summaryrefslogtreecommitdiff
path: root/indra/newview/gltf/llgltfloader.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'indra/newview/gltf/llgltfloader.cpp')
-rw-r--r--indra/newview/gltf/llgltfloader.cpp1819
1 files changed, 1819 insertions, 0 deletions
diff --git a/indra/newview/gltf/llgltfloader.cpp b/indra/newview/gltf/llgltfloader.cpp
new file mode 100644
index 0000000000..3019a12446
--- /dev/null
+++ b/indra/newview/gltf/llgltfloader.cpp
@@ -0,0 +1,1819 @@
+/**
+ * @file LLGLTFLoader.cpp
+ * @brief LLGLTFLoader class implementation
+ *
+ * $LicenseInfo:firstyear=2022&license=viewerlgpl$
+ * Second Life Viewer Source Code
+ * Copyright (C) 2022, Linden Research, Inc.
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation;
+ * version 2.1 of the License only.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ *
+ * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
+ * $/LicenseInfo$
+ */
+
+#include "llgltfloader.h"
+#include "meshoptimizer.h"
+#include <glm/gtc/packing.hpp>
+
+// Import & define single-header gltf import/export lib
+#define TINYGLTF_IMPLEMENTATION
+#define TINYGLTF_USE_CPP14 // default is C++ 11
+
+// tinygltf by default loads image files using STB
+#define STB_IMAGE_IMPLEMENTATION
+// to use our own image loading:
+// 1. replace this definition with TINYGLTF_NO_STB_IMAGE
+// 2. provide image loader callback with TinyGLTF::SetImageLoader(LoadimageDataFunction LoadImageData, void *user_data)
+
+// tinygltf saves image files using STB
+#define STB_IMAGE_WRITE_IMPLEMENTATION
+// similarly, can override with TINYGLTF_NO_STB_IMAGE_WRITE and TinyGLTF::SetImageWriter(fxn, data)
+
+// Additionally, disable inclusion of STB header files entirely with
+// TINYGLTF_NO_INCLUDE_STB_IMAGE
+// TINYGLTF_NO_INCLUDE_STB_IMAGE_WRITE
+#include "tinygltf/tiny_gltf.h"
+
+
+// TODO: includes inherited from dae loader. Validate / prune
+
+#include "llsdserialize.h"
+#include "lljoint.h"
+#include "llbase64.h"
+#include "lldir.h"
+
+#include "llmatrix4a.h"
+
+#include <boost/regex.hpp>
+#include <boost/algorithm/string/replace.hpp>
+#include <fstream>
+
+static const std::string lod_suffix[LLModel::NUM_LODS] =
+{
+ "_LOD0",
+ "_LOD1",
+ "_LOD2",
+ "",
+ "_PHYS",
+};
+
+// Premade rotation matrix, GLTF is Y-up while SL is Z-up
+static const glm::mat4 coord_system_rotation(
+ 1.f, 0.f, 0.f, 0.f,
+ 0.f, 0.f, 1.f, 0.f,
+ 0.f, -1.f, 0.f, 0.f,
+ 0.f, 0.f, 0.f, 1.f
+);
+
+
+static const glm::mat4 coord_system_rotationxy(
+ 0.f, 1.f, 0.f, 0.f,
+ -1.f, 0.f, 0.f, 0.f,
+ 0.f, 0.f, 1.f, 0.f,
+ 0.f, 0.f, 0.f, 1.f
+);
+
+static const S32 VERTICIES_LIMIT = USHRT_MAX - 2;
+
+LLGLTFLoader::LLGLTFLoader(std::string filename,
+ S32 lod,
+ LLModelLoader::load_callback_t load_cb,
+ LLModelLoader::joint_lookup_func_t joint_lookup_func,
+ LLModelLoader::texture_load_func_t texture_load_func,
+ LLModelLoader::state_callback_t state_cb,
+ void * opaque_userdata,
+ JointTransformMap & jointTransformMap,
+ JointNameSet & jointsFromNodes,
+ std::map<std::string, std::string, std::less<>> & jointAliasMap,
+ U32 maxJointsPerMesh,
+ U32 modelLimit,
+ U32 debugMode,
+ std::vector<LLJointData> viewer_skeleton) //,
+ //bool preprocess)
+ : LLModelLoader( filename,
+ lod,
+ load_cb,
+ joint_lookup_func,
+ texture_load_func,
+ state_cb,
+ opaque_userdata,
+ jointTransformMap,
+ jointsFromNodes,
+ jointAliasMap,
+ maxJointsPerMesh,
+ modelLimit,
+ debugMode)
+ , mViewerJointData(viewer_skeleton)
+ , mGltfLoaded(false)
+ , mApplyXYRotation(false)
+{
+}
+
+LLGLTFLoader::~LLGLTFLoader() {}
+
+bool LLGLTFLoader::OpenFile(const std::string &filename)
+{
+ // Clear the material cache for new file
+ mMaterialCache.clear();
+
+ tinygltf::TinyGLTF loader;
+ std::string filename_lc(filename);
+ LLStringUtil::toLower(filename_lc);
+
+ try
+ {
+ mGltfLoaded = mGLTFAsset.load(filename, false);
+ }
+ catch (const std::exception& e)
+ {
+ LL_WARNS() << "Exception in LLModelLoader::run: " << e.what() << LL_ENDL;
+ LLSD args;
+ args["Message"] = "ParsingErrorException";
+ args["FILENAME"] = filename;
+ args["EXCEPTION"] = e.what();
+ mWarningsArray.append(args);
+ setLoadState(ERROR_PARSING);
+ return false;
+ }
+ catch (...)
+ {
+ LOG_UNHANDLED_EXCEPTION("LLGLTFLoader");
+ LLSD args;
+ args["Message"] = "ParsingErrorException";
+ args["FILENAME"] = filename;
+ args["EXCEPTION"] = "Unknown exception";
+ mWarningsArray.append(args);
+ setLoadState(ERROR_PARSING);
+ return false;
+ }
+
+ if (!mGltfLoaded)
+ {
+ notifyUnsupportedExtension(true);
+
+ for (const auto& buffer : mGLTFAsset.mBuffers)
+ {
+ if (buffer.mByteLength > 0 && buffer.mData.empty())
+ {
+ bool bin_file = buffer.mUri.ends_with(".bin");
+ LLSD args;
+ args["Message"] = bin_file ? "ParsingErrorMissingBufferBin" : "ParsingErrorMissingBuffer";
+ args["BUFFER_NAME"] = buffer.mName;
+ args["BUFFER_URI"] = buffer.mUri;
+ mWarningsArray.append(args);
+ }
+ }
+ setLoadState(ERROR_PARSING);
+ return false;
+ }
+
+ notifyUnsupportedExtension(false);
+
+ bool meshesLoaded = parseMeshes();
+
+ setLoadState(DONE);
+
+ return meshesLoaded;
+}
+
+void LLGLTFLoader::addModelToScene(
+ LLModel* pModel,
+ const std::string& model_name,
+ U32 submodel_limit,
+ const LLMatrix4& transformation,
+ const LLVolumeParams& volume_params,
+ const material_map& mats)
+{
+ U32 volume_faces = pModel->getNumVolumeFaces();
+
+ // Side-steps all manner of issues when splitting models
+ // and matching lower LOD materials to base models
+ //
+ pModel->sortVolumeFacesByMaterialName();
+
+ int submodelID = 0;
+
+ // remove all faces that definitely won't fit into one model and submodel limit
+ U32 face_limit = (submodel_limit + 1) * LL_SCULPT_MESH_MAX_FACES;
+ if (face_limit < volume_faces)
+ {
+ LL_WARNS("GLTF_IMPORT") << "Model contains " << volume_faces
+ << " faces, exceeding the limit of " << face_limit << LL_ENDL;
+
+ LLSD args;
+ args["Message"] = "ModelTooManySubmodels";
+ args["MODEL_NAME"] = pModel->mLabel;
+ args["SUBMODEL_COUNT"] = static_cast<S32>(llfloor((F32)volume_faces / LL_SCULPT_MESH_MAX_FACES));
+ args["SUBMODEL_LIMIT"] = static_cast<S32>(submodel_limit);
+ mWarningsArray.append(args);
+
+ pModel->setNumVolumeFaces(face_limit);
+ }
+
+ LLVolume::face_list_t remainder;
+ std::vector<LLModel*> ready_models;
+ LLModel* current_model = pModel;
+
+ do
+ {
+ current_model->trimVolumeFacesToSize(LL_SCULPT_MESH_MAX_FACES, &remainder);
+
+ volume_faces = static_cast<U32>(remainder.size());
+
+ // Don't add to scene yet because weights and materials aren't ready.
+ // Just save it
+ ready_models.push_back(current_model);
+
+ // If we have left-over volume faces, create another model
+ // to absorb them.
