summaryrefslogtreecommitdiff
path: root/indra/newview/lllegacyatmospherics.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'indra/newview/lllegacyatmospherics.cpp')
-rw-r--r--indra/newview/lllegacyatmospherics.cpp848
1 files changed, 848 insertions, 0 deletions
diff --git a/indra/newview/lllegacyatmospherics.cpp b/indra/newview/lllegacyatmospherics.cpp
new file mode 100644
index 0000000000..165ef8c797
--- /dev/null
+++ b/indra/newview/lllegacyatmospherics.cpp
@@ -0,0 +1,848 @@
+/**
+ * @file lllegacyatmospherics.cpp
+ * @brief LLAtmospherics class implementation
+ *
+ * $LicenseInfo:firstyear=2001&license=viewerlgpl$
+ * Second Life Viewer Source Code
+ * Copyright (C) 2010, Linden Research, Inc.
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation;
+ * version 2.1 of the License only.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ *
+ * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
+ * $/LicenseInfo$
+ */
+
+#include "llviewerprecompiledheaders.h"
+
+#include "lllegacyatmospherics.h"
+
+#include "llfeaturemanager.h"
+#include "llviewercontrol.h"
+#include "llframetimer.h"
+
+#include "llagent.h"
+#include "llagentcamera.h"
+#include "lldrawable.h"
+#include "llface.h"
+#include "llglheaders.h"
+#include "llsky.h"
+#include "llviewercamera.h"
+#include "llviewertexturelist.h"
+#include "llviewerobjectlist.h"
+#include "llviewerregion.h"
+#include "llworld.h"
+#include "pipeline.h"
+#include "v3colorutil.h"
+
+#include "llsettingssky.h"
+#include "llenvironment.h"
+#include "lldrawpoolwater.h"
+
+class LLFastLn
+{
+public:
+ LLFastLn()
+ {
+ mTable[0] = 0;
+ for( S32 i = 1; i < 257; i++ )
+ {
+ mTable[i] = log((F32)i);
+ }
+ }
+
+ F32 ln( F32 x )
+ {
+ const F32 OO_255 = 0.003921568627450980392156862745098f;
+ const F32 LN_255 = 5.5412635451584261462455391880218f;
+
+ if( x < OO_255 )
+ {
+ return log(x);
+ }
+ else
+ if( x < 1 )
+ {
+ x *= 255.f;
+ S32 index = llfloor(x);
+ F32 t = x - index;
+ F32 low = mTable[index];
+ F32 high = mTable[index + 1];
+ return low + t * (high - low) - LN_255;
+ }
+ else
+ if( x <= 255 )
+ {
+ S32 index = llfloor(x);
+ F32 t = x - index;
+ F32 low = mTable[index];
+ F32 high = mTable[index + 1];
+ return low + t * (high - low);
+ }
+ else
+ {
+ return log( x );
+ }
+ }
+
+ F32 pow( F32 x, F32 y )
+ {
+ return (F32)LL_FAST_EXP(y * ln(x));
+ }
+
+
+private:
+ F32 mTable[257]; // index 0 is unused
+};
+
+static LLFastLn gFastLn;
+
+
+// Functions used a lot.
+
+inline F32 LLHaze::calcPhase(const F32 cos_theta) const
+{
+ const F32 g2 = mG * mG;
+ const F32 den = 1 + g2 - 2 * mG * cos_theta;
+ return (1 - g2) * gFastLn.pow(den, -1.5);
+}
+
+inline void color_pow(LLColor3 &col, const F32 e)
+{
+ col.mV[0] = gFastLn.pow(col.mV[0], e);
+ col.mV[1] = gFastLn.pow(col.mV[1], e);
+ col.mV[2] = gFastLn.pow(col.mV[2], e);
+}
+
+inline LLColor3 color_norm(const LLColor3 &col)
+{
+ const F32 m = color_max(col);
+ if (m > 1.f)
+ {
+ return 1.f/m * col;
+ }
+ else return col;
+}
+
+inline void color_gamma_correct(LLColor3 &col)
+{
+ const F32 gamma_inv = 1.f/1.2f;
+ if (col.mV[0] != 0.f)
+ {
+ col.mV[0] = gFastLn.pow(col.mV[0], gamma_inv);
+ }
+ if (col.mV[1] != 0.f)
+ {
+ col.mV[1] = gFastLn.pow(col.mV[1], gamma_inv);
+ }
+ if (col.mV[2] != 0.f)
+ {
+ col.mV[2] = gFastLn.pow(col.mV[2], gamma_inv);
+ }
+}
+
+static LLColor3 calc_air_sca_sea_level()
+{
+ static LLColor3 WAVE_LEN(675, 520, 445);
+ static LLColor3 refr_ind = refr_ind_calc(WAVE_LEN);
+ static LLColor3 n21 = refr_ind * refr_ind - LLColor3(1, 1, 1);
+ static LLColor3 n4 = n21 * n21;
+ static LLColor3 wl2 = WAVE_LEN * WAVE_LEN * 1e-6f;
+ static LLColor3 wl4 = wl2 * wl2;
+ static LLColor3 mult_const = fsigma * 2.0f/ 3.0f * 1e24f * (F_PI * F_PI) * n4;
+ static F32 dens_div_N = F32( ATM_SEA_LEVEL_NDENS / Ndens2);
+ return dens_div_N * mult_const.divide(wl4);
+}
+
+// static constants.
