInitialized = FALSE; + mAmbientScale = gSavedSettings.getF32("SkyAmbientScale"); + mNightColorShift = gSavedSettings.getColor3("SkyNightColorShift"); + mFogColor.mV[VRED] = mFogColor.mV[VGREEN] = mFogColor.mV[VBLUE] = 0.5f; + mFogColor.mV[VALPHA] = 0.0f; + mFogRatio = 1.2f; + mHazeConcentration = 0.f; + mInterpVal = 0.f; +} + + +LLAtmospherics::~LLAtmospherics() +{ +} + +void LLAtmospherics::init() +{ + const F32 haze_int = color_intens(mHaze.calcSigSca(0)); + mHazeConcentration = haze_int / (color_intens(mHaze.calcAirSca(0)) + haze_int); + mInitialized = true; +} + +LLColor4 LLAtmospherics::calcSkyColorInDir(AtmosphericsVars& vars, const LLVector3 &dir, bool isShiny) +{ + LLSettingsSky::ptr_t psky = LLEnvironment::instance().getCurrentSky(); + return calcSkyColorInDir(psky, vars, dir, isShiny); +} + +// This cubemap is used as "environmentMap" in indra/newview/app_settings/shaders/class2/deferred/softenLightF.glsl +LLColor4 LLAtmospherics::calcSkyColorInDir(const LLSettingsSky::ptr_t &psky, AtmosphericsVars& vars, const LLVector3 &dir, bool isShiny) +{ + F32 sky_saturation = 0.25f; + F32 land_saturation = 0.1f; + + if (isShiny && dir.mV[VZ] < -0.02f) + { + LLColor4 col; + LLColor3 desat_fog = LLColor3(mFogColor); + F32 brightness = desat_fog.brightness();// NOTE: Linear brightness! + // So that shiny somewhat shows up at night. + if (brightness < 0.15f) + { + brightness = 0.15f; + desat_fog = smear(0.15f); + } + F32 greyscale_sat = brightness * (1.0f - land_saturation); + desat_fog = desat_fog * land_saturation + smear(greyscale_sat); + if (!gPipeline.canUseWindLightShaders()) + { + col = LLColor4(desat_fog, 0.f); + } + else + { + col = LLColor4(desat_fog * 0.5f, 0.f); + } + float x = 1.0f-fabsf(-0.1f-dir.mV[VZ]); + x *= x; + col.mV[0] *= x*x; + col.mV[1] *= powf(x, 2.5f); + col.mV[2] *= x*x*x; + return col; + } + + // undo OGL_TO_CFR_ROTATION and negate vertical direction. + LLVector3 Pn = LLVector3(-dir[1] , -dir[2], -dir[0]); + + //calculates hazeColor + calcSkyColorWLVert(psky, Pn, vars); + + if (isShiny) + { + F32 brightness = vars.hazeColor.brightness(); + F32 greyscale_sat = brightness * (1.0f - sky_saturation); + LLColor3 sky_color = vars.hazeColor * sky_saturation + smear(greyscale_sat); + //sky_color *= (0.5f + 0.5f * brightness); // SL-12574 EEP sky is being attenuated too much + return LLColor4(sky_color, 0.0f); + } + + bool low_end = !gPipeline.canUseWindLightShaders(); + LLColor3 sky_color = low_end ? vars.hazeColor * 2.0f : psky->gammaCorrect(vars.hazeColor * 2.0f); + + return LLColor4(sky_color, 0.0f); +} + +// NOTE: Keep these in sync! +// indra\newview\app_settings\shaders\class1\deferred\skyV.glsl +// indra\newview\app_settings\shaders\class1\deferred\cloudsV.glsl +// indra\newview\lllegacyatmospherics.cpp +void LLAtmospherics::calcSkyColorWLVert(const LLSettingsSky::ptr_t &psky, LLVector3 & Pn, AtmosphericsVars& vars) +{ + LLColor3 blue_density = vars.blue_density; + LLColor3 blue_horizon = vars.blue_horizon; + F32 haze_horizon = vars.haze_horizon; + F32 haze_density = vars.haze_density; + F32 density_multiplier = vars.density_multiplier; + F32 max_y = vars.max_y; + LLVector4 sun_norm = vars.sun_norm; + + // project the direction ray onto the sky dome. + F32 phi = acos(Pn[1]); + F32 sinA = sin(F_PI - phi); + if (fabsf(sinA) < 0.01f) + { //avoid division by zero + sinA = 0.01f; + } + + F32 Plen = vars.dome_radius * sin(F_PI + phi + asin(vars.dome_offset * sinA)) / sinA; + + Pn *= Plen; + + // Set altitude + if (Pn[1] > 0.f) + { + Pn *= (max_y / Pn[1]); + } + else + { + Pn *= (-32000.f / Pn[1]); + } + + Plen = Pn.length(); + Pn /= Plen; + + // Initialize temp variables + LLColor3 sunlight = vars.sunlight; + LLColor3 ambient = vars.ambient; + + LLColor3 glow = vars.glow; + F32 cloud_shadow = vars.cloud_shadow; + + // Sunlight attenuation effect (hue and brightness) due to atmosphere + // this is used later for sunlight modulation at various altitudes + LLColor3 light_atten = vars.light_atten; + LLColor3 light_transmittance = psky->getLightTransmittance(Plen); + (void)light_transmittance; // silence Clang warn-error + + // Calculate relative weights + LLColor3 temp2(0.f, 0.f, 0.f); + LLColor3 temp1 = vars.total_density; + + LLColor3 blue_weight = componentDiv(blue_density, temp1); + LLColor3 blue_factor = blue_horizon * blue_weight; + LLColor3 haze_weight = componentDiv(smear(haze_density), temp1); + LLColor3 haze_factor = haze_horizon * haze_weight; + + + // Compute sunlight from P & lightnorm (for long rays like sky) + temp2.mV[1] = llmax(F_APPROXIMATELY_ZERO, llmax(0.f, Pn[1]) * 1.0f + sun_norm.mV[1] ); + + temp2.mV[1] = 1.f / temp2.mV[1]; + componentMultBy(sunlight, componentExp((light_atten * -1.f) * temp2.mV[1])); + componentMultBy(sunlight, light_transmittance); + + // Distance + temp2.mV[2] = Plen * density_multiplier; + + // Transparency (-> temp1) + temp1 = componentExp((temp1 * -1.f) * temp2.mV[2]); + + // Compute haze glow + temp2.mV[0] = Pn * LLVector3(sun_norm); + + temp2.mV[0] = 1.f - temp2.mV[0]; + // temp2.x is 0 at the sun and increases away from sun + temp2.mV[0] = llmax(temp2.mV[0], .001f); + // Set a minimum "angle" (smaller glow.y allows tighter, brighter hotspot) + + // Higher glow.x gives dimmer glow (because next step is 1 / "angle") + temp2.mV[0] *= glow.mV[0]; + + temp2.mV[0] = pow(temp2.mV[0], glow.mV[2]); + // glow.z should be negative, so we're doing a sort of (1 / "angle") function + + // Add "minimum anti-solar illumination" + temp2.mV[0] += .25f; + + + // Haze color above cloud + vars.hazeColor = (blue_factor * (sunlight + ambient) + componentMult(haze_factor, sunlight * temp2.mV[0] + ambient)); + + // Increase ambient when there are more clouds + LLColor3 tmpAmbient = ambient + (LLColor3::white - ambient) * cloud_shadow * 0.5f; + + // Dim sunlight by cloud shadow percentage + sunlight *= (1.f - cloud_shadow); + + // Haze color below cloud + vars.hazeColorBelowCloud = (blue_factor * (sunlight + tmpAmbient) + componentMult(haze_factor, sunlight * temp2.mV[0] + tmpAmbient)); + + // Final atmosphere additive + componentMultBy(vars.hazeColor, LLColor3::white - temp1); + +/* + // SL-12574 + + // Attenuate cloud color by atmosphere + temp1 = componentSqrt(temp1); //less atmos opacity (more transparency) below clouds + + // At horizon, blend high altitude sky color towards the darker color below the clouds + vars.hazeColor += componentMult(vars.hazeColorBelowCloud - vars.hazeColor, LLColor3::white - componentSqrt(temp1)); +*/ +} + +void LLAtmospherics::updateFog(const F32 distance, const LLVector3& tosun_in) +{ + LLVector3 tosun = tosun_in; + + if (!gPipeline.hasRenderDebugFeatureMask(LLPipeline::RENDER_DEBUG_FEATURE_FOG)) + { + if (!LLGLSLShader::sNoFixedFunction) + { + glFogf(GL_FOG_DENSITY, 0); + glFogfv(GL_FOG_COLOR, (F32 *) &LLColor4::white.mV); + glFogf(GL_FOG_END, 1000000.f); + } + return; + } + + const BOOL hide_clip_plane = TRUE; + LLColor4 target_fog(0.f, 0.2f, 0.5f, 0.f); + + const F32 