diff options
Diffstat (limited to 'indra/newview/app_settings')
32 files changed, 4753 insertions, 189 deletions
diff --git a/indra/newview/app_settings/settings.xml b/indra/newview/app_settings/settings.xml index 42d4e7bb7f..f4c8e50e46 100644 --- a/indra/newview/app_settings/settings.xml +++ b/indra/newview/app_settings/settings.xml @@ -2491,6 +2491,17 @@ <key>Value</key> <integer>1</integer> </map> + <key>UseGroupMemberPagination</key> + <map> + <key>Comment</key> + <string>Enable pagination of group memeber list 50 members at a time.</string> + <key>Persist</key> + <integer>1</integer> + <key>Type</key> + <string>Boolean</string> + <key>Value</key> + <integer>0</integer> + </map> <key>DisplayTimecode</key> <map> <key>Comment</key> @@ -7388,7 +7399,7 @@ <key>RenderBufferVisualization</key> <map> <key>Comment</key> - <string>Outputs a selected buffer to the screen. -1 = final render buffer. 0 = Albedo, 1 = Specular/ORM, 2 = Normal, 3 = Emissive, 4 = Eye luminance</string> + <string>Outputs a selected buffer to the screen. -1 = final render buffer. 0 = Albedo, 1 = Specular/ORM, 2 = Normal, 3 = Emissive, 4 = Eye luminance, 5 = FXAA Luminance/SMAA Edge Tex, 6 = SMAA Blend Weights</string> <key>Persist</key> <integer>0</integer> <key>Type</key> @@ -7772,17 +7783,6 @@ <key>Value</key> <integer>0</integer> </map> - <key>RenderPostProcessingHDR</key> - <map> - <key>Comment</key> - <string>Enable HDR for post processing buffer</string> - <key>Persist</key> - <integer>1</integer> - <key>Type</key> - <string>Boolean</string> - <key>Value</key> - <integer>0</integer> - </map> <key>RenderHDRIExposure</key> <map> <key>Comment</key> @@ -7902,7 +7902,7 @@ <key>Type</key> <string>U32</string> <key>Value</key> - <integer>1</integer> + <integer>0</integer> </map> <key>RenderDebugTextureBind</key> <map> @@ -8487,7 +8487,18 @@ <key>RenderFSAASamples</key> <map> <key>Comment</key> - <string>Number of samples to use for FSAA (0 = no AA).</string> + <string>Quality of antialiasing: 0 = Low, 1 = Medium, 2 = High, 3 = Ultra</string> + <key>Persist</key> + <integer>1</integer> + <key>Type</key> + <string>U32</string> + <key>Value</key> + <integer>0</integer> + </map> + <key>RenderFSAAType</key> + <map> + <key>Comment</key> + <string>Type of Antialiasing to use: 0 = None, 1 = FXAA, 2 = SMAA</string> <key>Persist</key> <integer>1</integer> <key>Type</key> @@ -9118,7 +9129,7 @@ <key>Type</key> <string>F32</string> <key>Value</key> - <real>1</real> + <real>1.0</real> </map> <key>RenderReflectionProbeDrawDistance</key> @@ -9630,6 +9641,17 @@ <key>Value</key> <integer>0</integer> </map> + <key>CollectFontVertexBuffers</key> + <map> + <key>Comment</key> + <string>When enabled some UI elements with cache buffers generated by fonts and reuse them. When disabled general cahce will be used with a significant overhead for hash, but it regenerates vertices each frame so it's always up to date.</string> + <key>Persist</key> + <integer>0</integer> + <key>Type</key> + <string>Boolean</string> + <key>Value</key> + <real>1</real> + </map> <key>ShowMyComplexityChanges</key> <map> <key>Comment</key> @@ -9898,6 +9920,39 @@ <key>Value</key> <string>00000000-0000-0000-0000-000000000000</string> </map> + <key>RenderCASSharpness</key> + <map> + <key>Comment</key> + <string>Level of sharpening to apply via Contrast Adaptive Sharpening (0.0(off) - 1.0)</string> + <key>Persist</key> + <integer>1</integer> + <key>Type</key> + <string>F32</string> + <key>Value</key> + <real>0.4</real> + </map> + <key>RenderTonemapMix</key> + <map> + <key>Comment</key> + <string>Mix between linear and tonemapped colors (0.0(Linear) - 1.0(Tonemapped)</string> + <key>Persist</key> + <integer>1</integer> + <key>Type</key> + <string>F32</string> + <key>Value</key> + <real>0.7</real> + </map> + <key>RenderTonemapType</key> + <map> + <key>Comment</key> + <string>What tonemapper to use: 0 = Khronos Neutral, 1 = ACES</string> + <key>Persist</key> + <integer>1</integer> + <key>Type</key> + <string>U32</string> + <key>Value</key> + <integer>1</integer> + </map> <key>ReplaySession</key> <map> <key>Comment</key> @@ -11479,6 +11534,28 @@ <key>Value</key> <integer>0</integer> </map> + <key>TextureDiscardBackgroundedTime</key> + <map> + <key>Comment</key> + <string>Specify how long to wait before discarding texture data after viewer is backgrounded. (zero or negative to disable)</string> + <key>Persist</key> + <integer>1</integer> + <key>Type</key> + <string>F32</string> + <key>Value</key> + <real>60.0</real> + </map> + <key>TextureDiscardMinimizedTime</key> + <map> + <key>Comment</key> + <string>Specify how long to wait before discarding texture data after viewer is minimized. (zero or negative to disable)</string> + <key>Persist</key> + <integer>1</integer> + <key>Type</key> + <string>F32</string> + <key>Value</key> + <real>1.0</real> + </map> <key>TextureFetchConcurrency</key> <map> <key>Comment</key> @@ -13235,17 +13312,6 @@ <key>Value</key> <integer>0</integer> </map> - <key>VoiceEffectExpiryWarningTime</key> - <map> - <key>Comment</key> - <string>How much notice to give of Voice Morph subscriptions expiry, in seconds.</string> - <key>Persist</key> - <integer>1</integer> - <key>Type</key> - <string>S32</string> - <key>Value</key> - <integer>259200</integer> - </map> <key>VoiceMorphingEnabled</key> <map> <key>Comment</key> @@ -13466,6 +13532,17 @@ <key>Value</key> <integer>4</integer> </map> + <key>VoiceVisualizerEnabled</key> + <map> + <key>Comment</key> + <string>Display voice dot indicator above an avatar</string> + <key>Persist</key> + <integer>1</integer> + <key>Type</key> + <string>Boolean</string> + <key>Value</key> + <integer>1</integer> + </map> <key>WarningsAsChat</key> <map> <key>Comment</key> @@ -16366,5 +16443,16 @@ <key>Value</key> <integer>0</integer> </map> + <key>RenderHDREnabled</key> + <map> + <key>Comment</key> + <string>Enable HDR rendering.</string> + <key>Persist</key> + <integer>1</integer> + <key>Type</key> + <string>Boolean</string> + <key>Value</key> + <integer>1</integer> + </map> </map> </llsd> diff --git a/indra/newview/app_settings/shaders/class1/deferred/CASF.glsl b/indra/newview/app_settings/shaders/class1/deferred/CASF.glsl new file mode 100644 index 0000000000..017855325c --- /dev/null +++ b/indra/newview/app_settings/shaders/class1/deferred/CASF.glsl @@ -0,0 +1,2556 @@ +/** + * @file CASF.glsl + * + * $LicenseInfo:firstyear=2024&license=viewerlgpl$ + * Second Life Viewer Source Code + * Copyright (C) 2024, Linden Research, Inc. + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; + * version 2.1 of the License only. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA + * $/LicenseInfo$ + */ + +/*[EXTRA_CODE_HERE]*/ + +#ifndef A_CPU +#define A_GPU +#define A_GLSL +#define CAS_BETTER_DIAGONALS +#define CAS_SLOW + +out vec4 frag_color; +in vec2 vary_fragcoord; + +uniform sampler2D diffuseRect; +uniform vec2 out_screen_res; +uniform uvec4 cas_param_0; +uniform uvec4 cas_param_1; + +vec3 srgb_to_linear(vec3 cs); +vec3 linear_to_srgb(vec3 cl); +#endif + +#ifndef SHADER_PORTABILITY +//============================================================================================================================== +// +// [A] SHADER PORTABILITY 1.20210629 +// +//============================================================================================================================== +// FidelityFX Super Resolution Sample +// +// Copyright (c) 2021 Advanced Micro Devices, Inc. All rights reserved. +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files(the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and / or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions : +// The above copyright notice and this permission notice shall be included in +// all copies or substantial portions of the Software. +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +// THE SOFTWARE. +//------------------------------------------------------------------------------------------------------------------------------ +// MIT LICENSE +// =========== +// Copyright (c) 2014 Michal Drobot (for concepts used in "FLOAT APPROXIMATIONS"). +// ----------- +// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation +// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, +// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the +// Software is furnished to do so, subject to the following conditions: +// ----------- +// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the +// Software. +// ----------- +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE +// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, +// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. +//------------------------------------------------------------------------------------------------------------------------------ +#define A_2PI 6.28318530718 +#ifdef A_CPU + // Supporting user defined overrides. + #ifndef A_RESTRICT + #define A_RESTRICT __restrict + #endif +//------------------------------------------------------------------------------------------------------------------------------ + #ifndef A_STATIC + #define A_STATIC static + #endif +//------------------------------------------------------------------------------------------------------------------------------ + // Same types across CPU and GPU. + // Predicate uses 32-bit integer (C friendly bool). + typedef uint32_t AP1; + typedef float AF1; + typedef double AD1; + typedef uint8_t AB1; + typedef uint16_t AW1; + typedef uint32_t AU1; + typedef uint64_t AL1; + typedef int8_t ASB1; + typedef int16_t ASW1; + typedef int32_t ASU1; + typedef int64_t ASL1; +//------------------------------------------------------------------------------------------------------------------------------ + #define AD1_(a) ((AD1)(a)) + #define AF1_(a) ((AF1)(a)) + #define AL1_(a) ((AL1)(a)) + #define AU1_(a) ((AU1)(a)) +//------------------------------------------------------------------------------------------------------------------------------ + #define ASL1_(a) ((ASL1)(a)) + #define ASU1_(a) ((ASU1)(a)) +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC AU1 AU1_AF1(AF1 a){union{AF1 f;AU1 u;}bits;bits.f=a;return bits.u;} +//------------------------------------------------------------------------------------------------------------------------------ + #define A_TRUE 1 + #define A_FALSE 0 +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// +// CPU/GPU PORTING +// +//------------------------------------------------------------------------------------------------------------------------------ +// Get CPU and GPU to share all setup code, without duplicate code paths. +// This uses a lower-case prefix for special vector constructs. +// - In C restrict pointers are used. +// - In the shading language, in/inout/out arguments are used. +// This depends on the ability to access a vector value in both languages via array syntax (aka color[2]). +//============================================================================================================================== +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// VECTOR ARGUMENT/RETURN/INITIALIZATION PORTABILITY +//============================================================================================================================== + #define retAD2 AD1 *A_RESTRICT + #define retAD3 AD1 *A_RESTRICT + #define retAD4 AD1 *A_RESTRICT + #define retAF2 AF1 *A_RESTRICT + #define retAF3 AF1 *A_RESTRICT + #define retAF4 AF1 *A_RESTRICT + #define retAL2 AL1 *A_RESTRICT + #define retAL3 AL1 *A_RESTRICT + #define retAL4 AL1 *A_RESTRICT + #define retAU2 AU1 *A_RESTRICT + #define retAU3 AU1 *A_RESTRICT + #define retAU4 AU1 *A_RESTRICT +//------------------------------------------------------------------------------------------------------------------------------ + #define inAD2 AD1 *A_RESTRICT + #define inAD3 AD1 *A_RESTRICT + #define inAD4 AD1 *A_RESTRICT + #define inAF2 AF1 *A_RESTRICT + #define inAF3 AF1 *A_RESTRICT + #define inAF4 AF1 *A_RESTRICT + #define inAL2 AL1 *A_RESTRICT + #define inAL3 AL1 *A_RESTRICT + #define inAL4 AL1 *A_RESTRICT + #define inAU2 AU1 *A_RESTRICT + #define inAU3 AU1 *A_RESTRICT + #define inAU4 AU1 *A_RESTRICT +//------------------------------------------------------------------------------------------------------------------------------ + #define inoutAD2 AD1 *A_RESTRICT + #define inoutAD3 AD1 *A_RESTRICT + #define inoutAD4 AD1 *A_RESTRICT + #define inoutAF2 AF1 *A_RESTRICT + #define inoutAF3 AF1 *A_RESTRICT + #define inoutAF4 AF1 *A_RESTRICT + #define inoutAL2 AL1 *A_RESTRICT + #define inoutAL3 AL1 *A_RESTRICT + #define inoutAL4 AL1 *A_RESTRICT + #define inoutAU2 AU1 *A_RESTRICT + #define