+LLColor3 const LLHaze::sAirScaSeaLevel = calc_air_sca_sea_level();
+F32 const LLHaze::sAirScaIntense = color_intens(LLHaze::sAirScaSeaLevel);
+F32 const LLHaze::sAirScaAvg = LLHaze::sAirScaIntense / 3.f;
+
+/***************************************
+ Atmospherics
+***************************************/
+
+LLAtmospherics::LLAtmospherics()
+: mCloudDensity(0.2f),
+ mWind(0.f),
+ mWorldScale(1.f)
+{
+ /// WL PARAMS
+ mInitialized = FALSE;
+ mAmbientScale = gSavedSettings.getF32("SkyAmbientScale");
+ mNightColorShift = gSavedSettings.getColor3("SkyNightColorShift");
+ mFogColor.mV[VRED] = mFogColor.mV[VGREEN] = mFogColor.mV[VBLUE] = 0.5f;
+ mFogColor.mV[VALPHA] = 0.0f;
+ mFogRatio = 1.2f;
+ mHazeConcentration = 0.f;
+ mInterpVal = 0.f;
+}
+
+
+LLAtmospherics::~LLAtmospherics()
+{
+}
+
+void LLAtmospherics::init()
+{
+ const F32 haze_int = color_intens(mHaze.calcSigSca(0));
+ mHazeConcentration = haze_int / (color_intens(mHaze.calcAirSca(0)) + haze_int);
+ mInitialized = true;
+}
+
+LLColor4 LLAtmospherics::calcSkyColorInDir(AtmosphericsVars& vars, const LLVector3 &dir, bool isShiny)
+{
+ LLSettingsSky::ptr_t psky = LLEnvironment::instance().getCurrentSky();
+ return calcSkyColorInDir(psky, vars, dir, isShiny);
+}
+
+LLColor4 LLAtmospherics::calcSkyColorInDir(const LLSettingsSky::ptr_t &psky, AtmosphericsVars& vars, const LLVector3 &dir, bool isShiny)
+{
+ F32 saturation = 0.3f;
+
+ if (isShiny && dir.mV[VZ] < -0.02f)
+ {
+ LLColor4 col;
+ LLColor3 desat_fog = LLColor3(mFogColor);
+ F32 brightness = desat_fog.brightness();
+ // So that shiny somewhat shows up at night.
+ if (brightness < 0.15f)
+ {
+ brightness = 0.15f;
+ desat_fog = smear(0.15f);
+ }
+ F32 greyscale_sat = brightness * (1.0f - saturation);
+ desat_fog = desat_fog * saturation + smear(greyscale_sat);
+ if (!gPipeline.canUseWindLightShaders())
+ {
+ col = LLColor4(desat_fog, 0.f);
+ }
+ else
+ {
+ col = LLColor4(desat_fog * 0.5f, 0.f);
+ }
+ float x = 1.0f-fabsf(-0.1f-dir.mV[VZ]);
+ x *= x;
+ col.mV[0] *= x*x;
+ col.mV[1] *= powf(x, 2.5f);
+ col.mV[2] *= x*x*x;
+ return col;
+ }
+
+ // undo OGL_TO_CFR_ROTATION and negate vertical direction.