water_height = gAgent.getRegion() ? gAgent.getRegion()->getWaterHeight() : 0.f; + // LLWorld::getInstance()->getWaterHeight(); + F32 camera_height = gAgentCamera.getCameraPositionAgent().mV[2]; + + F32 near_clip_height = LLViewerCamera::getInstance()->getAtAxis().mV[VZ] * LLViewerCamera::getInstance()->getNear(); + camera_height += near_clip_height; + + F32 fog_distance = 0.f; + LLColor3 res_color[3]; + + LLColor3 sky_fog_color = LLColor3::white; + LLColor3 render_fog_color = LLColor3::white; + + const F32 tosun_z = tosun.mV[VZ]; + tosun.mV[VZ] = 0.f; + tosun.normalize(); + LLVector3 perp_tosun; + perp_tosun.mV[VX] = -tosun.mV[VY]; + perp_tosun.mV[VY] = tosun.mV[VX]; + LLVector3 tosun_45 = tosun + perp_tosun; + tosun_45.normalize(); + + F32 delta = 0.06f; + tosun.mV[VZ] = delta; + perp_tosun.mV[VZ] = delta; + tosun_45.mV[VZ] = delta; + tosun.normalize(); + perp_tosun.normalize(); + tosun_45.normalize(); + + // Sky colors, just slightly above the horizon in the direction of the sun, perpendicular to the sun, and at a 45 degree angle to the sun. + AtmosphericsVars vars; + + LLSettingsSky::ptr_t psky = LLEnvironment::instance().getCurrentSky(); + + // invariants across whole sky tex process... + vars.blue_density = psky->getBlueDensity(); + vars.blue_horizon = psky->getBlueHorizon(); + vars.haze_density = psky->getHazeDensity(); + vars.haze_horizon = psky->getHazeHorizon(); + vars.density_multiplier = psky->getDensityMultiplier(); + vars.distance_multiplier = psky->getDistanceMultiplier(); + vars.max_y = psky->getMaxY(); + vars.sun_norm = LLEnvironment::instance().getSunDirectionCFR(); + vars.sunlight = psky->getSunlightColor(); + vars.ambient = psky->getAmbientColor(); + vars.glow = psky->getGlow(); + vars.cloud_shadow = psky->getCloudShadow(); + vars.dome_radius = psky->getDomeRadius(); + vars.dome_offset = psky->getDomeOffset(); + vars.light_atten = psky->getLightAttenuation(vars.max_y); + vars.light_transmittance = psky->getLightTransmittance(vars.max_y); + vars.total_density = psky->getTotalDensity(); + vars.gamma = psky->getGamma(); + + res_color[0] = calcSkyColorInDir(vars, tosun); + res_color[1] = calcSkyColorInDir(vars, perp_tosun); + res_color[2] = calcSkyColorInDir(vars, tosun_45); + + sky_fog_color = color_norm(res_color[0] + res_color[1] + res_color[2]); + + F32 full_off = -0.25f; + F32 full_on = 0.00f; + F32 on = (tosun_z - full_off) / (full_on - full_off); + on = llclamp(on, 0.01f, 1.f); + sky_fog_color *= 0.5f * on; + + + // We need to clamp these to non-zero, in order for the gamma correction to work. 0^y = ??? + S32 i; + for (i = 0; i < 3; i++) + { + sky_fog_color.mV[i] = llmax(0.0001f, sky_fog_color.mV[i]); + } + + color_gamma_correct(sky_fog_color); + + render_fog_color = sky_fog_color; + + F32 fog_density = 0.f; + fog_distance = mFogRatio * distance; + + if (camera_height > water_height) + { + LLColor4 fog(render_fog_color); + if (!LLGLSLShader::sNoFixedFunction) + { + glFogfv(GL_FOG_COLOR, fog.mV); + } + mGLFogCol = fog; + + if (hide_clip_plane) + { + // For now, set the density to extend to the cull distance. + const F32 f_log = 2.14596602628934723963618357029f; // sqrt(fabs(log(0.01f))) + fog_density = f_log/fog_distance; + if (!LLGLSLShader::sNoFixedFunction) + { + glFogi(GL_FOG_MODE, GL_EXP2); + } + } + else + { + const F32 f_log = 4.6051701859880913680359829093687f; // fabs(log(0.01f)) + fog_density = (f_log)/fog_distance; + if (!LLGLSLShader::sNoFixedFunction) + { + glFogi(GL_FOG_MODE, GL_EXP); + } + } + } + else + { + LLSettingsWater::ptr_t pwater = LLEnvironment::instance().getCurrentWater(); + F32 depth = water_height - camera_height; + + // get the water param manager variables + float water_fog_density = pwater->getModifiedWaterFogDensity(depth <= 0.0f); + + LLColor4 water_fog_color(pwater->getWaterFogColor()); + + // adjust the color based on depth. We're doing linear approximations + float depth_scale = gSavedSettings.getF32("WaterGLFogDepthScale"); + float depth_modifier = 1.0f - llmin(llmax(depth / depth_scale, 0.01f), + gSavedSettings.getF32("WaterGLFogDepthFloor")); + + LLColor4 fogCol = water_fog_color * depth_modifier; + fogCol.setAlpha(1); + + // set the gl fog color + mGLFogCol = fogCol; + + // set the density based on what the shaders use + fog_density = water_fog_density * gSavedSettings.getF32("WaterGLFogDensityScale"); + + if (!LLGLSLShader::sNoFixedFunction) + { + glFogfv(GL_FOG_COLOR, (F32 *) &fogCol.mV); + glFogi(GL_FOG_MODE, GL_EXP2); + } + } + + mFogColor = sky_fog_color; + mFogColor.setAlpha(1); + + LLDrawPoolWater::sWaterFogEnd = fog_distance*2.2f; + + if (!LLGLSLShader::sNoFixedFunction) + { + LLGLSFog gls_fog; + glFogf(GL_FOG_END, fog_distance*2.2f); + glFogf(GL_FOG_DENSITY, fog_density); + glHint(GL_FOG_HINT, GL_NICEST); + } + stop_glerror(); +} + +// Functions used a lot. +F32 color_norm_pow(LLColor3& col, F32 e, BOOL postmultiply) +{ + F32 mv = color_max(col); + if (0 == mv) + { + return 0; + } + + col *= 1.f / mv; + color_pow(col, e); + if (postmultiply) + { + col *= mv; + } + return mv; +} + +// Returns angle (RADIANs) between the horizontal projection of "v" and the x_axis. +// Range of output is 0.0f to 2pi //359.99999...f +// Returns 0.0f when "v" = +/- z_axis. +F32 azimuth(const LLVector3 &v) +{ + F32 azimuth = 0.0f; + if (v.mV[VX] == 0.0f) + { + if (v.mV[VY] > 0.0f) + { + azimuth = F_PI * 0.5f; + } + else if (v.mV[VY] < 0.0f) + { + azimuth = F_PI * 1.5f;// 270.f; + } + } + else + { + azimuth = (F32) atan(v.mV[VY] / v.mV[VX]); + if (v.mV[VX] < 0.0f) + { + azimuth += F_PI; + } + else if (v.mV[VY] < 0.0f) + { + azimuth += F_PI * 2; + } + } + return azimuth; +} + +bool operator==(const AtmosphericsVars& a, const AtmosphericsVars& b) +{ + if (a.hazeColor != b.hazeColor) + { + return false; + } + + if (a.hazeColorBelowCloud != b.hazeColorBelowCloud) + { + return false; + } + + if (a.cloudColorSun != b.cloudColorSun) + { + return false; + } + + if (a.cloudColorAmbient != b.cloudColorAmbient) + { + return false; + } + + if (a.cloudDensity != b.cloudDensity) + { + return false; + } + + if (a.density_multiplier != b.density_multiplier) + { + return false; + } + + if (a.haze_horizon != b.haze_horizon) + { + return false; + } + + if (a.haze_density != b.haze_density) + { + return false; + } + + if (a.blue_horizon != b.blue_horizon) + { + return false; + } + + if (a.blue_density != b.blue_density) + { + return false; + } + + if (a.dome_offset != b.dome_offset) + { + return false; + } + + if (a.dome_radius != b.dome_radius) + { + return false; + } + + if (a.cloud_shadow != b.cloud_shadow) + { + return false; + } + + if (a.glow != b.glow) + { + return false; + } + + if (a.ambient != b.ambient) + { + return false; + } + + if (a.sunlight != b.sunlight) + { + return false; + } + + if (a.sun_norm != b.sun_norm) + { + return false; + } + + if (a.gamma != b.gamma) + { + return false; + } + + if (a.max_y != b.max_y) + { + return false; + } + + if (a.distance_multiplier != b.distance_multiplier) + { + return