+ if (volume_faces)
+ {
+ LLModel* next = new LLModel(volume_params, 0.f);
+ next->ClearFacesAndMaterials();
+ next->mSubmodelID = ++submodelID;
+
+ std::string instance_name = model_name;
+ if (next->mSubmodelID > 0)
+ {
+ instance_name += (char)((int)'a' + next->mSubmodelID);
+ }
+ // Check for duplicates and add copy suffix if needed
+ int duplicate_count = 0;
+ for (const auto& inst : mScene[transformation])
+ {
+ if (inst.mLabel == instance_name)
+ {
+ ++duplicate_count;
+ }
+ }
+ if (duplicate_count > 0) {
+ instance_name += "_copy_" + std::to_string(duplicate_count);
+ }
+ next->mLabel = instance_name;
+
+ next->getVolumeFaces() = remainder;
+ next->mNormalizedScale = current_model->mNormalizedScale;
+ next->mNormalizedTranslation = current_model->mNormalizedTranslation;
+ next->mSkinWeights = current_model->mSkinWeights;
+ next->mPosition = current_model->mPosition;
+
+ const LLMeshSkinInfo& current_skin_info = current_model->mSkinInfo;
+ LLMeshSkinInfo& next_skin_info = next->mSkinInfo;
+ next_skin_info.mJointNames = current_skin_info.mJointNames;
+ next_skin_info.mJointNums = current_skin_info.mJointNums;
+ next_skin_info.mBindShapeMatrix = current_skin_info.mBindShapeMatrix;
+ next_skin_info.mInvBindMatrix = current_skin_info.mInvBindMatrix;
+ next_skin_info.mAlternateBindMatrix = current_skin_info.mAlternateBindMatrix;
+ next_skin_info.mPelvisOffset = current_skin_info.mPelvisOffset;
+
+
+ if (current_model->mMaterialList.size() > LL_SCULPT_MESH_MAX_FACES)
+ {
+ next->mMaterialList.assign(current_model->mMaterialList.begin() + LL_SCULPT_MESH_MAX_FACES, current_model->mMaterialList.end());
+ current_model->mMaterialList.resize(LL_SCULPT_MESH_MAX_FACES);
+ }
+
+ current_model = next;
+ }
+
+ remainder.clear();
+
+ } while (volume_faces);
+
+ for (auto model : ready_models)
+ {
+ // remove unused/redundant vertices
+ model->remapVolumeFaces();
+
+ mModelList.push_back(model);
+
+ std::map<std::string, LLImportMaterial> materials;
+ for (U32 i = 0; i < (U32)model->mMaterialList.size(); ++i)
+ {
+ material_map::const_iterator found = mats.find(model->mMaterialList[i]);
+ if (found != mats.end())
+ {
+ materials[model->mMaterialList[i]] = found->second;
+ }
+ else
+ {
+ materials[model->mMaterialList[i]] = LLImportMaterial();
+ }
+ }
+ // Keep base name for scene instance.
+ std::string instance_name = model->mLabel;
+ // Add suffix. Suffix is nessesary for model matching logic
+ // because sometimes higher lod can be used as a lower one, so models
+ // need unique names not just in scope of one lod, but across lods.
+ model->mLabel += lod_suffix[mLod];
+ mScene[transformation].push_back(LLModelInstance(model, instance_name, transformation, materials));
+ stretch_extents(model, transformation);
+ }
+}
+
+bool LLGLTFLoader::parseMeshes()
+{
+ if (!mGltfLoaded) return false;
+
+ // 2022-04 DJH Volume params from dae example. TODO understand PCODE
+ LLVolumeParams volume_params;
+ volume_params.setType(LL_PCODE_PROFILE_SQUARE, LL_PCODE_PATH_LINE);
+
+ mTransform.setIdentity();
+
+ for (auto& node : mGLTFAsset.mNodes)
+ {
+ // Make node matrix valid for correct transformation
+ node.makeMatrixValid();
+ }
+
+ if (mGLTFAsset.mSkins.size() > 0)
+ {
+ checkForXYrotation(mGLTFAsset.mSkins[0]);
+ populateJointGroups();
+ }
+
+ // Populate the joints from skins first.
+ // Multiple meshes can share the same skin, so preparing skins beforehand.
+ for (S32 i = 0; i < mGLTFAsset.mSkins.size(); i++)
+ {
+ populateJointsFromSkin(i);
+ }
+
+ // Track how many times each mesh name has been used
+ std::map<std::string, S32> mesh_name_counts;
+
+ // For now use mesh count, but might be better to do 'mNodes.size() - joints count'.
+ U32 submodel_limit = mGLTFAsset.mMeshes.size() > 0 ? mGeneratedModelLimit / (U32)mGLTFAsset.mMeshes.size() : 0;
+
+ // Check if we have scenes defined
+ if (!mGLTFAsset.mScenes.empty())
+ {
+ // Process the default scene (or first scene if no default)
+ S32 scene_idx = mGLTFAsset.mScene >= 0 ? mGLTFAsset.mScene : 0;
+
+ if (scene_idx < mGLTFAsset.mScenes.size())
+ {
+ const LL::GLTF::Scene& scene = mGLTFAsset.mScenes[scene_idx];
+
+ LL_INFOS("GLTF_IMPORT") << "Processing scene " << scene_idx << " with " << scene.mNodes.size() << " root nodes" << LL_ENDL;
+
+ // Process all root nodes defined in the scene
+ for (S32 root_idx : scene.mNodes)
+ {
+ if (root_idx >= 0 && root_idx < static_cast<S32>(mGLTFAsset.mNodes.size()))
+ {
+ processNodeHierarchy(root_idx, mesh_name_counts, submodel_limit, volume_params);
+ }
+ }
+ }
+ }
+ else
+ {
+ LL_WARNS("GLTF_IMPORT") << "No scenes defined in GLTF file" << LL_ENDL;
+
+ LLSD args;
+ args["Message"] = "NoScenesFound";
+ mWarningsArray.append(args);
+ return false;
+ }
+
+ checkGlobalJointUsage();
+
+ return true;
+}
+
+void LLGLTFLoader::processNodeHierarchy(S32 node_idx, std::map<std::string, S32>& mesh_name_counts, U32 submodel_limit, const LLVolumeParams& volume_params)
+{
+ if (node_idx < 0 || node_idx >= static_cast<S32>(mGLTFAsset.mNodes.size()))
+ return;
+
+ const LL::GLTF::Node& node = mGLTFAsset.mNodes[node_idx];
+
+ LL_DEBUGS("GLTF_IMPORT") << "Processing node " << node_idx << " (" << node.mName << ")"
+ << " - has mesh: " << (node.mMesh >= 0 ? "yes" : "no")
+ << " - children: " << node.mChildren.size() << LL_ENDL;
+
+ // Process this node's mesh if it has one
+ if (node.mMesh >= 0 && node.mMesh < mGLTFAsset.mMeshes.size())
+ {
+ LLMatrix4 transformation;
+ material_map mats;
+
+ LLModel* pModel = new LLModel(volume_params, 0.f);
+ const LL::GLTF::Mesh& mesh = mGLTFAsset.mMeshes[node.mMesh];
+
+ // Get base mesh name and track usage
+ std::string base_name = getLodlessLabel(mesh);
+ if (base_name.empty())
+ {
+ base_name = "mesh_" + std::to_string(node.mMesh);
+ }
+
+ S32 instance_count = mesh_name_counts[base_name]++;
+
+ // make name unique
+ if (instance_count > 0)
+ {
+ base_name = base_name + "_copy_" + std::to_string(instance_count);
+ }
+
+ if (populateModelFromMesh(pModel, base_name, mesh, node, mats) &&
+ (LLModel::NO_ERRORS == pModel->getStatus()) &&
+ validate_model(pModel))
+ {
+ mTransform.setIdentity();
+ transformation = mTransform;
+
+ // adjust the transformation to compensate for mesh normalization
+ LLVector3 mesh_scale_vector;
+ LLVector3 mesh_translation_vector;
+ pModel->getNormalizedScaleTranslation(mesh_scale_vector, mesh_translation_vector);
+
+ LLMatrix4 mesh_translation;
+ mesh_translation.setTranslation(mesh_translation_vector);
+ mesh_translation *= transformation;
+ transformation = mesh_translation;
+
+ LLMatrix4 mesh_scale;
+ mesh_scale.initScale(mesh_scale_vector);
+ mesh_scale *= transformation;
+ transformation = mesh_scale;
+
+ if (node.mSkin >= 0)
+ {
+ // "Bind Shape Matrix" is supposed to transform the geometry of the skinned mesh
+ // into the coordinate space of the joints.
+ // In GLTF, this matrix is omitted, and it is assumed that this transform is either
+ // premultiplied with the mesh data, or postmultiplied to the inverse bind matrices.