+ LLVector3 Pn = LLVector3(-dir[1] , -dir[2], -dir[0]);
+
+ //calculates hazeColor
+ calcSkyColorWLVert(psky, Pn, vars);
+
+ if (isShiny)
+ {
+ F32 brightness = vars.hazeColor.brightness();
+ F32 greyscale_sat = brightness * (1.0f - saturation);
+ LLColor3 sky_color = vars.hazeColor * saturation + smear(greyscale_sat);
+ sky_color *= (0.5f + 0.5f * brightness);
+ return LLColor4(sky_color, 0.0f);
+ }
+
+ bool low_end = !gPipeline.canUseWindLightShaders();
+ LLColor3 sky_color = low_end ? vars.hazeColor * 2.0f : psky->gammaCorrect(vars.hazeColor * 2.0f);
+
+ return LLColor4(sky_color, 0.0f);
+}
+
+void LLAtmospherics::calcSkyColorWLVert(const LLSettingsSky::ptr_t &psky, LLVector3 & Pn, AtmosphericsVars& vars)
+{
+ LLColor3 blue_density = vars.blue_density;
+ LLColor3 blue_horizon = vars.blue_horizon;
+ F32 haze_horizon = vars.haze_horizon;
+ F32 haze_density = vars.haze_density;
+ F32 density_multiplier = vars.density_multiplier;
+ F32 max_y = vars.max_y;
+ LLVector4 sun_norm = vars.sun_norm;
+
+ // project the direction ray onto the sky dome.
+ F32 phi = acos(Pn[1]);
+ F32 sinA = sin(F_PI - phi);
+ if (fabsf(sinA) < 0.01f)
+ { //avoid division by zero
+ sinA = 0.01f;
+ }
+
+ F32 Plen = vars.dome_radius * sin(F_PI + phi + asin(vars.dome_offset * sinA)) / sinA;
+
+ Pn *= Plen;
+
+ // Set altitude
+ if (Pn[1] > 0.f)
+ {
+ Pn *= (max_y / Pn[1]);
+ }
+ else
+ {
+ Pn *= (-32000.f / Pn[1]);
+ }
+
+ Plen = Pn.length();
+ Pn /= Plen;
+
+ // Initialize temp variables
+ LLColor3 sunlight = vars.sunlight;
+ LLColor3 ambient = vars.ambient;
+
+ LLColor3 glow = vars.glow;
+ F32 cloud_shadow = vars.cloud_shadow;
+
+ // Sunlight attenuation effect (hue and brightness) due to atmosphere
+ // this is used later for sunlight modulation at various altitudes
+ LLColor3 light_atten = vars.light_atten;
+ LLColor3 light_transmittance = psky->getLightTransmittance(Plen);
+ (void)light_transmittance; // silence Clang warn-error
+
+ // Calculate relative weights
+ LLColor3 temp2(0.f, 0.f, 0.f);
+ LLColor3 temp1 = vars.total_density;
+
+ LLColor3 blue_weight = componentDiv(blue_density, temp1);
+ LLColor3 blue_factor = blue_horizon * blue_weight;
+ LLColor3 haze_weight = componentDiv(smear(haze_density), temp1);
+ LLColor3 haze_factor = haze_horizon * haze_weight;
+
+
+ // Compute sunlight from P & lightnorm (for long rays like sky)
+ temp2.mV[1] = llmax(F_APPROXIMATELY_ZERO, llmax(0.f, Pn[1]) * 1.0f + sun_norm.mV[1] );
+
+ temp2.mV[1] = 1.f / temp2.mV[1];
+ componentMultBy(sunlight, componentExp((light_atten * -1.f) * temp2.mV[1]));
+ componentMultBy(sunlight, light_transmittance);
+
+ // Distance
+ temp2.mV[2] = Plen * density_multiplier;
+
+ // Transparency (-> temp1)
+ temp1 = componentExp((temp1 * -1.f) * temp2.mV[2]);
+
+ // Compute haze glow
+ temp2.mV[0] = Pn * LLVector3(sun_norm);
+
+ temp2.mV[0] = 1.f - temp2.mV[0];
+ // temp2.x is 0 at the sun and increases away from sun
+ temp2.mV[0] = llmax(temp2.mV[0], .001f);
+ // Set a minimum "angle" (smaller glow.y allows tighter, brighter hotspot)
+
+ // Higher glow.x gives dimmer glow (because next step is 1 / "angle")