inoutAU3 AU1 *A_RESTRICT + #define inoutAU4 AU1 *A_RESTRICT +//------------------------------------------------------------------------------------------------------------------------------ + #define outAD2 AD1 *A_RESTRICT + #define outAD3 AD1 *A_RESTRICT + #define outAD4 AD1 *A_RESTRICT + #define outAF2 AF1 *A_RESTRICT + #define outAF3 AF1 *A_RESTRICT + #define outAF4 AF1 *A_RESTRICT + #define outAL2 AL1 *A_RESTRICT + #define outAL3 AL1 *A_RESTRICT + #define outAL4 AL1 *A_RESTRICT + #define outAU2 AU1 *A_RESTRICT + #define outAU3 AU1 *A_RESTRICT + #define outAU4 AU1 *A_RESTRICT +//------------------------------------------------------------------------------------------------------------------------------ + #define varAD2(x) AD1 x[2] + #define varAD3(x) AD1 x[3] + #define varAD4(x) AD1 x[4] + #define varAF2(x) AF1 x[2] + #define varAF3(x) AF1 x[3] + #define varAF4(x) AF1 x[4] + #define varAL2(x) AL1 x[2] + #define varAL3(x) AL1 x[3] + #define varAL4(x) AL1 x[4] + #define varAU2(x) AU1 x[2] + #define varAU3(x) AU1 x[3] + #define varAU4(x) AU1 x[4] +//------------------------------------------------------------------------------------------------------------------------------ + #define initAD2(x,y) {x,y} + #define initAD3(x,y,z) {x,y,z} + #define initAD4(x,y,z,w) {x,y,z,w} + #define initAF2(x,y) {x,y} + #define initAF3(x,y,z) {x,y,z} + #define initAF4(x,y,z,w) {x,y,z,w} + #define initAL2(x,y) {x,y} + #define initAL3(x,y,z) {x,y,z} + #define initAL4(x,y,z,w) {x,y,z,w} + #define initAU2(x,y) {x,y} + #define initAU3(x,y,z) {x,y,z} + #define initAU4(x,y,z,w) {x,y,z,w} +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// SCALAR RETURN OPS +//------------------------------------------------------------------------------------------------------------------------------ +// TODO +// ==== +// - Replace transcendentals with manual versions. +//============================================================================================================================== + #ifdef A_GCC + A_STATIC AD1 AAbsD1(AD1 a){return __builtin_fabs(a);} + A_STATIC AF1 AAbsF1(AF1 a){return __builtin_fabsf(a);} + A_STATIC AU1 AAbsSU1(AU1 a){return AU1_(__builtin_abs(ASU1_(a)));} + A_STATIC AL1 AAbsSL1(AL1 a){return AL1_(__builtin_llabs(ASL1_(a)));} + #else + A_STATIC AD1 AAbsD1(AD1 a){return fabs(a);} + A_STATIC AF1 AAbsF1(AF1 a){return fabsf(a);} + A_STATIC AU1 AAbsSU1(AU1 a){return AU1_(abs(ASU1_(a)));} + A_STATIC AL1 AAbsSL1(AL1 a){return AL1_(labs((long)ASL1_(a)));} + #endif +//------------------------------------------------------------------------------------------------------------------------------ + #ifdef A_GCC + A_STATIC AD1 ACosD1(AD1 a){return __builtin_cos(a);} + A_STATIC AF1 ACosF1(AF1 a){return __builtin_cosf(a);} + #else + A_STATIC AD1 ACosD1(AD1 a){return cos(a);} + A_STATIC AF1 ACosF1(AF1 a){return cosf(a);} + #endif +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC AD1 ADotD2(inAD2 a,inAD2 b){return a[0]*b[0]+a[1]*b[1];} + A_STATIC AD1 ADotD3(inAD3 a,inAD3 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2];} + A_STATIC AD1 ADotD4(inAD4 a,inAD4 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2]+a[3]*b[3];} + A_STATIC AF1 ADotF2(inAF2 a,inAF2 b){return a[0]*b[0]+a[1]*b[1];} + A_STATIC AF1 ADotF3(inAF3 a,inAF3 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2];} + A_STATIC AF1 ADotF4(inAF4 a,inAF4 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2]+a[3]*b[3];} +//------------------------------------------------------------------------------------------------------------------------------ + #ifdef A_GCC + A_STATIC AD1 AExp2D1(AD1 a){return __builtin_exp2(a);} + A_STATIC AF1 AExp2F1(AF1 a){return __builtin_exp2f(a);} + #else + A_STATIC AD1 AExp2D1(AD1 a){return exp2(a);} + A_STATIC AF1 AExp2F1(AF1 a){return exp2f(a);} + #endif +//------------------------------------------------------------------------------------------------------------------------------ + #ifdef A_GCC + A_STATIC AD1 AFloorD1(AD1 a){return __builtin_floor(a);} + A_STATIC AF1 AFloorF1(AF1 a){return __builtin_floorf(a);} + #else + A_STATIC AD1 AFloorD1(AD1 a){return floor(a);} + A_STATIC AF1 AFloorF1(AF1 a){return floorf(a);} + #endif +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC AD1 ALerpD1(AD1 a,AD1 b,AD1 c){return b*c+(-a*c+a);} + A_STATIC AF1 ALerpF1(AF1 a,AF1 b,AF1 c){return b*c+(-a*c+a);} +//------------------------------------------------------------------------------------------------------------------------------ + #ifdef A_GCC + A_STATIC AD1 ALog2D1(AD1 a){return __builtin_log2(a);} + A_STATIC AF1 ALog2F1(AF1 a){return __builtin_log2f(a);} + #else + A_STATIC AD1 ALog2D1(AD1 a){return log2(a);} + A_STATIC AF1 ALog2F1(AF1 a){return log2f(a);} + #endif +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC AD1 AMaxD1(AD1 a,AD1 b){return a>b?a:b;} + A_STATIC AF1 AMaxF1(AF1 a,AF1 b){return a>b?a:b;} + A_STATIC AL1 AMaxL1(AL1 a,AL1 b){return a>b?a:b;} + A_STATIC AU1 AMaxU1(AU1 a,AU1 b){return a>b?a:b;} +//------------------------------------------------------------------------------------------------------------------------------ + // These follow the convention that A integer types don't have signage, until they are operated on. + A_STATIC AL1 AMaxSL1(AL1 a,AL1 b){return (ASL1_(a)>ASL1_(b))?a:b;} + A_STATIC AU1 AMaxSU1(AU1 a,AU1 b){return (ASU1_(a)>ASU1_(b))?a:b;} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC AD1 AMinD1(AD1 a,AD1 b){return a<b?a:b;} + A_STATIC AF1 AMinF1(AF1 a,AF1 b){return a<b?a:b;} + A_STATIC AL1 AMinL1(AL1 a,AL1 b){return a<b?a:b;} + A_STATIC AU1 AMinU1(AU1 a,AU1 b){return a<b?a:b;} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC AL1 AMinSL1(AL1 a,AL1 b){return (ASL1_(a)<ASL1_(b))?a:b;} + A_STATIC AU1 AMinSU1(AU1 a,AU1 b){return (ASU1_(a)<ASU1_(b))?a:b;} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC AD1 ARcpD1(AD1 a){return 1.0/a;} + A_STATIC AF1 ARcpF1(AF1 a){return 1.0f/a;} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC AL1 AShrSL1(AL1 a,AL1 b){return AL1_(ASL1_(a)>>ASL1_(b));} + A_STATIC AU1 AShrSU1(AU1 a,AU1 b){return AU1_(ASU1_(a)>>ASU1_(b));} +//------------------------------------------------------------------------------------------------------------------------------ + #ifdef A_GCC + A_STATIC AD1 ASinD1(AD1 a){return __builtin_sin(a);} + A_STATIC AF1 ASinF1(AF1 a){return __builtin_sinf(a);} + #else + A_STATIC AD1 ASinD1(AD1 a){return sin(a);} + A_STATIC AF1 ASinF1(AF1 a){return sinf(a);} + #endif +//------------------------------------------------------------------------------------------------------------------------------ + #ifdef A_GCC + A_STATIC AD1 ASqrtD1(AD1 a){return __builtin_sqrt(a);} + A_STATIC AF1 ASqrtF1(AF1 a){return __builtin_sqrtf(a);} + #else + A_STATIC AD1 ASqrtD1(AD1 a){return sqrt(a);} + A_STATIC AF1 ASqrtF1(AF1 a){return sqrtf(a);} + #endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// SCALAR RETURN OPS - DEPENDENT +//============================================================================================================================== + A_STATIC AD1 AClampD1(AD1 x,AD1 n,AD1 m){return AMaxD1(n,AMinD1(x,m));} + A_STATIC AF1 AClampF1(AF1 x,AF1 n,AF1 m){return AMaxF1(n,AMinF1(x,m));} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC AD1 AFractD1(AD1 a){return a-AFloorD1(a);} + A_STATIC AF1 AFractF1(AF1 a){return a-AFloorF1(a);} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC AD1 APowD1(AD1 a,AD1 b){return AExp2D1(b*ALog2D1(a));} + A_STATIC AF1 APowF1(AF1 a,AF1 b){return AExp2F1(b*ALog2F1(a));} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC AD1 ARsqD1(AD1 a){return ARcpD1(ASqrtD1(a));} + A_STATIC AF1 ARsqF1(AF1 a){return ARcpF1(ASqrtF1(a));} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC AD1 ASatD1(AD1 a){return AMinD1(1.0,AMaxD1(0.0,a));} + A_STATIC AF1 ASatF1(AF1 a){return AMinF1(1.0f,AMaxF1(0.0f,a));} +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// VECTOR OPS +//------------------------------------------------------------------------------------------------------------------------------ +// These are added as needed for production or prototyping, so not necessarily a complete set. +// They follow a convention of taking in a destination and also returning the destination value to increase utility. +//============================================================================================================================== + A_STATIC retAD2 opAAbsD2(outAD2 d,inAD2 a){d[0]=AAbsD1(a[0]);d[1]=AAbsD1(a[1]);return d;} + A_STATIC retAD3 opAAbsD3(outAD3 d,inAD3 a){d[0]=AAbsD1(a[0]);d[1]=AAbsD1(a[1]);d[2]=AAbsD1(a[2]);return d;} + A_STATIC retAD4 opAAbsD4(outAD4 d,inAD4 a){d[0]=AAbsD1(a[0]);d[1]=AAbsD1(a[1]);d[2]=AAbsD1(a[2]);d[3]=AAbsD1(a[3]);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC retAF2 opAAbsF2(outAF2 d,inAF2 a){d[0]=AAbsF1(a[0]);d[1]=AAbsF1(a[1]);return d;} + A_STATIC retAF3 opAAbsF3(outAF3 d,inAF3 a){d[0]=AAbsF1(a[0]);d[1]=AAbsF1(a[1]);d[2]=AAbsF1(a[2]);return d;} + A_STATIC retAF4 opAAbsF4(outAF4 d,inAF4 a){d[0]=AAbsF1(a[0]);d[1]=AAbsF1(a[1]);d[2]=AAbsF1(a[2]);d[3]=AAbsF1(a[3]);return d;} +//============================================================================================================================== + A_STATIC retAD2 opAAddD2(outAD2 d,inAD2 a,inAD2 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];return d;} + A_STATIC retAD3 opAAddD3(outAD3 d,inAD3 a,inAD3 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];return d;} + A_STATIC retAD4 opAAddD4(outAD4 d,inAD4 a,inAD4 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];d[3]=a[3]+b[3];return d;} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC retAF2 opAAddF2(outAF2 d,inAF2 a,inAF2 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];return d;} + A_STATIC retAF3 opAAddF3(outAF3 d,inAF3 a,inAF3 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];return d;} + A_STATIC retAF4 opAAddF4(outAF4 d,inAF4 a,inAF4 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];d[3]=a[3]+b[3];return d;} +//============================================================================================================================== + A_STATIC retAD2 opAAddOneD2(outAD2 d,inAD2 a,AD1 b){d[0]=a[0]+b;d[1]=a[1]+b;return d;} + A_STATIC retAD3 opAAddOneD3(outAD3 d,inAD3 a,AD1 b){d[0]=a[0]+b;d[1]=a[1]+b;d[2]=a[2]+b;return d;} + A_STATIC retAD4 opAAddOneD4(outAD4 d,inAD4 a,AD1 b){d[0]=a[0]+b;d[1]=a[1]+b;d[2]=a[2]+b;d[3]=a[3]+b;return d;} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC retAF2 opAAddOneF2(outAF2 d,inAF2 a,AF1 b){d[0]=a[0]+b;d[1]=a[1]+b;return d;} + A_STATIC retAF3 opAAddOneF3(outAF3 d,inAF3 a,AF1 b){d[0]=a[0]+b;d[1]=a[1]+b;d[2]=a[2]+b;return d;} + A_STATIC retAF4 opAAddOneF4(outAF4 d,inAF4 a,AF1 b){d[0]=a[0]+b;d[1]=a[1]+b;d[2]=a[2]+b;d[3]=a[3]+b;return d;} +//============================================================================================================================== + A_STATIC retAD2 opACpyD2(outAD2 d,inAD2 a){d[0]=a[0];d[1]=a[1];return d;} + A_STATIC retAD3 opACpyD3(outAD3 d,inAD3 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];return d;} + A_STATIC retAD4 opACpyD4(outAD4 d,inAD4 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];d[3]=a[3];return d;} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC retAF2 opACpyF2(outAF2 d,inAF2 a){d[0]=a[0];d[1]=a[1];return d;} + A_STATIC retAF3 opACpyF3(outAF3 d,inAF3 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];return d;} + A_STATIC retAF4 opACpyF4(outAF4 d,inAF4 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];d[3]=a[3];return d;} +//============================================================================================================================== + A_STATIC retAD2 opALerpD2(outAD2 d,inAD2 a,inAD2 b,inAD2 c){d[0]=ALerpD1(a[0],b[0],c[0]);d[1]=ALerpD1(a[1],b[1],c[1]);return d;} + A_STATIC retAD3 opALerpD3(outAD3 d,inAD3 a,inAD3 b,inAD3 c){d[0]=ALerpD1(a[0],b[0],c[0]);d[1]=ALerpD1(a[1],b[1],c[1]);d[2]=ALerpD1(a[2],b[2],c[2]);return d;} + A_STATIC retAD4 opALerpD4(outAD4 d,inAD4 a,inAD4 b,inAD4 c){d[0]=ALerpD1(a[0],b[0],c[0]);d[1]=ALerpD1(a[1],b[1],c[1]);d[2]=ALerpD1(a[2],b[2],c[2]);d[3]=ALerpD1(a[3],b[3],c[3]);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC retAF2 opALerpF2(outAF2 d,inAF2 a,inAF2 b,inAF2 c){d[0]=ALerpF1(a[0],b[0],c[0]);d[1]=ALerpF1(a[1],b[1],c[1]);return d;} + A_STATIC retAF3 opALerpF3(outAF3 d,inAF3 a,inAF3 b,inAF3 c){d[0]=ALerpF1(a[0],b[0],c[0]);d[1]=ALerpF1(a[1],b[1],c[1]);d[2]=ALerpF1(a[2],b[2],c[2]);return d;} + A_STATIC retAF4 opALerpF4(outAF4 d,inAF4 a,inAF4 b,inAF4 c){d[0]=ALerpF1(a[0],b[0],c[0]);d[1]=ALerpF1(a[1],b[1],c[1]);d[2]=ALerpF1(a[2],b[2],c[2]);d[3]=ALerpF1(a[3],b[3],c[3]);return