+ //
+ // TODO: There appears to be missing rotation when joints rotate the model
+ // or inverted bind matrices are missing inherited rotation
+ // (based of values the 'bento shoes' mesh might be missing 90 degrees horizontaly
+ // prior to skinning)
+
+ pModel->mSkinInfo.mBindShapeMatrix.loadu(mesh_scale);
+ LL_INFOS("GLTF_DEBUG") << "Model: " << pModel->mLabel << " mBindShapeMatrix: " << pModel->mSkinInfo.mBindShapeMatrix << LL_ENDL;
+ }
+
+ if (transformation.determinant() < 0)
+ { // negative scales are not supported
+ LL_INFOS("GLTF_IMPORT") << "Negative scale detected, unsupported post-normalization transform. domInstance_geometry: "
+ << pModel->mLabel << LL_ENDL;
+ LLSD args;
+ args["Message"] = "NegativeScaleNormTrans";
+ args["LABEL"] = pModel->mLabel;
+ mWarningsArray.append(args);
+ }
+
+ addModelToScene(pModel, base_name, submodel_limit, transformation, volume_params, mats);
+ mats.clear();
+ }
+ else
+ {
+ setLoadState(ERROR_MODEL + pModel->getStatus());
+ delete pModel;
+ return;
+ }
+ }
+ else if (node.mMesh >= 0)
+ {
+ // Log invalid mesh reference
+ LL_WARNS("GLTF_IMPORT") << "Node " << node_idx << " (" << node.mName
+ << ") references invalid mesh " << node.mMesh
+ << " (total meshes: " << mGLTFAsset.mMeshes.size() << ")" << LL_ENDL;
+
+ LLSD args;
+ args["Message"] = "InvalidMeshReference";
+ args["NODE_NAME"] = node.mName;
+ args["MESH_INDEX"] = node.mMesh;
+ args["TOTAL_MESHES"] = static_cast<S32>(mGLTFAsset.mMeshes.size());
+ mWarningsArray.append(args);
+ }
+
+ // Process all children recursively
+ for (S32 child_idx : node.mChildren)
+ {
+ processNodeHierarchy(child_idx, mesh_name_counts, submodel_limit, volume_params);
+ }
+}
+
+void LLGLTFLoader::computeCombinedNodeTransform(const LL::GLTF::Asset& asset, S32 node_index, glm::mat4& combined_transform) const
+{
+ if (node_index < 0 || node_index >= static_cast<S32>(asset.mNodes.size()))
+ {
+ combined_transform = glm::mat4(1.0f);
+ return;
+ }
+
+ const auto& node = asset.mNodes[node_index];
+
+ // Ensure the node's matrix is valid
+ const_cast<LL::GLTF::Node&>(node).makeMatrixValid();
+
+ // Start with this node's transform
+ combined_transform = node.mMatrix;
+
+ // Find and apply parent transform if it exists
+ for (size_t i = 0; i < asset.mNodes.size(); ++i)
+ {
+ const auto& potential_parent = asset.mNodes[i];
+ auto it = std::find(potential_parent.mChildren.begin(), potential_parent.mChildren.end(), node_index);
+
+ if (it != potential_parent.mChildren.end())
+ {
+ // Found parent - recursively get its combined transform and apply it
+ glm::mat4 parent_transform;
+ computeCombinedNodeTransform(asset, static_cast<S32>(i), parent_transform);
+ combined_transform = parent_transform * combined_transform;
+ return; // Early exit - a node can only have one parent
+ }
+ }
+}
+
+bool LLGLTFLoader::addJointToModelSkin(LLMeshSkinInfo& skin_info, S32 gltf_skin_idx, size_t gltf_joint_idx)
+{
+ const std::string& legal_name = mJointNames[gltf_skin_idx][gltf_joint_idx];
+ if (legal_name.empty())
+ {
+ llassert(false); // should have been stopped by gltf_joint_index_use[i] == -1
+ return false;
+ }
+ skin_info.mJointNames.push_back(legal_name);
+ skin_info.mJointNums.push_back(-1);
+
+ // In scope of same skin multiple meshes reuse same bind matrices
+ skin_info.mInvBindMatrix.push_back(mInverseBindMatrices[gltf_skin_idx][gltf_joint_idx]);
+ skin_info.mAlternateBindMatrix.push_back(mAlternateBindMatrices[gltf_skin_idx][gltf_joint_idx]);
+
+ // Track joint usage for this skin, for the sake of unused joints detection
+ mJointUsage[gltf_skin_idx][gltf_joint_idx]++;
+
+ return true;
+}
+
+LLGLTFLoader::LLGLTFImportMaterial LLGLTFLoader::processMaterial(S32 material_index, S32 fallback_index)
+{
+ // Check cache first
+ auto cached = mMaterialCache.find(material_index);
+ if (cached != mMaterialCache.end())
+ {
+ return cached->second;
+ }
+
+ LLImportMaterial impMat;
+ impMat.mDiffuseColor = LLColor4::white; // Default color
+
+ // Generate material name
+ std::string materialName = generateMaterialName(material_index, fallback_index);
+
+ // Process material if available
+ if (material_index >= 0 && material_index < mGLTFAsset.mMaterials.size())
+ {
+ LL::GLTF::Material* material = &mGLTFAsset.mMaterials[material_index];
+
+ // Set diffuse color from base color factor
+ impMat.mDiffuseColor = LLColor4(
+ material->mPbrMetallicRoughness.mBaseColorFactor[0],
+ material->mPbrMetallicRoughness.mBaseColorFactor[1],
+ material->mPbrMetallicRoughness.mBaseColorFactor[2],
+ material->mPbrMetallicRoughness.mBaseColorFactor[3]
+ );
+
+ // Process base color texture if it exists
+ if (material->mPbrMetallicRoughness.mBaseColorTexture.mIndex >= 0)
+ {
+ S32 texIndex = material->mPbrMetallicRoughness.mBaseColorTexture.mIndex;
+ std::string filename = processTexture(texIndex, "base_color", material->mName);
+
+ if (!filename.empty())
+ {
+ impMat.mDiffuseMapFilename = filename;
+ impMat.mDiffuseMapLabel = material->mName.empty() ? filename : material->mName;
+
+ // Check if the texture is already loaded
+ S32 sourceIndex;
+ if (validateTextureIndex(texIndex, sourceIndex))
+ {
+ LL::GLTF::Image& image = mGLTFAsset.mImages[sourceIndex];
+ if (image.mTexture.notNull())
+ {
+ impMat.setDiffuseMap(image.mTexture->getID());
+ LL_INFOS("GLTF_IMPORT") << "Using existing texture ID: " << image.mTexture->getID().asString() << LL_ENDL;
+ }
+ else
+ {
+ LL_INFOS("GLTF_IMPORT") << "Texture needs loading: " << impMat.mDiffuseMapFilename << LL_ENDL;
+ }
+ }
+ }
+ }
+ }
+
+ // Create cached material with both material and name
+ LLGLTFImportMaterial cachedMat(impMat, materialName);
+
+ // Cache the processed material
+ mMaterialCache[material_index] = cachedMat;
+ return cachedMat;
+}
+
+std::string LLGLTFLoader::processTexture(S32 texture_index, const std::string& texture_type, const std::string& material_name)
+{
+ S32 sourceIndex;
+ if (!validateTextureIndex(texture_index, sourceIndex))
+ return "";
+
+ LL::GLTF::Image& image = mGLTFAsset.mImages[sourceIndex];
+
+ // Process URI-based textures
+ if (!image.mUri.empty())
+ {
+ std::string filename = image.mUri;
+ size_t pos = filename.find_last_of("/\\");
+ if (pos != std::string::npos)
+ {
+ filename = filename.substr(pos + 1);
+ }
+
+ LL_INFOS("GLTF_IMPORT") << "Found texture: " << filename << " for material: " << material_name << LL_ENDL;
+
+ LLSD args;
+ args["Message"] = "TextureFound";
+ args["TEXTURE_NAME"] = filename;
+ args["MATERIAL_NAME"] = material_name;
+ mWarningsArray.append(args);
+
+ return filename;
+ }
+
+ // Process embedded textures
+ if (image.mBufferView >= 0)
+ {
+ return extractTextureToTempFile(texture_index, texture_type);
+ }
+
+ return "";
+}
+
+bool LLGLTFLoader::validateTextureIndex(S32 texture_index, S32& source_index)
+{
+ if (texture_index < 0 || texture_index >= mGLTFAsset.mTextures.size())
+ return false;
+
+ source_index = mGLTFAsset.mTextures[texture_index].mSource;
+ if (source_index < 0 || source_index >= mGLTFAsset.mImages.size())
+ return false;
+
+ return true;
+}
+
+std::string LLGLTFLoader::generateMaterialName(S32 material_index, S32 fallback_index)
+{
+ if (material_index >= 0 && material_index < mGLTFAsset.mMaterials.size())
+ {
+ LL::GLTF::Material* material = &mGLTFAsset.mMaterials[material_index];
+ std::string materialName = material->mName;
+
+ if (materialName.empty())
+ {
+ materialName = "mat" + std::to_string(material_index);
+ }
+ return materialName;
+ }
+ else
+ {
+ return fallback_index >= 0 ? "mat_default" + std::to_string(fallback_index) : "mat_default";
+ }
+}
+
+bool LLGLTFLoader::populateModelFromMesh(LLModel* pModel, const std::string& base_name, const LL::GLTF::Mesh& mesh, const LL::GLTF::Node& nodeno, material_map& mats)
+{
+ // Set the requested label for the floater display and uploading
+ pModel->mRequestedLabel = gDirUtilp->getBaseFileName(mFilename, true);
+ // Set only name, suffix will be added later
+ pModel->mLabel = base_name;
+
+ LL_DEBUGS("GLTF_DEBUG") << "Processing model " << pModel->mLabel << LL_ENDL;
+
+ pModel->ClearFacesAndMaterials();
+
+ S32 skinIdx = nodeno.mSkin;
+
+ // Compute final combined transform matrix (hierarchy + coordinate rotation)
+ S32 node_index = static_cast<S32>(&nodeno - &mGLTFAsset.mNodes[0]);
+ glm::mat4 hierarchy_transform;
+ computeCombinedNodeTransform(mGLTFAsset, node_index, hierarchy_transform);
+
+ // Combine transforms: coordinate rotation applied to hierarchy transform
+ glm::mat4 final_transform = coord_system_rotation * hierarchy_transform;
+ if (mApplyXYRotation)
+ {
+ final_transform = coord_system_rotationxy * final_transform;
+ }
+
+ // Check if we have a negative scale (flipped coordinate system)
+ bool hasNegativeScale = glm::determinant(final_transform) < 0.0f;
+
+ // Pre-compute normal transform matrix (transpose of inverse of upper-left 3x3)
+ const glm::mat3 normal_transform = glm::transpose(glm::inverse(glm::mat3(final_transform)));
+
+ // Mark unsuported joints with '-1' so that they won't get added into weights
+ // GLTF maps all joints onto all meshes. Gather use count per mesh to cut unused ones.