+ temp2.mV[0] *= glow.mV[0];
+
+ temp2.mV[0] = pow(temp2.mV[0], glow.mV[2]);
+ // glow.z should be negative, so we're doing a sort of (1 / "angle") function
+
+ // Add "minimum anti-solar illumination"
+ temp2.mV[0] += .25f;
+
+
+ // Haze color above cloud
+ vars.hazeColor = (blue_factor * (sunlight + ambient) + componentMult(haze_factor, sunlight * temp2.mV[0] + ambient));
+
+ // Increase ambient when there are more clouds
+ LLColor3 tmpAmbient = ambient + (LLColor3::white - ambient) * cloud_shadow * 0.5f;
+
+ // Dim sunlight by cloud shadow percentage
+ sunlight *= (1.f - cloud_shadow);
+
+ // Haze color below cloud
+ vars.hazeColorBelowCloud = (blue_factor * (sunlight + tmpAmbient) + componentMult(haze_factor, sunlight * temp2.mV[0] + tmpAmbient));
+
+ LLColor3 final_atten = LLColor3::white - temp1;
+ final_atten.mV[0] = llmax(final_atten.mV[0], 0.0f);
+ final_atten.mV[1] = llmax(final_atten.mV[1], 0.0f);
+ final_atten.mV[2] = llmax(final_atten.mV[2], 0.0f);
+
+ // Final atmosphere additive
+ componentMultBy(vars.hazeColor, LLColor3::white - temp1);
+
+ // Attenuate cloud color by atmosphere
+ temp1 = componentSqrt(temp1); //less atmos opacity (more transparency) below clouds
+
+ // At horizon, blend high altitude sky color towards the darker color below the clouds
+ vars.hazeColor += componentMult(vars.hazeColorBelowCloud - vars.hazeColor, LLColor3::white - componentSqrt(temp1));
+}
+
+void LLAtmospherics::updateFog(const F32 distance, const LLVector3& tosun_in)
+{
+ LLVector3 tosun = tosun_in;
+
+ if (!gPipeline.hasRenderDebugFeatureMask(LLPipeline::RENDER_DEBUG_FEATURE_FOG))
+ {
+ if (!LLGLSLShader::sNoFixedFunction)
+ {
+ glFogf(GL_FOG_DENSITY, 0);
+ glFogfv(GL_FOG_COLOR, (F32 *) &LLColor4::white.mV);
+ glFogf(GL_FOG_END, 1000000.f);
+ }
+ return;
+ }
+
+ const BOOL hide_clip_plane = TRUE;
+ LLColor4 target_fog(0.f, 0.2f, 0.5f, 0.f);
+
+ const F32 water_height = gAgent.getRegion() ? gAgent.getRegion()->getWaterHeight() : 0.f;
+ // LLWorld::getInstance()->getWaterHeight();
+ F32 camera_height = gAgentCamera.getCameraPositionAgent().mV[2];
+
+ F32 near_clip_height = LLViewerCamera::getInstance()->getAtAxis().mV[VZ] * LLViewerCamera::getInstance()->getNear();
+ camera_height += near_clip_height;
+
+ F32 fog_distance = 0.f;
+ LLColor3 res_color[3];
+
+ LLColor3 sky_fog_color = LLColor3::white;
+ LLColor3 render_fog_color = LLColor3::white;
+
+ const F32 tosun_z = tosun.mV[VZ];
+ tosun.mV[VZ] = 0.f;
+ tosun.normalize();
+ LLVector3 perp_tosun;
+ perp_tosun.mV[VX] = -tosun.mV[VY];
+ perp_tosun.mV[VY] = tosun.mV[VX];
+ LLVector3 tosun_45 = tosun + perp_tosun;
+ tosun_45.normalize();
+
+ F32 delta = 0.06f;
+ tosun.mV[VZ] = delta;
+ perp_tosun.mV[VZ] = delta;
+ tosun_45.mV[VZ] = delta;
+ tosun.normalize();
+ perp_tosun.normalize();
+ tosun_45.normalize();
+
+ // Sky colors, just slightly above the horizon in the direction of the sun, perpendicular to the sun, and at a 45 degree angle to the sun.
+ AtmosphericsVars vars;
+
+ LLSettingsSky::ptr_t psky = LLEnvironment::instance().getCurrentSky();
+
+ // invariants across whole sky tex process...