d;} +//============================================================================================================================== + A_STATIC retAD2 opALerpOneD2(outAD2 d,inAD2 a,inAD2 b,AD1 c){d[0]=ALerpD1(a[0],b[0],c);d[1]=ALerpD1(a[1],b[1],c);return d;} + A_STATIC retAD3 opALerpOneD3(outAD3 d,inAD3 a,inAD3 b,AD1 c){d[0]=ALerpD1(a[0],b[0],c);d[1]=ALerpD1(a[1],b[1],c);d[2]=ALerpD1(a[2],b[2],c);return d;} + A_STATIC retAD4 opALerpOneD4(outAD4 d,inAD4 a,inAD4 b,AD1 c){d[0]=ALerpD1(a[0],b[0],c);d[1]=ALerpD1(a[1],b[1],c);d[2]=ALerpD1(a[2],b[2],c);d[3]=ALerpD1(a[3],b[3],c);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC retAF2 opALerpOneF2(outAF2 d,inAF2 a,inAF2 b,AF1 c){d[0]=ALerpF1(a[0],b[0],c);d[1]=ALerpF1(a[1],b[1],c);return d;} + A_STATIC retAF3 opALerpOneF3(outAF3 d,inAF3 a,inAF3 b,AF1 c){d[0]=ALerpF1(a[0],b[0],c);d[1]=ALerpF1(a[1],b[1],c);d[2]=ALerpF1(a[2],b[2],c);return d;} + A_STATIC retAF4 opALerpOneF4(outAF4 d,inAF4 a,inAF4 b,AF1 c){d[0]=ALerpF1(a[0],b[0],c);d[1]=ALerpF1(a[1],b[1],c);d[2]=ALerpF1(a[2],b[2],c);d[3]=ALerpF1(a[3],b[3],c);return d;} +//============================================================================================================================== + A_STATIC retAD2 opAMaxD2(outAD2 d,inAD2 a,inAD2 b){d[0]=AMaxD1(a[0],b[0]);d[1]=AMaxD1(a[1],b[1]);return d;} + A_STATIC retAD3 opAMaxD3(outAD3 d,inAD3 a,inAD3 b){d[0]=AMaxD1(a[0],b[0]);d[1]=AMaxD1(a[1],b[1]);d[2]=AMaxD1(a[2],b[2]);return d;} + A_STATIC retAD4 opAMaxD4(outAD4 d,inAD4 a,inAD4 b){d[0]=AMaxD1(a[0],b[0]);d[1]=AMaxD1(a[1],b[1]);d[2]=AMaxD1(a[2],b[2]);d[3]=AMaxD1(a[3],b[3]);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC retAF2 opAMaxF2(outAF2 d,inAF2 a,inAF2 b){d[0]=AMaxF1(a[0],b[0]);d[1]=AMaxF1(a[1],b[1]);return d;} + A_STATIC retAF3 opAMaxF3(outAF3 d,inAF3 a,inAF3 b){d[0]=AMaxF1(a[0],b[0]);d[1]=AMaxF1(a[1],b[1]);d[2]=AMaxF1(a[2],b[2]);return d;} + A_STATIC retAF4 opAMaxF4(outAF4 d,inAF4 a,inAF4 b){d[0]=AMaxF1(a[0],b[0]);d[1]=AMaxF1(a[1],b[1]);d[2]=AMaxF1(a[2],b[2]);d[3]=AMaxF1(a[3],b[3]);return d;} +//============================================================================================================================== + A_STATIC retAD2 opAMinD2(outAD2 d,inAD2 a,inAD2 b){d[0]=AMinD1(a[0],b[0]);d[1]=AMinD1(a[1],b[1]);return d;} + A_STATIC retAD3 opAMinD3(outAD3 d,inAD3 a,inAD3 b){d[0]=AMinD1(a[0],b[0]);d[1]=AMinD1(a[1],b[1]);d[2]=AMinD1(a[2],b[2]);return d;} + A_STATIC retAD4 opAMinD4(outAD4 d,inAD4 a,inAD4 b){d[0]=AMinD1(a[0],b[0]);d[1]=AMinD1(a[1],b[1]);d[2]=AMinD1(a[2],b[2]);d[3]=AMinD1(a[3],b[3]);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC retAF2 opAMinF2(outAF2 d,inAF2 a,inAF2 b){d[0]=AMinF1(a[0],b[0]);d[1]=AMinF1(a[1],b[1]);return d;} + A_STATIC retAF3 opAMinF3(outAF3 d,inAF3 a,inAF3 b){d[0]=AMinF1(a[0],b[0]);d[1]=AMinF1(a[1],b[1]);d[2]=AMinF1(a[2],b[2]);return d;} + A_STATIC retAF4 opAMinF4(outAF4 d,inAF4 a,inAF4 b){d[0]=AMinF1(a[0],b[0]);d[1]=AMinF1(a[1],b[1]);d[2]=AMinF1(a[2],b[2]);d[3]=AMinF1(a[3],b[3]);return d;} +//============================================================================================================================== + A_STATIC retAD2 opAMulD2(outAD2 d,inAD2 a,inAD2 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];return d;} + A_STATIC retAD3 opAMulD3(outAD3 d,inAD3 a,inAD3 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];return d;} + A_STATIC retAD4 opAMulD4(outAD4 d,inAD4 a,inAD4 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];d[3]=a[3]*b[3];return d;} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC retAF2 opAMulF2(outAF2 d,inAF2 a,inAF2 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];return d;} + A_STATIC retAF3 opAMulF3(outAF3 d,inAF3 a,inAF3 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];return d;} + A_STATIC retAF4 opAMulF4(outAF4 d,inAF4 a,inAF4 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];d[3]=a[3]*b[3];return d;} +//============================================================================================================================== + A_STATIC retAD2 opAMulOneD2(outAD2 d,inAD2 a,AD1 b){d[0]=a[0]*b;d[1]=a[1]*b;return d;} + A_STATIC retAD3 opAMulOneD3(outAD3 d,inAD3 a,AD1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;return d;} + A_STATIC retAD4 opAMulOneD4(outAD4 d,inAD4 a,AD1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;d[3]=a[3]*b;return d;} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC retAF2 opAMulOneF2(outAF2 d,inAF2 a,AF1 b){d[0]=a[0]*b;d[1]=a[1]*b;return d;} + A_STATIC retAF3 opAMulOneF3(outAF3 d,inAF3 a,AF1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;return d;} + A_STATIC retAF4 opAMulOneF4(outAF4 d,inAF4 a,AF1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;d[3]=a[3]*b;return d;} +//============================================================================================================================== + A_STATIC retAD2 opANegD2(outAD2 d,inAD2 a){d[0]=-a[0];d[1]=-a[1];return d;} + A_STATIC retAD3 opANegD3(outAD3 d,inAD3 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];return d;} + A_STATIC retAD4 opANegD4(outAD4 d,inAD4 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];d[3]=-a[3];return d;} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC retAF2 opANegF2(outAF2 d,inAF2 a){d[0]=-a[0];d[1]=-a[1];return d;} + A_STATIC retAF3 opANegF3(outAF3 d,inAF3 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];return d;} + A_STATIC retAF4 opANegF4(outAF4 d,inAF4 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];d[3]=-a[3];return d;} +//============================================================================================================================== + A_STATIC retAD2 opARcpD2(outAD2 d,inAD2 a){d[0]=ARcpD1(a[0]);d[1]=ARcpD1(a[1]);return d;} + A_STATIC retAD3 opARcpD3(outAD3 d,inAD3 a){d[0]=ARcpD1(a[0]);d[1]=ARcpD1(a[1]);d[2]=ARcpD1(a[2]);return d;} + A_STATIC retAD4 opARcpD4(outAD4 d,inAD4 a){d[0]=ARcpD1(a[0]);d[1]=ARcpD1(a[1]);d[2]=ARcpD1(a[2]);d[3]=ARcpD1(a[3]);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + A_STATIC retAF2 opARcpF2(outAF2 d,inAF2 a){d[0]=ARcpF1(a[0]);d[1]=ARcpF1(a[1]);return d;} + A_STATIC retAF3 opARcpF3(outAF3 d,inAF3 a){d[0]=ARcpF1(a[0]);d[1]=ARcpF1(a[1]);d[2]=ARcpF1(a[2]);return d;} + A_STATIC retAF4 opARcpF4(outAF4 d,inAF4 a){d[0]=ARcpF1(a[0]);d[1]=ARcpF1(a[1]);d[2]=ARcpF1(a[2]);d[3]=ARcpF1(a[3]);return