+ std::vector<S32> gltf_joint_index_use;
+ if (skinIdx >= 0 && mGLTFAsset.mSkins.size() > skinIdx)
+ {
+ LL::GLTF::Skin& gltf_skin = mGLTFAsset.mSkins[skinIdx];
+
+ size_t jointCnt = gltf_skin.mJoints.size();
+ gltf_joint_index_use.resize(jointCnt, 0);
+
+ for (size_t i = 0; i < jointCnt; ++i)
+ {
+ if (mJointNames[skinIdx][i].empty())
+ {
+ // This might need to hold a substitute index
+ gltf_joint_index_use[i] = -1; // mark as unsupported
+ }
+ }
+ }
+
+ for (size_t prim_idx = 0; prim_idx < mesh.mPrimitives.size(); ++prim_idx)
+ {
+ const LL::GLTF::Primitive& prim = mesh.mPrimitives[prim_idx];
+
+ // So primitives already have all of the data we need for a given face in SL land.
+ // Primitives may only ever have a single material assigned to them - as the relation is 1:1 in terms of intended draw call
+ // count. Just go ahead and populate faces direct from the GLTF primitives here. -Geenz 2025-04-07
+ LLVolumeFace face;
+ std::vector<GLTFVertex> vertices;
+
+ // Use cached material processing
+ LLGLTFImportMaterial cachedMat = processMaterial(prim.mMaterial, pModel->getNumVolumeFaces() - 1);
+ LLImportMaterial impMat = cachedMat;
+ std::string materialName = cachedMat.name;
+ mats[materialName] = impMat;
+
+ if (prim.getIndexCount() % 3 != 0)
+ {
+ LL_WARNS("GLTF_IMPORT") << "Mesh '" << mesh.mName << "' primitive " << prim_idx
+ << ": Invalid index count " << prim.getIndexCount()
+ << " (not divisible by 3). GLTF files must contain triangulated geometry." << LL_ENDL;
+
+ LLSD args;
+ args["Message"] = "InvalidGeometryNonTriangulated";
+ args["MESH_NAME"] = mesh.mName;
+ args["PRIMITIVE_INDEX"] = static_cast<S32>(prim_idx);
+ args["INDEX_COUNT"] = static_cast<S32>(prim.getIndexCount());
+ mWarningsArray.append(args);
+ return false; // Skip this primitive
+ }
+
+ // Apply the global scale and center offset to all vertices
+ for (U32 i = 0; i < prim.getVertexCount(); i++)
+ {
+ // Use pre-computed final_transform
+ glm::vec4 pos(prim.mPositions[i][0], prim.mPositions[i][1], prim.mPositions[i][2], 1.0f);
+ glm::vec4 transformed_pos = final_transform * pos;
+
+ GLTFVertex vert;
+ vert.position = glm::vec3(transformed_pos);
+
+ if (!prim.mNormals.empty())
+ {
+ // Use pre-computed normal_transform
+ glm::vec3 normal_vec(prim.mNormals[i][0], prim.mNormals[i][1], prim.mNormals[i][2]);
+ vert.normal = glm::normalize(normal_transform * normal_vec);
+ }
+ else
+ {
+ // Use default normal (pointing up in model space)
+ vert.normal = glm::normalize(normal_transform * glm::vec3(0.0f, 0.0f, 1.0f));
+ LL_DEBUGS("GLTF_IMPORT") << "No normals found for primitive, using default normal." << LL_ENDL;
+ }
+
+ vert.uv0 = glm::vec2(prim.mTexCoords0[i][0], -prim.mTexCoords0[i][1]);
+
+ if (skinIdx >= 0)
+ {
+ vert.weights = glm::vec4(prim.mWeights[i]);
+
+ auto accessorIdx = prim.mAttributes.at("JOINTS_0");
+ LL::GLTF::Accessor::ComponentType componentType = LL::GLTF::Accessor::ComponentType::UNSIGNED_BYTE;
+ if (accessorIdx >= 0)
+ {
+ auto accessor = mGLTFAsset.mAccessors[accessorIdx];
+ componentType = accessor.mComponentType;
+ }
+
+ // The GLTF spec allows for either an unsigned byte for joint indices, or an unsigned short.
+ // Detect and unpack accordingly.
+ if (componentType == LL::GLTF::Accessor::ComponentType::UNSIGNED_BYTE)
+ {
+ auto ujoint = glm::unpackUint4x8((U32)(prim.mJoints[i] & 0xFFFFFFFF));
+ vert.joints = glm::u16vec4(ujoint.x, ujoint.y, ujoint.z, ujoint.w);
+ }
+ else if (componentType == LL::GLTF::Accessor::ComponentType::UNSIGNED_SHORT)
+ {
+ vert.joints = glm::unpackUint4x16(prim.mJoints[i]);
+ }
+ else
+ {
+ vert.joints = glm::zero<glm::u16vec4>();
+ vert.weights = glm::zero<glm::vec4>();
+ }
+ }
+ vertices.push_back(vert);
+ }
+
+ // Check for empty vertex array before processing
+ if (vertices.empty())
+ {
+ LL_WARNS("GLTF_IMPORT") << "Empty vertex array for primitive " << prim_idx << " in model " << mesh.mName << LL_ENDL;
+ LLSD args;
+ args["Message"] = "EmptyVertexArray";
+ args["MESH_NAME"] = mesh.mName;
+ args["PRIMITIVE_INDEX"] = static_cast<S32>(prim_idx);
+ args["INDEX_COUNT"] = static_cast<S32>(prim.getIndexCount());
+ mWarningsArray.append(args);
+ return false; // Skip this primitive
+ }
+
+ std::vector<LLVolumeFace::VertexData> faceVertices;
+ glm::vec3 min = glm::vec3(FLT_MAX);
+ glm::vec3 max = glm::vec3(-FLT_MAX);
+
+ for (U32 i = 0; i < vertices.size(); i++)
+ {
+ LLVolumeFace::VertexData vert;
+
+ // Update min/max bounds
+ if (i == 0)
+ {
+ min = max = vertices[i].position;
+ }
+ else
+ {
+ min.x = std::min(min.x, vertices[i].position.x);
+ min.y = std::min(min.y, vertices[i].position.y);
+ min.z = std::min(min.z, vertices[i].position.z);
+ max.x = std::max(max.x, vertices[i].position.x);
+ max.y = std::max(max.y, vertices[i].position.y);
+ max.z = std::max(max.z, vertices[i].position.z);
+ }
+
+ LLVector4a position = LLVector4a(vertices[i].position.x, vertices[i].position.y, vertices[i].position.z);
+ LLVector4a normal = LLVector4a(vertices[i].normal.x, vertices[i].normal.y, vertices[i].normal.z);
+ vert.setPosition(position);
+ vert.setNormal(normal);
+ vert.mTexCoord = LLVector2(vertices[i].uv0.x, vertices[i].uv0.y);
+ faceVertices.push_back(vert);
+
+ if (skinIdx >= 0)
+ {
+ // create list of weights that influence this vertex
+ LLModel::weight_list weight_list;
+
+ // Drop joints that viewer doesn't support (negative in gltf_joint_index_use_count)
+ // don't reindex them yet, more indexes will be removed
+ // Also drop joints that have no weight. GLTF stores 4 per vertex, so there might be
+ // 'empty' ones
+ if (gltf_joint_index_use[vertices[i].joints.x] >= 0
+ && vertices[i].weights.x > 0.f)
+ {
+ weight_list.push_back(LLModel::JointWeight(vertices[i].joints.x, vertices[i].weights.x));
+ gltf_joint_index_use[vertices[i].joints.x]++;
+ }
+ if (gltf_joint_index_use[vertices[i].joints.y] >= 0
+ && vertices[i].weights.y > 0.f)
+ {
+ weight_list.push_back(LLModel::JointWeight(vertices[i].joints.y, vertices[i].weights.y));
+ gltf_joint_index_use[vertices[i].joints.y]++;
+ }
+ if (gltf_joint_index_use[vertices[i].joints.z] >= 0
+ && vertices[i].weights.z > 0.f)
+ {
+ weight_list.push_back(LLModel::JointWeight(vertices[i].joints.z, vertices[i].weights.z));
+ gltf_joint_index_use[vertices[i].joints.z]++;
+ }
+ if (gltf_joint_index_use[vertices[i].joints.w] >= 0
+ && vertices[i].weights.w > 0.f)
+ {
+ weight_list.push_back(LLModel::JointWeight(vertices[i].joints.w, vertices[i].weights.w));
+ gltf_joint_index_use[vertices[i].joints.w]++;
+ }
+
+ std::sort(weight_list.begin(), weight_list.end(), LLModel::CompareWeightGreater());
+
+ std::vector<LLModel::JointWeight> wght;
+ F32 total = 0.f;
+
+ for (U32 j = 0; j < llmin((U32)4, (U32)weight_list.size()); ++j)
+ {
+ // take up to 4 most significant weights
+ // Ported from the DAE loader - however, GLTF right now only supports up to four weights per vertex.