+ vars.blue_density = psky->getBlueDensity();
+ vars.blue_horizon = psky->getBlueHorizon();
+ vars.haze_density = psky->getHazeDensity();
+ vars.haze_horizon = psky->getHazeHorizon();
+ vars.density_multiplier = psky->getDensityMultiplier();
+ vars.distance_multiplier = psky->getDistanceMultiplier();
+ vars.max_y = psky->getMaxY();
+ vars.sun_norm = LLEnvironment::instance().getSunDirectionCFR();
+ vars.sunlight = psky->getSunlightColor();
+ vars.ambient = psky->getAmbientColor();
+ vars.glow = psky->getGlow();
+ vars.cloud_shadow = psky->getCloudShadow();
+ vars.dome_radius = psky->getDomeRadius();
+ vars.dome_offset = psky->getDomeOffset();
+ vars.light_atten = psky->getLightAttenuation(vars.max_y);
+ vars.light_transmittance = psky->getLightTransmittance(vars.max_y);
+ vars.total_density = psky->getTotalDensity();
+ vars.gamma = psky->getGamma();
+
+ res_color[0] = calcSkyColorInDir(vars, tosun);
+ res_color[1] = calcSkyColorInDir(vars, perp_tosun);
+ res_color[2] = calcSkyColorInDir(vars, tosun_45);
+
+ sky_fog_color = color_norm(res_color[0] + res_color[1] + res_color[2]);
+
+ F32 full_off = -0.25f;
+ F32 full_on = 0.00f;
+ F32 on = (tosun_z - full_off) / (full_on - full_off);
+ on = llclamp(on, 0.01f, 1.f);
+ sky_fog_color *= 0.5f * on;
+
+
+ // We need to clamp these to non-zero, in order for the gamma correction to work. 0^y = ???
+ S32 i;
+ for (i = 0; i < 3; i++)
+ {
+ sky_fog_color.mV[i] = llmax(0.0001f, sky_fog_color.mV[i]);
+ }
+
+ color_gamma_correct(sky_fog_color);
+
+ render_fog_color = sky_fog_color;
+
+ F32 fog_density = 0.f;
+ fog_distance = mFogRatio * distance;
+
+ if (camera_height > water_height)
+ {
+ LLColor4 fog(render_fog_color);
+ if (!LLGLSLShader::sNoFixedFunction)
+ {
+ glFogfv(GL_FOG_COLOR, fog.mV);
+ }
+ mGLFogCol = fog;
+
+ if (hide_clip_plane)
+ {
+ // For now, set the density to extend to the cull distance.
+ const F32 f_log = 2.14596602628934723963618357029f; // sqrt(fabs(log(0.01f)))
+ fog_density = f_log/fog_distance;
+ if (!LLGLSLShader::sNoFixedFunction)
+ {
+ glFogi(GL_FOG_MODE, GL_EXP2);
+ }
+ }
+ else
+ {
+ const F32 f_log = 4.6051701859880913680359829093687f; // fabs(log(0.01f))
+ fog_density = (f_log)/fog_distance;
+ if (!LLGLSLShader::sNoFixedFunction)
+ {
+ glFogi(GL_FOG_MODE, GL_EXP);
+ }
+ }
+ }
+ else
+ {
+ LLSettingsWater::ptr_t pwater = LLEnvironment::instance().getCurrentWater();
+ F32 depth = water_height - camera_height;
+
+ // get the water param manager variables
+ float water_fog_density = pwater->getModifiedWaterFogDensity(depth <= 0.0f);
+
+ LLColor4 water_fog_color(pwater->getWaterFogColor());
+
+ // adjust the color based on depth. We're doing linear approximations
+ float depth_scale = gSavedSettings.getF32("WaterGLFogDepthScale");
+ float depth_modifier = 1.0f - llmin(llmax(depth / depth_scale, 0.01f),
+ gSavedSettings.getF32("WaterGLFogDepthFloor"));
+
+ LLColor4 fogCol = water_fog_color * depth_modifier;
+ fogCol.setAlpha(1);
+
+ // set the gl fog color
+ mGLFogCol = fogCol;
+
+ // set the density based on what the shaders use
+ fog_density = water_fog_density * gSavedSettings.getF32("WaterGLFogDensityScale");
+
+ if (!LLGLSLShader::sNoFixedFunction)
+ {
+ glFogfv(GL_FOG_COLOR, (F32 *) &fogCol.mV);
+ glFogi(GL_FOG_MODE, GL_EXP2);
+ }
+ }
+
+ mFogColor = sky_fog_color;
+ mFogColor.setAlpha(1);
+
+ LLDrawPoolWater::sWaterFogEnd = fog_distance*2.2f;
+
+ if (!LLGLSLShader::sNoFixedFunction)
+ {
+ LLGLSFog gls_fog;
+ glFogf(GL_FOG_END, fog_distance*2.2f);
+ glFogf(GL_FOG_DENSITY, fog_density);
+ glHint(GL_FOG_HINT, GL_NICEST);
+ }
+ stop_glerror();
+}
+
+// Functions used a lot.