d;} +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// HALF FLOAT PACKING +//============================================================================================================================== + // Convert float to half (in lower 16-bits of output). + // Same fast technique as documented here: ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf + // Supports denormals. + // Conversion rules are to make computations possibly "safer" on the GPU, + // -INF & -NaN -> -65504 + // +INF & +NaN -> +65504 + A_STATIC AU1 AU1_AH1_AF1(AF1 f){ + static AW1 base[512]={ + 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, + 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, + 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, + 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, + 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, + 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, + 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0001,0x0002,0x0004,0x0008,0x0010,0x0020,0x0040,0x0080,0x0100, + 0x0200,0x0400,0x0800,0x0c00,0x1000,0x1400,0x1800,0x1c00,0x2000,0x2400,0x2800,0x2c00,0x3000,0x3400,0x3800,0x3c00, + 0x4000,0x4400,0x4800,0x4c00,0x5000,0x5400,0x5800,0x5c00,0x6000,0x6400,0x6800,0x6c00,0x7000,0x7400,0x7800,0x7bff, + 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, + 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, + 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, + 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, + 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, + 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, + 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, + 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000, + 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000, + 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000, + 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000, + 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000, + 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000, + 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8001,0x8002,0x8004,0x8008,0x8010,0x8020,0x8040,0x8080,0x8100, + 0x8200,0x8400,0x8800,0x8c00,0x9000,0x9400,0x9800,0x9c00,0xa000,0xa400,0xa800,0xac00,0xb000,0xb400,0xb800,0xbc00, + 0xc000,0xc400,0xc800,0xcc00,0xd000,0xd400,0xd800,0xdc00,0xe000,0xe400,0xe800,0xec00,0xf000,0xf400,0xf800,0xfbff, + 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff, + 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff, + 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff, + 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff, + 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff, + 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff, + 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff}; + static AB1 shift[512]={ + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x17,0x16,0x15,0x14,0x13,0x12,0x11,0x10,0x0f, + 0x0e,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d, + 0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x17,0x16,0x15,0x14,0x13,0x12,0x11,0x10,0x0f, + 0x0e,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d, + 0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, + 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18}; + union{AF1 f;AU1 u;}bits;bits.f=f;AU1 u=bits.u;AU1 i=u>>23;return (AU1)(base[i])+((u&0x7fffff)>>shift[i]);} +//------------------------------------------------------------------------------------------------------------------------------ + // Used to output packed constant. + A_STATIC AU1 AU1_AH2_AF2(inAF2 a){return AU1_AH1_AF1(a[0])+(AU1_AH1_AF1(a[1])<<16);} +#endif +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// GLSL +//============================================================================================================================== +#if defined(A_GLSL) && defined(A_GPU) + #ifndef A_SKIP_EXT + #ifdef A_LONG + #extension GL_ARB_gpu_shader_int64:require + #extension GL_NV_shader_atomic_int64:require + #endif +//------------------------------------------------------------------------------------------------------------------------------ + #ifdef A_WAVE + #extension GL_KHR_shader_subgroup_arithmetic:require + #extension GL_KHR_shader_subgroup_ballot:require + #extension GL_KHR_shader_subgroup_quad:require + #extension GL_KHR_shader_subgroup_shuffle:require + #endif + #endif +//============================================================================================================================== + #define AP1 bool + #define AP2 bvec2 + #define AP3 bvec3 + #define AP4 bvec4 +//------------------------------------------------------------------------------------------------------------------------------ + #define AF1 float + #define AF2 vec2 + #define AF3 vec3 + #define AF4 vec4 +//------------------------------------------------------------------------------------------------------------------------------ + #define AU1 uint + #define AU2 uvec2 + #define AU3 uvec3 + #define AU4 uvec4 +//------------------------------------------------------------------------------------------------------------------------------ + #define ASU1 int + #define ASU2 ivec2 + #define ASU3 ivec3 + #define ASU4 ivec4 +//============================================================================================================================== + #define AF1_AU1(x) uintBitsToFloat(AU1(x)) + #define AF2_AU2(x) uintBitsToFloat(AU2(x)) + #define AF3_AU3(x) uintBitsToFloat(AU3(x)) + #define AF4_AU4(x) uintBitsToFloat(AU4(x)) +//------------------------------------------------------------------------------------------------------------------------------ + #define AU1_AF1(x) floatBitsToUint(AF1(x)) + #define AU2_AF2(x) floatBitsToUint(AF2(x)) + #define AU3_AF3(x) floatBitsToUint(AF3(x)) + #define AU4_AF4(x) floatBitsToUint(AF4(x)) +//============================================================================================================================== + AF1 AF1_x(AF1 a){return AF1(a);} + AF2 AF2_x(AF1 a){return AF2(a,a);} + AF3 AF3_x(AF1 a){return AF3(a,a,a);} + AF4 AF4_x(AF1 a){return AF4(a,a,a,a);} + #define AF1_(a) AF1_x(AF1(a)) + #define AF2_(a) AF2_x(AF1(a)) + #define AF3_(a) AF3_x(AF1(a)) + #define AF4_(a) AF4_x(AF1(a)) +//------------------------------------------------------------------------------------------------------------------------------ + AU1 