+ wght.push_back(weight_list[j]);
+ total += weight_list[j].mWeight;
+ }
+
+ if (total != 0.f)
+ {
+ F32 scale = 1.f / total;
+ if (scale != 1.f)
+ { // normalize weights
+ for (U32 j = 0; j < wght.size(); ++j)
+ {
+ wght[j].mWeight *= scale;
+ }
+ }
+ }
+
+ if (wght.size() > 0)
+ {
+ pModel->mSkinWeights[LLVector3(vertices[i].position)] = wght;
+ }
+ }
+ }
+
+ // Indices handling
+ if (faceVertices.size() >= VERTICIES_LIMIT)
+ {
+ // Will have to remap 32 bit indices into 16 bit indices
+ // For the sake of simplicity build vector of 32 bit indices first
+ std::vector<U32> indices_32;
+ for (U32 i = 0; i < prim.getIndexCount(); i += 3)
+ {
+ // When processing indices, flip winding order if needed
+ if (hasNegativeScale)
+ {
+ // Flip winding order for negative scale
+ indices_32.push_back(prim.mIndexArray[i]);
+ indices_32.push_back(prim.mIndexArray[i + 2]); // Swap these two
+ indices_32.push_back(prim.mIndexArray[i + 1]);
+ }
+ else
+ {
+ indices_32.push_back(prim.mIndexArray[i]);
+ indices_32.push_back(prim.mIndexArray[i + 1]);
+ indices_32.push_back(prim.mIndexArray[i + 2]);
+ }
+ }
+
+ // Generates a vertex remap table with no gaps in the resulting sequence
+ std::vector<U32> remap(faceVertices.size());
+ size_t vertex_count = meshopt_generateVertexRemap(&remap[0], &indices_32[0], indices_32.size(), &faceVertices[0], faceVertices.size(), sizeof(LLVolumeFace::VertexData));
+
+ // Manually remap vertices
+ std::vector<LLVolumeFace::VertexData> optimized_vertices(vertex_count);
+ for (size_t i = 0; i < vertex_count; ++i)
+ {
+ optimized_vertices[i] = faceVertices[remap[i]];
+ }
+
+ std::vector<U32> optimized_indices(indices_32.size());
+ meshopt_remapIndexBuffer(&optimized_indices[0], &indices_32[0], indices_32.size(), &remap[0]);
+
+ // Sort indices to improve mesh splits (reducing amount of duplicated indices)
+ meshopt_optimizeVertexCache(&optimized_indices[0], &optimized_indices[0], indices_32.size(), vertex_count);
+
+ std::vector<U16> indices_16;
+ std::vector<S64> vertices_remap;
+ vertices_remap.resize(vertex_count, -1);
+ S32 created_faces = 0;
+ std::vector<LLVolumeFace::VertexData> face_verts;
+ min = glm::vec3(FLT_MAX);
+ max = glm::vec3(-FLT_MAX);
+
+ for (size_t idx = 0; idx < optimized_indices.size(); idx++)
+ {
+ size_t vert_index = optimized_indices[idx];
+ if (vertices_remap[vert_index] == -1)
+ {
+ // First encounter, add it
+ size_t new_vert_idx = face_verts.size();
+ vertices_remap[vert_index] = (S64)new_vert_idx;
+ face_verts.push_back(optimized_vertices[vert_index]);
+ vert_index = new_vert_idx;
+
+ // Update min/max bounds
+ const LLVector4a& vec = face_verts[new_vert_idx].getPosition();
+ if (new_vert_idx == 0)
+ {
+ min.x = vec[0];
+ min.y = vec[1];
+ min.z = vec[2];
+ max = min;
+ }
+ else
+ {
+ min.x = std::min(min.x, vec[0]);
+ min.y = std::min(min.y, vec[1]);
+ min.z = std::min(min.z, vec[2]);
+ max.x = std::max(max.x, vec[0]);
+ max.y = std::max(max.y, vec[1]);
+ max.z = std::max(max.z, vec[2]);
+ }
+ }
+ else
+ {
+ // already in vector, get position
+ vert_index = (size_t)vertices_remap[vert_index];
+ }
+ indices_16.push_back((U16)vert_index);
+
+ if (indices_16.size() % 3 == 0 && face_verts.size() >= VERTICIES_LIMIT - 1)
+ {
+ LLVolumeFace face;
+ face.fillFromLegacyData(face_verts, indices_16);
+ face.mExtents[0] = LLVector4a(min.x, min.y, min.z, 0);
+ face.mExtents[1] = LLVector4a(max.x, max.y, max.z, 0);
+ pModel->getVolumeFaces().push_back(face);
+ pModel->getMaterialList().push_back(materialName);
+ created_faces++;
+
+ std::fill(vertices_remap.begin(), vertices_remap.end(), -1);
+ indices_16.clear();
+ face_verts.clear();
+
+ min = glm::vec3(FLT_MAX);
+ max = glm::vec3(-FLT_MAX);
+ }
+ }
+ if (indices_16.size() > 0 && face_verts.size() > 0)
+ {
+ LLVolumeFace face;
+ face.fillFromLegacyData(face_verts, indices_16);
+ face.mExtents[0] = LLVector4a(min.x, min.y, min.z, 0);
+ face.mExtents[1] = LLVector4a(max.x, max.y, max.z, 0);
+ pModel->getVolumeFaces().push_back(face);
+ pModel->getMaterialList().push_back(materialName);
+ created_faces++;
+ }
+
+ LL_INFOS("GLTF_IMPORT") << "Primitive " << (S32)prim_idx << " from model " << pModel->mLabel
+ << " is over vertices limit, it was split into " << created_faces
+ << " faces" << LL_ENDL;
+ LLSD args;
+ args["Message"] = "ModelSplitPrimitive";
+ args["MODEL_NAME"] = pModel->mLabel;
+ args["FACE_COUNT"] = created_faces;
+ mWarningsArray.append(args);
+ }
+ else
+ {
+ // can use indices directly
+ std::vector<U16> indices;
+ for (U32 i = 0; i < prim.getIndexCount(); i += 3)
+ {
+ // When processing indices, flip winding order if needed
+ if (hasNegativeScale)
+ {
+ // Flip winding order for negative scale
+ indices.push_back(prim.mIndexArray[i]);
+ indices.push_back(prim.mIndexArray[i + 2]); // Swap these two
+ indices.push_back(prim.mIndexArray[i + 1]);
+ }
+ else
+ {
+ indices.push_back(prim.mIndexArray[i]);
+ indices.push_back(prim.mIndexArray[i + 1]);
+ indices.push_back(prim.mIndexArray[i + 2]);
+ }
+ }
+
+ face.fillFromLegacyData(faceVertices, indices);
+ face.mExtents[0] = LLVector4a(min.x, min.y, min.z, 0);
+ face.mExtents[1] = LLVector4a(max.x, max.y, max.z, 0);
+
+ pModel->getVolumeFaces().push_back(face);
+ pModel->getMaterialList().push_back(materialName);
+ }
+ }
+
+ // Call normalizeVolumeFacesAndWeights to compute proper extents
+ pModel->normalizeVolumeFacesAndWeights();
+
+ // Fill joint names, bind matrices and remap weight indices
+ if (skinIdx >= 0)
+ {
+ LL::GLTF::Skin& gltf_skin = mGLTFAsset.mSkins[skinIdx];
+ LLMeshSkinInfo& skin_info = pModel->mSkinInfo;
+ S32 valid_joints_count = mValidJointsCount[skinIdx];
+
+ S32 replacement_index = 0;
+ std::vector<S32> gltfindex_to_joitindex_map;
+ size_t jointCnt = gltf_skin.mJoints.size();
+ gltfindex_to_joitindex_map.resize(jointCnt, -1);
+
+ if (valid_joints_count > (S32)mMaxJointsPerMesh)
+ {
+ std::map<std::string, S32> goup_use_count;
+
+ for (const auto& elem : mJointGroups)
+ {
+ goup_use_count[elem.second.mGroup] = 0;
+ goup_use_count[elem.second.mParentGroup] = 0;
+ }
+
+ // Assume that 'Torso' group is always in use since that's what everything else is attached to
+ goup_use_count["Torso"] = 1;
+ // Note that Collisions and Extra groups are all over the place, might want to include them from the start
+ // or add individual when parents are added
+
+ // Check which groups are in use
+ for (size_t i = 0; i < jointCnt; ++i)
+ {
+ std::string& joint_name = mJointNames[skinIdx][i];
+ if (!joint_name.empty())
+ {
+ if (gltf_joint_index_use[i] > 0)
+ {
+ const JointGroups &group = mJointGroups[joint_name];
+ // Joint in use, increment it's groups
+ goup_use_count[group.mGroup]++;
+ goup_use_count[group.mParentGroup]++;
+ }
+ }
+ }
+
+ // 1. add joints that are in use directly
+ for (size_t i = 0; i < jointCnt; ++i)
+ {
+ // Process joint name and idnex
+ S32 joint = gltf_skin.mJoints[i];
+ if (gltf_joint_index_use[i] <= 0)
+ {
+ // unsupported (-1) joint, drop it
+ // unused (0) joint, drop it
+ continue;
+ }
+
+ if (addJointToModelSkin(skin_info, skinIdx, i))
+ {
+ gltfindex_to_joitindex_map[i] = replacement_index++;
+ }
+ }
+
+ // 2. add joints from groups that this model's joints belong to
+ // It's perfectly valid to have more joints than is in use
+ // Ex: sandals that make your legs digitigrade despite not skining to
+ // knees or the like.