false; + } + + // light_atten, light_transmittance, total_density + // are ignored as they always change when the values above do + // they're just shared calc across the sky map generation to save cycles + + return true; +} + +bool approximatelyEqual(const F32 &a, const F32 &b, const F32 &fraction_treshold) +{ + F32 diff = fabs(a - b); + if (diff < F_APPROXIMATELY_ZERO || diff < llmax(fabs(a), fabs(b)) * fraction_treshold) + { + return true; + } + return false; +} + +bool approximatelyEqual(const LLColor3 &a, const LLColor3 &b, const F32 &fraction_treshold) +{ + return approximatelyEqual(a.mV[0], b.mV[0], fraction_treshold) + && approximatelyEqual(a.mV[1], b.mV[1], fraction_treshold) + && approximatelyEqual(a.mV[2], b.mV[2], fraction_treshold); +} + +bool approximatelyEqual(const LLVector4 &a, const LLVector4 &b, const F32 &fraction_treshold) +{ + return approximatelyEqual(a.mV[0], b.mV[0], fraction_treshold) + && approximatelyEqual(a.mV[1], b.mV[1], fraction_treshold) + && approximatelyEqual(a.mV[2], b.mV[2], fraction_treshold) + && approximatelyEqual(a.mV[3], b.mV[3], fraction_treshold); +} + +bool approximatelyEqual(const AtmosphericsVars& a, const AtmosphericsVars& b, const F32 fraction_treshold) +{ + if (!approximatelyEqual(a.hazeColor, b.hazeColor, fraction_treshold)) + { + return false; + } + + if (!approximatelyEqual(a.hazeColorBelowCloud, b.hazeColorBelowCloud, fraction_treshold)) + { + return false; + } + + if (!approximatelyEqual(a.cloudColorSun, b.cloudColorSun, fraction_treshold)) + { + return false; + } + + if (!approximatelyEqual(a.cloudColorAmbient, b.cloudColorAmbient, fraction_treshold)) + { + return false; + } + + if (!approximatelyEqual(a.cloudDensity, b.cloudDensity, fraction_treshold)) + { + return false; + } + + if (!approximatelyEqual(a.density_multiplier, b.density_multiplier, fraction_treshold)) + { + return false; + } + + if (!approximatelyEqual(a.haze_horizon, b.haze_horizon, fraction_treshold)) + { + return false; + } + + if (!approximatelyEqual(a.haze_density, b.haze_density, fraction_treshold)) + { + return false; + } + + if (!approximatelyEqual(a.blue_horizon, b.blue_horizon, fraction_treshold)) + { + return false; + } + + if (!approximatelyEqual(a.blue_density, b.blue_density, fraction_treshold)) + { + return false; + } + + if (!approximatelyEqual(a.dome_offset, b.dome_offset, fraction_treshold)) + { + return false; + } + + if (!approximatelyEqual(a.dome_radius, b.dome_radius, fraction_treshold)) + { + return false; + } + + if (!approximatelyEqual(a.cloud_shadow, b.cloud_shadow, fraction_treshold)) + { + return false; + } + + if (!approximatelyEqual(a.glow, b.glow, fraction_treshold)) + { + return false; + } + + if (!approximatelyEqual(a.ambient, b.ambient, fraction_treshold)) + { + return false; + } + + if (!approximatelyEqual(a.sunlight, b.sunlight, fraction_treshold)) + { + return false; + } + + if (!approximatelyEqual(a.sun_norm, b.sun_norm, fraction_treshold)) + { + return false; + } + + if (!approximatelyEqual(a.gamma, b.gamma, fraction_treshold)) + { + return false; + } + + if (!approximatelyEqual(a.max_y, b.max_y, fraction_treshold)) + { + return false; + } + + if (!approximatelyEqual(a.distance_multiplier, b.distance_multiplier, fraction_treshold)) + { + return false; + } + + // light_atten, light_transmittance, total_density + // are ignored as they always change when the values above do + // they're just shared calc across the sky map generation to save cycles + + return true; +} + |