AU1_x(AU1 a){return AU1(a);} + AU2 AU2_x(AU1 a){return AU2(a,a);} + AU3 AU3_x(AU1 a){return AU3(a,a,a);} + AU4 AU4_x(AU1 a){return AU4(a,a,a,a);} + #define AU1_(a) AU1_x(AU1(a)) + #define AU2_(a) AU2_x(AU1(a)) + #define AU3_(a) AU3_x(AU1(a)) + #define AU4_(a) AU4_x(AU1(a)) +//============================================================================================================================== + AU1 AAbsSU1(AU1 a){return AU1(abs(ASU1(a)));} + AU2 AAbsSU2(AU2 a){return AU2(abs(ASU2(a)));} + AU3 AAbsSU3(AU3 a){return AU3(abs(ASU3(a)));} + AU4 AAbsSU4(AU4 a){return AU4(abs(ASU4(a)));} +//------------------------------------------------------------------------------------------------------------------------------ + AU1 ABfe(AU1 src,AU1 off,AU1 bits){return bitfieldExtract(src,ASU1(off),ASU1(bits));} + AU1 ABfi(AU1 src,AU1 ins,AU1 mask){return (ins&mask)|(src&(~mask));} + // Proxy for V_BFI_B32 where the 'mask' is set as 'bits', 'mask=(1<<bits)-1', and 'bits' needs to be an immediate. + AU1 ABfiM(AU1 src,AU1 ins,AU1 bits){return bitfieldInsert(src,ins,0,ASU1(bits));} +//------------------------------------------------------------------------------------------------------------------------------ + // V_MED3_F32. + AF1 AClampF1(AF1 x,AF1 n,AF1 m){return clamp(x,n,m);} + AF2 AClampF2(AF2 x,AF2 n,AF2 m){return clamp(x,n,m);} + AF3 AClampF3(AF3 x,AF3 n,AF3 m){return clamp(x,n,m);} + AF4 AClampF4(AF4 x,AF4 n,AF4 m){return clamp(x,n,m);} +//------------------------------------------------------------------------------------------------------------------------------ + // V_FRACT_F32 (note DX frac() is different). + AF1 AFractF1(AF1 x){return fract(x);} + AF2 AFractF2(AF2 x){return fract(x);} + AF3 AFractF3(AF3 x){return fract(x);} + AF4 AFractF4(AF4 x){return fract(x);} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 ALerpF1(AF1 x,AF1 y,AF1 a){return mix(x,y,a);} + AF2 ALerpF2(AF2 x,AF2 y,AF2 a){return mix(x,y,a);} + AF3 ALerpF3(AF3 x,AF3 y,AF3 a){return mix(x,y,a);} + AF4 ALerpF4(AF4 x,AF4 y,AF4 a){return mix(x,y,a);} +//------------------------------------------------------------------------------------------------------------------------------ + // V_MAX3_F32. + AF1 AMax3F1(AF1 x,AF1 y,AF1 z){return max(x,max(y,z));} + AF2 AMax3F2(AF2 x,AF2 y,AF2 z){return max(x,max(y,z));} + AF3 AMax3F3(AF3 x,AF3 y,AF3 z){return max(x,max(y,z));} + AF4 AMax3F4(AF4 x,AF4 y,AF4 z){return max(x,max(y,z));} +//------------------------------------------------------------------------------------------------------------------------------ + AU1 AMax3SU1(AU1 x,AU1 y,AU1 z){return AU1(max(ASU1(x),max(ASU1(y),ASU1(z))));} + AU2 AMax3SU2(AU2 x,AU2 y,AU2 z){return AU2(max(ASU2(x),max(ASU2(y),ASU2(z))));} + AU3 AMax3SU3(AU3 x,AU3 y,AU3 z){return AU3(max(ASU3(x),max(ASU3(y),ASU3(z))));} + AU4 AMax3SU4(AU4 x,AU4 y,AU4 z){return AU4(max(ASU4(x),max(ASU4(y),ASU4(z))));} +//------------------------------------------------------------------------------------------------------------------------------ + AU1 AMax3U1(AU1 x,AU1 y,AU1 z){return max(x,max(y,z));} + AU2 AMax3U2(AU2 x,AU2 y,AU2 z){return max(x,max(y,z));} + AU3 AMax3U3(AU3 x,AU3 y,AU3 z){return max(x,max(y,z));} + AU4 AMax3U4(AU4 x,AU4 y,AU4 z){return max(x,max(y,z));} +//------------------------------------------------------------------------------------------------------------------------------ + AU1 AMaxSU1(AU1 a,AU1 b){return AU1(max(ASU1(a),ASU1(b)));} + AU2 AMaxSU2(AU2 a,AU2 b){return AU2(max(ASU2(a),ASU2(b)));} + AU3 AMaxSU3(AU3 a,AU3 b){return AU3(max(ASU3(a),ASU3(b)));} + AU4 AMaxSU4(AU4 a,AU4 b){return AU4(max(ASU4(a),ASU4(b)));} +//------------------------------------------------------------------------------------------------------------------------------ + // Clamp has an easier pattern match for med3 when some ordering is known. + // V_MED3_F32. + AF1 AMed3F1(AF1 x,AF1 y,AF1 z){return max(min(x,y),min(max(x,y),z));} + AF2 AMed3F2(AF2 x,AF2 y,AF2 z){return max(min(x,y),min(max(x,y),z));} + AF3 AMed3F3(AF3 x,AF3 y,AF3 z){return max(min(x,y),min(max(x,y),z));} + AF4 AMed3F4(AF4 x,AF4 y,AF4 z){return max(min(x,y),min(max(x,y),z));} +//------------------------------------------------------------------------------------------------------------------------------ + // V_MIN3_F32. + AF1 AMin3F1(AF1 x,AF1 y,AF1 z){return min(x,min(y,z));} + AF2 AMin3F2(AF2 x,AF2 y,AF2 z){return min(x,min(y,z));} + AF3 AMin3F3(AF3 x,AF3 y,AF3 z){return min(x,min(y,z));} + AF4 AMin3F4(AF4 x,AF4 y,AF4 z){return min(x,min(y,z));} +//------------------------------------------------------------------------------------------------------------------------------ + AU1 AMin3SU1(AU1 x,AU1 y,AU1 z){return AU1(min(ASU1(x),min(ASU1(y),ASU1(z))));} + AU2 AMin3SU2(AU2 x,AU2 y,AU2 z){return AU2(min(ASU2(x),min(ASU2(y),ASU2(z))));} + AU3 AMin3SU3(AU3 x,AU3 y,AU3 z){return AU3(min(ASU3(x),min(ASU3(y),ASU3(z))));} + AU4 AMin3SU4(AU4 x,AU4 y,AU4 z){return AU4(min(ASU4(x),min(ASU4(y),ASU4(z))));} +//------------------------------------------------------------------------------------------------------------------------------ + AU1 AMin3U1(AU1 x,AU1 y,AU1 z){return min(x,min(y,z));} + AU2 AMin3U2(AU2 x,AU2 y,AU2 z){return min(x,min(y,z));} + AU3 AMin3U3(AU3 x,AU3 y,AU3 z){return min(x,min(y,z));} + AU4 AMin3U4(AU4 x,AU4 y,AU4 z){return min(x,min(y,z));} +//------------------------------------------------------------------------------------------------------------------------------ + AU1 AMinSU1(AU1 a,AU1 b){return AU1(min(ASU1(a),ASU1(b)));} + AU2 AMinSU2(AU2 a,AU2 b){return AU2(min(ASU2(a),ASU2(b)));} + AU3 AMinSU3(AU3 a,AU3 b){return AU3(min(ASU3(a),ASU3(b)));} + AU4 AMinSU4(AU4 a,AU4 b){return AU4(min(ASU4(a),ASU4(b)));} +//------------------------------------------------------------------------------------------------------------------------------ + // Normalized trig. Valid input domain is {-256 to +256}. No GLSL compiler intrinsic exists to map to this currently. + // V_COS_F32. + AF1 ANCosF1(AF1 x){return cos(x*AF1_(A_2PI));} + AF2 ANCosF2(AF2 x){return cos(x*AF2_(A_2PI));} + AF3 ANCosF3(AF3 x){return cos(x*AF3_(A_2PI));} + AF4 ANCosF4(AF4 x){return cos(x*AF4_(A_2PI));} +//------------------------------------------------------------------------------------------------------------------------------ + // Normalized