+ // Todo: sort and add by usecount
+ for (size_t i = 0; i < jointCnt; ++i)
+ {
+ S32 joint = gltf_skin.mJoints[i];
+ if (gltf_joint_index_use[i] != 0)
+ {
+ // this step needs only joints that have zero uses
+ continue;
+ }
+ if (skin_info.mInvBindMatrix.size() > mMaxJointsPerMesh)
+ {
+ break;
+ }
+ const std::string& legal_name = mJointNames[skinIdx][i];
+ std::string group_name = mJointGroups[legal_name].mGroup;
+ if (goup_use_count[group_name] > 0)
+ {
+ if (addJointToModelSkin(skin_info, skinIdx, i))
+ {
+ gltfindex_to_joitindex_map[i] = replacement_index++;
+ }
+ }
+ }
+ }
+ else
+ {
+ // Less than 110, just add every valid joint
+ for (size_t i = 0; i < jointCnt; ++i)
+ {
+ // Process joint name and idnex
+ S32 joint = gltf_skin.mJoints[i];
+ if (gltf_joint_index_use[i] < 0)
+ {
+ // unsupported (-1) joint, drop it
+ continue;
+ }
+
+ if (addJointToModelSkin(skin_info, skinIdx, i))
+ {
+ gltfindex_to_joitindex_map[i] = replacement_index++;
+ }
+ }
+ }
+
+ if (skin_info.mInvBindMatrix.size() > mMaxJointsPerMesh)
+ {
+ // mMaxJointsPerMesh ususlly is equal to LL_MAX_JOINTS_PER_MESH_OBJECT
+ // and is 110.
+ LL_WARNS("GLTF_IMPORT") << "Too many jonts in " << pModel->mLabel
+ << " Count: " << (S32)skin_info.mInvBindMatrix.size()
+ << " Limit:" << (S32)mMaxJointsPerMesh << LL_ENDL;
+ LLSD args;
+ args["Message"] = "ModelTooManyJoints";
+ args["MODEL_NAME"] = pModel->mLabel;
+ args["JOINT_COUNT"] = (S32)skin_info.mInvBindMatrix.size();
+ args["MAX"] = (S32)mMaxJointsPerMesh;
+ mWarningsArray.append(args);
+ }
+
+ // Remap indices for pModel->mSkinWeights
+ for (auto& weights : pModel->mSkinWeights)
+ {
+ for (auto& weight : weights.second)
+ {
+ weight.mJointIdx = gltfindex_to_joitindex_map[weight.mJointIdx];
+ }
+ }
+ }
+
+ return true;
+}
+
+void LLGLTFLoader::populateJointsFromSkin(S32 skin_idx)
+{
+ const LL::GLTF::Skin& skin = mGLTFAsset.mSkins[skin_idx];
+
+ LL_INFOS("GLTF_DEBUG") << "populateJointFromSkin: Processing skin " << skin_idx << " with " << skin.mJoints.size() << " joints" << LL_ENDL;
+
+ if (skin.mInverseBindMatrices > 0 && skin.mJoints.size() != skin.mInverseBindMatricesData.size())
+ {
+ LL_INFOS("GLTF_IMPORT") << "Bind matrices count mismatch joints count" << LL_ENDL;
+ LLSD args;
+ args["Message"] = "InvBindCountMismatch";
+ mWarningsArray.append(args);
+ }
+
+ S32 joint_count = (S32)skin.mJoints.size();
+ S32 inverse_count = (S32)skin.mInverseBindMatricesData.size();
+ if (mInverseBindMatrices.size() <= skin_idx)
+ {
+ mInverseBindMatrices.resize(skin_idx + 1);
+ mAlternateBindMatrices.resize(skin_idx + 1);
+ mJointNames.resize(skin_idx + 1);
+ mJointUsage.resize(skin_idx + 1);
+ mValidJointsCount.resize(skin_idx + 1, 0);
+ }
+
+ // fill up joints related data
+ joints_data_map_t joints_data;
+ joints_name_to_node_map_t names_to_nodes;
+ for (S32 i = 0; i < joint_count; i++)
+ {
+ S32 joint = skin.mJoints[i];
+ const LL::GLTF::Node &jointNode = mGLTFAsset.mNodes[joint];
+ JointNodeData& data = joints_data[joint];
+ data.mNodeIdx = joint;
+ data.mJointListIdx = i;
+ data.mGltfRestMatrix = buildGltfRestMatrix(joint, skin);
+ data.mGltfMatrix = jointNode.mMatrix;
+ data.mOverrideMatrix = glm::mat4(1.f);
+
+ if (mJointMap.find(jointNode.mName) != mJointMap.end())
+ {
+ data.mName = mJointMap[jointNode.mName];
+ data.mIsValidViewerJoint = true;
+ mValidJointsCount[skin_idx]++;
+ }
+ else
+ {
+ data.mName = jointNode.mName;
+ data.mIsValidViewerJoint = false;
+ }
+ names_to_nodes[data.mName] = joint;
+
+ for (S32 child : jointNode.mChildren)
+ {
+ JointNodeData& child_data = joints_data[child];
+ child_data.mParentNodeIdx = joint;
+ child_data.mIsParentValidViewerJoint = data.mIsValidViewerJoint;
+ }
+ }
+
+ // Go over viewer joints and build overrides
+ // This is needed because gltf skeleton doesn't necessarily match viewer's skeleton.
+ glm::mat4 ident(1.0);
+ for (auto &viewer_data : mViewerJointData)
+ {
+ buildOverrideMatrix(viewer_data, joints_data, names_to_nodes, ident, ident);
+ }
+
+ for (S32 i = 0; i < joint_count; i++)
+ {
+ S32 joint = skin.mJoints[i];
+ const LL::GLTF::Node &jointNode = mGLTFAsset.mNodes[joint];
+ std::string legal_name(jointNode.mName);
+
+ // Viewer supports a limited set of joints, mark them as legal
+ bool legal_joint = false;
+ if (mJointMap.find(legal_name) != mJointMap.end())
+ {
+ legal_name = mJointMap[legal_name];
+ legal_joint = true;
+ mJointNames[skin_idx].push_back(legal_name);
+ }
+ else
+ {
+ mJointNames[skin_idx].emplace_back();
+ }
+ mJointUsage[skin_idx].push_back(0);
+
+ // Compute bind matrices
+
+ if (!legal_joint)
+ {
+ // Add placeholder to not break index.
+ // Not going to be used by viewer, will be stripped from skin_info.