+F32 color_norm_pow(LLColor3& col, F32 e, BOOL postmultiply)
+{
+ F32 mv = color_max(col);
+ if (0 == mv)
+ {
+ return 0;
+ }
+
+ col *= 1.f / mv;
+ color_pow(col, e);
+ if (postmultiply)
+ {
+ col *= mv;
+ }
+ return mv;
+}
+
+// Returns angle (RADIANs) between the horizontal projection of "v" and the x_axis.
+// Range of output is 0.0f to 2pi //359.99999...f
+// Returns 0.0f when "v" = +/- z_axis.
+F32 azimuth(const LLVector3 &v)
+{
+ F32 azimuth = 0.0f;
+ if (v.mV[VX] == 0.0f)
+ {
+ if (v.mV[VY] > 0.0f)
+ {
+ azimuth = F_PI * 0.5f;
+ }
+ else if (v.mV[VY] < 0.0f)
+ {
+ azimuth = F_PI * 1.5f;// 270.f;
+ }
+ }
+ else
+ {
+ azimuth = (F32) atan(v.mV[VY] / v.mV[VX]);
+ if (v.mV[VX] < 0.0f)
+ {
+ azimuth += F_PI;
+ }
+ else if (v.mV[VY] < 0.0f)
+ {
+ azimuth += F_PI * 2;
+ }
+ }
+ return azimuth;
+}
+
+bool operator==(const AtmosphericsVars& a, const AtmosphericsVars& b)
+{
+ if (a.hazeColor != b.hazeColor)
+ {
+ return false;
+ }
+
+ if (a.hazeColorBelowCloud != b.hazeColorBelowCloud)
+ {
+ return false;
+ }
+
+ if (a.cloudColorSun != b.cloudColorSun)
+ {
+ return false;
+ }
+
+ if (a.cloudColorAmbient != b.cloudColorAmbient)
+ {
+ return false;
+ }
+
+ if (a.cloudDensity != b.cloudDensity)
+ {
+ return false;
+ }
+
+ if (a.density_multiplier != b.density_multiplier)
+ {
+ return false;
+ }
+
+ if (a.haze_horizon != b.haze_horizon)
+ {
+ return false;
+ }
+
+ if (a.haze_density != b.haze_density)
+ {
+ return false;
+ }
+
+ if (a.blue_horizon != b.blue_horizon)
+ {
+ return false;
+ }
+
+ if (a.blue_density != b.blue_density)
+ {
+ return false;
+ }
+
+ if (a.dome_offset != b.dome_offset)
+ {
+ return false;
+ }
+
+ if (a.dome_radius != b.dome_radius)
+ {
+ return false;
+ }
+
+ if (a.cloud_shadow != b.cloud_shadow)
+ {
+ return false;
+ }
+
+ if (a.glow != b.glow)
+ {
+ return false;
+ }
+
+ if (a.ambient != b.ambient)
+ {
+ return false;
+ }
+
+ if (a.sunlight != b.sunlight)
+ {
+ return false;
+ }
+
+ if (a.sun_norm != b.sun_norm)
+ {
+ return false;
+ }
+
+ if (a.gamma != b.gamma)
+ {
+ return false;
+ }
+
+ if (a.max_y != b.max_y)
+ {
+ return false;
+ }
+
+ if (a.distance_multiplier != b.distance_multiplier)
+ {
+ return false;
+ }
+
+ // light_atten, light_transmittance, total_density
+ // are ignored as they always change when the values above do
+ // they're just shared calc across the sky map generation to save cycles
+
+ return true;
+}
+
+bool approximatelyEqual(const F32 &a, const F32 &b, const F32 &fraction_treshold)
+{
+ F32 diff = fabs(a - b);
+ if (diff < F_APPROXIMATELY_ZERO || diff < llmax(fabs(a), fabs(b)) * fraction_treshold)
+ {
+ return true;
+ }
+ return false;
+}
+
+bool approximatelyEqual(const LLColor3 &a, const LLColor3 &b, const F32 &fraction_treshold)
+{
+ return approximatelyEqual(a.mV[0], b.mV[0], fraction_treshold)