+ LLMatrix4 gltf_transform;
+ gltf_transform.setIdentity();
+ mInverseBindMatrices[skin_idx].push_back(LLMatrix4a(gltf_transform));
+ }
+ else if (inverse_count > i)
+ {
+ // Transalte existing bind matrix to viewer's overriden skeleton
+ glm::mat4 original_bind_matrix = glm::inverse(skin.mInverseBindMatricesData[i]);
+ glm::mat4 rotated_original = coord_system_rotation * original_bind_matrix;
+ glm::mat4 skeleton_transform = computeGltfToViewerSkeletonTransform(joints_data, joint, legal_name);
+ glm::mat4 tranlated_original = skeleton_transform * rotated_original;
+ glm::mat4 final_inverse_bind_matrix = glm::inverse(tranlated_original);
+
+ LLMatrix4 gltf_transform = LLMatrix4(glm::value_ptr(final_inverse_bind_matrix));
+ LL_DEBUGS("GLTF_DEBUG") << "mInvBindMatrix name: " << legal_name << " Translated val: " << gltf_transform << LL_ENDL;
+ mInverseBindMatrices[skin_idx].push_back(LLMatrix4a(gltf_transform));
+ }
+ else
+ {
+ // If bind matrices aren't present (they are optional in gltf),
+ // assume an identy matrix
+ // todo: find a model with this, might need to use YZ rotated matrix
+ glm::mat4 inv_bind(1.0f);
+ glm::mat4 skeleton_transform = computeGltfToViewerSkeletonTransform(joints_data, joint, legal_name);
+ inv_bind = glm::inverse(skeleton_transform * inv_bind);
+
+ LLMatrix4 gltf_transform = LLMatrix4(glm::value_ptr(inv_bind));
+ LL_DEBUGS("GLTF_DEBUG") << "mInvBindMatrix name: " << legal_name << " Generated val: " << gltf_transform << LL_ENDL;
+ mInverseBindMatrices[skin_idx].push_back(LLMatrix4a(gltf_transform));
+ }
+
+ // Compute Alternative matrices also known as overrides
+ LLMatrix4 original_joint_transform(glm::value_ptr(joints_data[joint].mOverrideMatrix));
+
+ // Viewer seems to care only about translation part,
+ // but for parity with collada taking original value
+ LLMatrix4 newInverse = LLMatrix4(mInverseBindMatrices[skin_idx].back().getF32ptr());
+ newInverse.setTranslation(original_joint_transform.getTranslation());
+
+ LL_DEBUGS("GLTF_DEBUG") << "mAlternateBindMatrix name: " << legal_name << " val: " << newInverse << LL_ENDL;
+ mAlternateBindMatrices[skin_idx].push_back(LLMatrix4a(newInverse));
+
+ if (legal_joint)
+ {
+ // Might be needed for uploader UI to correctly identify overriden joints
+ // but going to be incorrect if multiple skins are present
+ mJointList[legal_name] = newInverse;
+ mJointsFromNode.push_front(legal_name);
+ }
+ }
+
+ S32 valid_joints = mValidJointsCount[skin_idx];
+ if (valid_joints < joint_count)
+ {
+ LL_INFOS("GLTF_IMPORT") << "Skin " << skin_idx
+ << " defines " << joint_count
+ << " joints, but only " << valid_joints
+ << " were recognized and are compatible." << LL_ENDL;
+ LLSD args;
+ args["Message"] = "SkinUsupportedJoints";
+ args["SKIN_INDEX"] = skin_idx;
+ args["JOINT_COUNT"] = joint_count;
+ args["LEGAL_COUNT"] = valid_joints;
+ mWarningsArray.append(args);
+ }
+}
+
+void LLGLTFLoader::populateJointGroups()
+{
+ std::string parent;
+ for (auto& viewer_data : mViewerJointData)
+ {
+ buildJointGroup(viewer_data, parent);
+ }
+}
+
+void LLGLTFLoader::buildJointGroup(LLJointData& viewer_data, const std::string &parent_group)
+{
+ JointGroups& jount_group_data = mJointGroups[viewer_data.mName];
+ jount_group_data.mGroup = viewer_data.mGroup;
+ jount_group_data.mParentGroup = parent_group;
+
+ for (LLJointData& child_data : viewer_data.mChildren)
+ {
+ buildJointGroup(child_data, viewer_data.mGroup);
+ }
+}
+
+void LLGLTFLoader::buildOverrideMatrix(LLJointData& viewer_data, joints_data_map_t &gltf_nodes, joints_name_to_node_map_t &names_to_nodes, glm::mat4& parent_rest, glm::mat4& parent_support_rest) const
+{
+ glm::mat4 rest(1.f);
+ joints_name_to_node_map_t::iterator found_node = names_to_nodes.find(viewer_data.mName);
+ if (found_node != names_to_nodes.end())
+ {
+ S32 gltf_node_idx = found_node->second;
+ JointNodeData& node = gltf_nodes[gltf_node_idx];
+ node.mIsOverrideValid = true;
+ node.mViewerRestMatrix = viewer_data.mRestMatrix;
+
+ glm::mat4 gltf_joint_rest_pose = coord_system_rotation * node.mGltfRestMatrix;
+ if (mApplyXYRotation)
+ {
+ gltf_joint_rest_pose = coord_system_rotationxy * gltf_joint_rest_pose;
+ }
+
+ glm::mat4 translated_joint;
+ // Example:
+ // Viewer has pelvis->spine1->spine2->torso.
+ // gltf example model has pelvis->torso
+ // By doing glm::inverse(transalted_rest_spine2) * gltf_rest_torso
+ // We get what torso would have looked like if gltf had a spine2
+ if (viewer_data.mIsJoint)
+ {
+ translated_joint = glm::inverse(parent_rest) * gltf_joint_rest_pose;
+ }
+ else
+ {
+ translated_joint = glm::inverse(parent_support_rest) * gltf_joint_rest_pose;
+ }
+
+ glm::vec3 translation_override;
+ glm::vec3 skew;
+ glm::vec3 scale;
+ glm::vec4 perspective;
+ glm::quat rotation;
+ glm::decompose(translated_joint, scale, rotation, translation_override, skew, perspective);
+
+ // Viewer allows overrides, which are base joint with applied translation override.
+ // fortunately normal bones use only translation, without rotation or scale
+ node.mOverrideMatrix = glm::recompose(glm::vec3(1, 1, 1), glm::identity<glm::quat>(), translation_override, glm::vec3(0, 0, 0), glm::vec4(0, 0, 0, 1));
+
+ glm::mat4 overriden_joint = node.mOverrideMatrix;
+
+ // todo: if gltf bone had rotation or scale, they probably should be saved here
+ // then applied to bind matrix
+ rest = parent_rest * overriden_joint;
+ if (viewer_data.mIsJoint)
+ {
+ node.mOverrideRestMatrix = rest;
+ }
+ else
+ {
+ // This is likely incomplete or even wrong.
+ // Viewer Collision bones specify rotation and scale.
+ // Importer should apply rotation and scale to this matrix and save as needed
+ // then subsctruct them from bind matrix
+ // Todo: get models that use collision bones, made by different programs
+
+ overriden_joint = glm::scale(overriden_joint, viewer_data.mScale);
+ node.mOverrideRestMatrix = parent_support_rest * overriden_joint;
+ }
+ }
+ else
+ {
+ // No override for this joint
+ rest = parent_rest * viewer_data.mJointMatrix;
+ }
+
+ glm::mat4 support_rest(1.f);
+ if (viewer_data.mSupport == LLJointData::SUPPORT_BASE)
+ {
+ support_rest = rest;
+ }
+ else
+ {
+ support_rest = parent_support_rest;
+ }
+
+ for (LLJointData& child_data : viewer_data.mChildren)
+ {
+ buildOverrideMatrix(child_data, gltf_nodes, names_to_nodes, rest, support_rest);
+ }
+}
+
+glm::mat4 LLGLTFLoader::buildGltfRestMatrix(S32 joint_node_index, const LL::GLTF::Skin& gltf_skin) const
+{
+ // This is inefficient since we are recalculating some joints multiple times over
+ // Todo: cache it?
+
+ if (joint_node_index < 0 || joint_node_index >= static_cast<S32>(mGLTFAsset.mNodes.size()))
+ {
+ return glm::mat4(1.0f);
+ }
+
+ const auto& node = mGLTFAsset.mNodes[joint_node_index];
+
+ // Find and apply parent transform if it exists
+ for (size_t i = 0; i < mGLTFAsset.mNodes.size(); ++i)
+ {
+ const auto& potential_parent = mGLTFAsset.mNodes[i];
+ auto it = std::find(potential_parent.mChildren.begin(), potential_parent.mChildren.end(), joint_node_index);
+
+ if (it != potential_parent.mChildren.end())
+ {
+ // Found parent
+ if (std::find(gltf_skin.mJoints.begin(), gltf_skin.mJoints.end(), joint_node_index) != gltf_skin.mJoints.end())
+ {
+ // parent is a joint - recursively combine transform
+ // assumes that matrix is already valid
+ return buildGltfRestMatrix(static_cast<S32>(i), gltf_skin) * node.mMatrix;
+ }
+ }
+ }
+ // Should we return armature or stop earlier?
+ return node.mMatrix;
+}
+
+glm::mat4 LLGLTFLoader::buildGltfRestMatrix(S32 joint_node_index, const joints_data_map_t& joint_data) const
+{
+ // This is inefficient since we are recalculating some joints multiple times over
+ // Todo: cache it?
+
+ if (joint_node_index < 0 || joint_node_index >= static_cast<S32>(mGLTFAsset.mNodes.size()))
+ {
+ return glm::mat4(1.0f);
+ }
+
+ auto& data = joint_data.at(joint_node_index);
+
+ if (data.mParentNodeIdx >=0)
+ {
+ return buildGltfRestMatrix(data.mParentNodeIdx, joint_data) * data.mGltfMatrix;
+ }
+ // Should we return armature or stop earlier?
+ return data.mGltfMatrix;
+}
+
+// This function computes the transformation matrix needed to convert from GLTF skeleton space
+// to viewer skeleton space for a specific joint
+
+glm::mat4 LLGLTFLoader::computeGltfToViewerSkeletonTransform(const joints_data_map_t& joints_data_map, S32 gltf_node_index, const std::string& joint_name) const
+{
+ const JointNodeData& node_data = joints_data_map.at(gltf_node_index);
+ if (!node_data.mIsOverrideValid)
+ {
+ // For now assume they are identical and return an identity (for ease of debuging)
+ return glm::mat4(1.0f);
+ }
+
+ // Get the GLTF joint's rest pose (in GLTF coordinate system)
+ const glm::mat4 &gltf_joint_rest_pose = node_data.mGltfRestMatrix;
+ glm::mat4 rest_pose = coord_system_rotation * gltf_joint_rest_pose;
+
+ LL_INFOS("GLTF_DEBUG") << "rest matrix for joint " << joint_name << ": ";
+
+ LLMatrix4 transform(glm::value_ptr(rest_pose));
+
+ LL_CONT << transform << LL_ENDL;
+
+ // Compute transformation from GLTF space to viewer space
+ // This assumes both skeletons are in rest pose initially
+ return node_data.mOverrideRestMatrix * glm::inverse(rest_pose);
+}
+
+bool LLGLTFLoader::checkForXYrotation(const LL::GLTF::Skin& gltf_skin, S32 joint_idx, S32 bind_indx)
+{
+ glm::mat4 gltf_joint_rest = buildGltfRestMatrix(joint_idx, gltf_skin);
+ glm::mat4 test_mat = glm::inverse(gltf_joint_rest) * gltf_skin.mInverseBindMatricesData[bind_indx];
+ // Normally for shoulders it should be something close to
+ // {1,0,0,0;0,-1,0,0;0,0,-1,0;0,0,0,1}
+ // rotated one will look like
+ // {0,0,0,-1;1,0,0,0;0,-1,0,0;0,0,0,1}
+ // Todo: This is a cheap hack,
+ // figure out how rotation is supposed to work
+ return abs(test_mat[0][0]) < 0.5 && abs(test_mat[1][1]) < 0.5 && abs(test_mat[2][2]) < 0.5;
+}
+
+void LLGLTFLoader::checkForXYrotation(const LL::GLTF::Skin& gltf_skin)
+{
+ // HACK: figure out model's rotation from shoulders' matrix.
+ // This is wrong on many levels:
+ // Too limited (only models that have shoulders),
+ // Will not work well with things that emulate 3 hands in some manner
+ // Only supports xy 90 degree rotation
+ // Todo: figure out how to find skeleton's orientation Correctly
+ // when model is rotated at a triangle level
+ constexpr char right_shoulder_str[] = "mShoulderRight";
+ constexpr char left_shoulder_str[] = "mShoulderLeft";
+
+ S32 size = (S32)gltf_skin.mJoints.size();
+ S32 joints_found = 0;
+ for (S32 i= 0; i < size; i++)
+ {
+ S32 joint = gltf_skin.mJoints[i];
+ const LL::GLTF::Node &joint_node = mGLTFAsset.mNodes[joint];
+
+ // todo: we are doing this search thing everywhere,
+ // just pre-translate every joint
+ JointMap::iterator found = mJointMap.find(joint_node.mName);
+ if (found == mJointMap.end())
+ {
+ // unsupported joint
+ continue;
+ }
+ if (found->second == right_shoulder_str || found->second == left_shoulder_str)
+ {
+ if (checkForXYrotation(gltf_skin, joint, i))
+ {
+ joints_found++;
+ }
+ else
+ {
+ return;
+ }
+ }
+ }
+
+ if (joints_found == 2)
+ {
+ // Both joints in a weird position/rotation, assume rotated model
+ mApplyXYRotation = true;
+ }
+}
+
+void LLGLTFLoader::checkGlobalJointUsage()
+{
+ // Check if some joints remained unused
+ for (S32 skin_idx = 0; skin_idx < (S32)mGLTFAsset.mSkins.size(); ++skin_idx)
+ {
+ const LL::GLTF::Skin& gltf_skin = mGLTFAsset.mSkins[skin_idx];
+ S32 joint_count = (S32)gltf_skin.mJoints.size();
+ S32 used_joints = 0;
+ for (S32 i = 0; i < joint_count; ++i)
+ {
+ S32 joint = gltf_skin.mJoints[i];
+ if (mJointUsage[skin_idx][i] == 0)
+ {
+ // Joint is unused, log it
+ LL_INFOS("GLTF_DEBUG") << "Joint " << mJointNames[skin_idx][i]
+ << " in skin " << skin_idx << " is unused." << LL_ENDL;
+ }
+ else
+ {
+ used_joints++;
+ }
+ }
+
+ S32 valid_joints = mValidJointsCount[skin_idx];
+ if (valid_joints > used_joints)
+ {
+ S32 unsed_joints = valid_joints - used_joints;
+ LL_INFOS("GLTF_IMPORT") << "Skin " << skin_idx
+ << " declares " << valid_joints
+ << " valid joints, of them " << unsed_joints
+ << " remained unused" << LL_ENDL;
+ LLSD args;
+ args["Message"] = "SkinUnusedJoints";
+ args["SKIN_INDEX"] = (S32)skin_idx;
+ args["JOINT_COUNT"] = valid_joints;
+ args["USED_COUNT"] = used_joints;
+ mWarningsArray.append(args);
+ }
+ }
+}
+
+std::string LLGLTFLoader::extractTextureToTempFile(S32 textureIndex, const std::string& texture_type)
+{
+ if (textureIndex < 0 || textureIndex >= mGLTFAsset.mTextures.size())
+ return "";
+
+ S32 sourceIndex = mGLTFAsset.mTextures[textureIndex].mSource;
+ if (sourceIndex < 0 || sourceIndex >= mGLTFAsset.mImages.size())
+ return "";
+
+ LL::GLTF::Image& image = mGLTFAsset.mImages[sourceIndex];
+
+ // Handle URI-based textures
+ if (!image.mUri.empty())
+ {
+ return image.mUri; // Return URI directly
+ }
+
+ // Handle embedded textures
+ if (image.mBufferView >= 0)
+ {
+ if (image.mBufferView < mGLTFAsset.mBufferViews.size())
+ {
+ const LL::GLTF::BufferView& buffer_view = mGLTFAsset.mBufferViews[image.mBufferView];
+ if (buffer_view.mBuffer < mGLTFAsset.mBuffers.size())
+ {
+ const LL::GLTF::Buffer& buffer = mGLTFAsset.mBuffers[buffer_view.mBuffer];
+
+ if (buffer_view.mByteOffset + buffer_view.mByteLength <= buffer.mData.size())
+ {
+ // Extract image data
+ const U8* data_ptr = &buffer.mData[buffer_view.mByteOffset];
+ U32 data_size = buffer_view.mByteLength;
+
+ // Determine the file extension
+ std::string extension = ".png"; // Default
+ if (!image.mMimeType.empty())
+ {
+ if (image.mMimeType == "image/jpeg")
+ extension = ".jpg";
+ else if (image.mMimeType == "image/png")
+ extension = ".png";
+ }
+ else if (data_size >= 4)
+ {
+ if (data_ptr[0] == 0xFF && data_ptr[1] == 0xD8)
+ extension = ".jpg"; // JPEG magic bytes
+ else if (data_ptr[0] == 0x89 && data_ptr[1] == 0x50 && data_ptr[2] == 0x4E && data_ptr[3] == 0x47)
+ extension = ".png"; // PNG magic bytes
+ }
+
+ // Create a temporary file
+ std::string temp_dir = gDirUtilp->getTempDir();
+ std::string temp_filename = temp_dir + gDirUtilp->getDirDelimiter() +
+ "gltf_embedded_" + texture_type + "_" + std::to_string(sourceIndex) + extension;
+
+ // Write the image data to the temporary file
+ std::ofstream temp_file(temp_filename, std::ios::binary);
+ if (temp_file.is_open())
+ {
+ temp_file.write(reinterpret_cast<const char*>(data_ptr), data_size);
+ temp_file.close();
+
+ LL_INFOS("GLTF_IMPORT") << "Extracted embedded " << texture_type << " texture to: " << temp_filename << LL_ENDL;
+ return temp_filename;
+ }
+ else
+ {
+ LL_WARNS("GLTF_IMPORT") << "Failed to create temporary file for " << texture_type << " texture: " << temp_filename << LL_ENDL;
+
+ LLSD args;
+ args["Message"] = "FailedToCreateTempFile";
+ args["TEXTURE_INDEX"] = sourceIndex;
+ args["TEXTURE_TYPE"] = texture_type;
+ args["TEMP_FILE"] = temp_filename;
+ mWarningsArray.append(args);
+ }
+ }
+ }
+ }
+ }
+
+ return "";
+}
+
+void LLGLTFLoader::notifyUnsupportedExtension(bool unsupported)
+{
+ std::vector<std::string> extensions = unsupported ? mGLTFAsset.mUnsupportedExtensions : mGLTFAsset.mIgnoredExtensions;
+ if (extensions.size() > 0)
+ {
+ LLSD args;
+ args["Message"] = unsupported ? "UnsupportedExtension" : "IgnoredExtension";
+ std::string del;
+ std::string ext;
+ for (auto& extension : extensions)
+ {
+ ext += del;
+ ext += extension;
+ del = ",";
+ }
+ args["EXT"] = ext;
+ mWarningsArray.append(args);
+
+ LL_WARNS("GLTF_IMPORT") << "Model uses unsupported extension: " << ext << LL_ENDL;
+ }
+}
+
+size_t LLGLTFLoader::getSuffixPosition(const std::string &label)
+{
+ if ((label.find("_LOD") != -1) || (label.find("_PHYS") != -1))
+ {
+ return label.rfind('_');
+ }
+ return -1;
+}
+
+std::string LLGLTFLoader::getLodlessLabel(const LL::GLTF::Mesh& mesh)
+{
+ size_t ext_pos = getSuffixPosition(mesh.mName);
+ if (ext_pos != -1)
+ {
+ return mesh.mName.substr(0, ext_pos);
+ }
+ return mesh.mName;
+}
+