+ && approximatelyEqual(a.mV[1], b.mV[1], fraction_treshold)
+ && approximatelyEqual(a.mV[2], b.mV[2], fraction_treshold);
+}
+
+bool approximatelyEqual(const LLVector4 &a, const LLVector4 &b, const F32 &fraction_treshold)
+{
+ return approximatelyEqual(a.mV[0], b.mV[0], fraction_treshold)
+ && approximatelyEqual(a.mV[1], b.mV[1], fraction_treshold)
+ && approximatelyEqual(a.mV[2], b.mV[2], fraction_treshold)
+ && approximatelyEqual(a.mV[3], b.mV[3], fraction_treshold);
+}
+
+bool approximatelyEqual(const AtmosphericsVars& a, const AtmosphericsVars& b, const F32 fraction_treshold)
+{
+ if (!approximatelyEqual(a.hazeColor, b.hazeColor, fraction_treshold))
+ {
+ return false;
+ }
+
+ if (!approximatelyEqual(a.hazeColorBelowCloud, b.hazeColorBelowCloud, fraction_treshold))
+ {
+ return false;
+ }
+
+ if (!approximatelyEqual(a.cloudColorSun, b.cloudColorSun, fraction_treshold))
+ {
+ return false;
+ }
+
+ if (!approximatelyEqual(a.cloudColorAmbient, b.cloudColorAmbient, fraction_treshold))
+ {
+ return false;
+ }
+
+ if (!approximatelyEqual(a.cloudDensity, b.cloudDensity, fraction_treshold))
+ {
+ return false;
+ }
+
+ if (!approximatelyEqual(a.density_multiplier, b.density_multiplier, fraction_treshold))
+ {
+ return false;
+ }
+
+ if (!approximatelyEqual(a.haze_horizon, b.haze_horizon, fraction_treshold))
+ {
+ return false;
+ }
+
+ if (!approximatelyEqual(a.haze_density, b.haze_density, fraction_treshold))
+ {
+ return false;
+ }
+
+ if (!approximatelyEqual(a.blue_horizon, b.blue_horizon, fraction_treshold))
+ {
+ return false;
+ }
+
+ if (!approximatelyEqual(a.blue_density, b.blue_density, fraction_treshold))
+ {
+ return false;
+ }
+
+ if (!approximatelyEqual(a.dome_offset, b.dome_offset, fraction_treshold))
+ {
+ return false;
+ }
+
+ if (!approximatelyEqual(a.dome_radius, b.dome_radius, fraction_treshold))
+ {
+ return false;
+ }
+
+ if (!approximatelyEqual(a.cloud_shadow, b.cloud_shadow, fraction_treshold))
+ {
+ return false;
+ }
+
+ if (!approximatelyEqual(a.glow, b.glow, fraction_treshold))
+ {
+ return false;
+ }
+
+ if (!approximatelyEqual(a.ambient, b.ambient, fraction_treshold))
+ {
+ return false;
+ }
+
+ if (!approximatelyEqual(a.sunlight, b.sunlight, fraction_treshold))
+ {
+ return false;
+ }
+
+ if (!approximatelyEqual(a.sun_norm, b.sun_norm, fraction_treshold))
+ {
+ return false;
+ }
+
+ if (!approximatelyEqual(a.gamma, b.gamma, fraction_treshold))
+ {
+ return false;
+ }
+
+ if (!approximatelyEqual(a.max_y, b.max_y, fraction_treshold))
+ {
+ return false;
+ }
+
+ if (!approximatelyEqual(a.distance_multiplier, b.distance_multiplier, fraction_treshold))
+ {
+ return false;
+ }
+
+ // light_atten, light_transmittance, total_density
+ // are ignored as they always change when the values above do
+ // they're just shared calc across the sky map generation to save cycles
+
+ return true;
+}
+