trig. Valid input domain is {-256 to +256}. No GLSL compiler intrinsic exists to map to this currently. + // V_SIN_F32. + AF1 ANSinF1(AF1 x){return sin(x*AF1_(A_2PI));} + AF2 ANSinF2(AF2 x){return sin(x*AF2_(A_2PI));} + AF3 ANSinF3(AF3 x){return sin(x*AF3_(A_2PI));} + AF4 ANSinF4(AF4 x){return sin(x*AF4_(A_2PI));} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 ARcpF1(AF1 x){return AF1_(1.0)/x;} + AF2 ARcpF2(AF2 x){return AF2_(1.0)/x;} + AF3 ARcpF3(AF3 x){return AF3_(1.0)/x;} + AF4 ARcpF4(AF4 x){return AF4_(1.0)/x;} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 ARsqF1(AF1 x){return AF1_(1.0)/sqrt(x);} + AF2 ARsqF2(AF2 x){return AF2_(1.0)/sqrt(x);} + AF3 ARsqF3(AF3 x){return AF3_(1.0)/sqrt(x);} + AF4 ARsqF4(AF4 x){return AF4_(1.0)/sqrt(x);} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 ASatF1(AF1 x){return clamp(x,AF1_(0.0),AF1_(1.0));} + AF2 ASatF2(AF2 x){return clamp(x,AF2_(0.0),AF2_(1.0));} + AF3 ASatF3(AF3 x){return clamp(x,AF3_(0.0),AF3_(1.0));} + AF4 ASatF4(AF4 x){return clamp(x,AF4_(0.0),AF4_(1.0));} +//------------------------------------------------------------------------------------------------------------------------------ + AU1 AShrSU1(AU1 a,AU1 b){return AU1(ASU1(a)>>ASU1(b));} + AU2 AShrSU2(AU2 a,AU2 b){return AU2(ASU2(a)>>ASU2(b));} + AU3 AShrSU3(AU3 a,AU3 b){return AU3(ASU3(a)>>ASU3(b));} + AU4 AShrSU4(AU4 a,AU4 b){return AU4(ASU4(a)>>ASU4(b));} +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// GLSL BYTE +//============================================================================================================================== + #ifdef A_BYTE + #define AB1 uint8_t + #define AB2 u8vec2 + #define AB3 u8vec3 + #define AB4 u8vec4 +//------------------------------------------------------------------------------------------------------------------------------ + #define ASB1 int8_t + #define ASB2 i8vec2 + #define ASB3 i8vec3 + #define ASB4 i8vec4 +//------------------------------------------------------------------------------------------------------------------------------ + AB1 AB1_x(AB1 a){return AB1(a);} + AB2 AB2_x(AB1 a){return AB2(a,a);} + AB3 AB3_x(AB1 a){return AB3(a,a,a);} + AB4 AB4_x(AB1 a){return AB4(a,a,a,a);} + #define AB1_(a) AB1_x(AB1(a)) + #define AB2_(a) AB2_x(AB1(a)) + #define AB3_(a) AB3_x(AB1(a)) + #define AB4_(a) AB4_x(AB1(a)) + #endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// GLSL DOUBLE +//============================================================================================================================== + #ifdef A_DUBL + #define AD1 double + #define AD2 dvec2 + #define AD3 dvec3 + #define AD4 dvec4 +//------------------------------------------------------------------------------------------------------------------------------ + AD1 AD1_x(AD1 a){return AD1(a);} + AD2 AD2_x(AD1 a){return AD2(a,a);} + AD3 AD3_x(AD1 a){return AD3(a,a,a);} + AD4 AD4_x(AD1 a){return AD4(a,a,a,a);} + #define AD1_(a) AD1_x(AD1(a)) + #define AD2_(a) AD2_x(AD1(a)) + #define AD3_(a) AD3_x(AD1(a)) + #define AD4_(a) AD4_x(AD1(a)) +//============================================================================================================================== + AD1 AFractD1(AD1 x){return fract(x);} + AD2 AFractD2(AD2 x){return fract(x);} + AD3 AFractD3(AD3 x){return fract(x);} + AD4 AFractD4(AD4 x){return fract(x);} +//------------------------------------------------------------------------------------------------------------------------------ + AD1 ALerpD1(AD1 x,AD1 y,AD1 a){return mix(x,y,a);} + AD2 ALerpD2(AD2 x,AD2 y,AD2 a){return mix(x,y,a);} + AD3 ALerpD3(AD3 x,AD3 y,AD3 a){return mix(x,y,a);} + AD4 ALerpD4(AD4 x,AD4 y,AD4 a){return mix(x,y,a);} +//------------------------------------------------------------------------------------------------------------------------------ + AD1 ARcpD1(AD1 x){return AD1_(1.0)/x;} + AD2 ARcpD2(AD2 x){return AD2_(1.0)/x;} + AD3 ARcpD3(AD3 x){return AD3_(1.0)/x;} + AD4 ARcpD4(AD4 x){return AD4_(1.0)/x;} +//------------------------------------------------------------------------------------------------------------------------------ + AD1 ARsqD1(AD1 x){return AD1_(1.0)/sqrt(x);} + AD2 ARsqD2(AD2 x){return AD2_(1.0)/sqrt(x);} + AD3 ARsqD3(AD3 x){return AD3_(1.0)/sqrt(x);} + AD4 ARsqD4(AD4 x){return AD4_(1.0)/sqrt(x);} +//------------------------------------------------------------------------------------------------------------------------------ + AD1 ASatD1(AD1 x){return clamp(x,AD1_(0.0),AD1_(1.0));} + AD2 ASatD2(AD2 x){return clamp(x,AD2_(0.0),AD2_(1.0));} + AD3 ASatD3(AD3 x){return clamp(x,AD3_(0.0),AD3_(1.0));} + AD4 ASatD4(AD4 x){return clamp(x,AD4_(0.0),AD4_(1.0));} + #endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// GLSL LONG +//============================================================================================================================== + #ifdef A_LONG + #define AL1 uint64_t + #define AL2 u64vec2 + #define AL3 u64vec3 + #define AL4 u64vec4 +//------------------------------------------------------------------------------------------------------------------------------ + #define ASL1 int64_t + #define ASL2 i64vec2 + #define ASL3 i64vec3 + #define ASL4 i64vec4 +//------------------------------------------------------------------------------------------------------------------------------ + #define AL1_AU2(x) packUint2x32(AU2(x)) + #define AU2_AL1(x) unpackUint2x32(AL1(x)) +//------------------------------------------------------------------------------------------------------------------------------ + AL1 AL1_x(AL1 a){return AL1(a);} + AL2 AL2_x(AL1 a){return AL2(a,a);} + AL3 AL3_x(AL1 a){return AL3(a,a,a);} + AL4 AL4_x(AL1 a){return AL4(a,a,a,a);} + #define AL1_(a) AL1_x(AL1(a)) + #define AL2_(a) AL2_x(AL1(a)) + #define AL3_(a) AL3_x(AL1(a)) + #define AL4_(a) AL4_x(AL1(a)) +//============================================================================================================================== + AL1 AAbsSL1(AL1 a){return AL1(abs(ASL1(a)));} + AL2 AAbsSL2(AL2 a){return AL2(abs(ASL2(a)));} + AL3 AAbsSL3(AL3 a){return AL3(abs(ASL3(a)));} + AL4 AAbsSL4(AL4 a){return AL4(abs(ASL4(a)));} +//------------------------------------------------------------------------------------------------------------------------------ + AL1 AMaxSL1(AL1 a,AL1 b){return AL1(max(ASU1(a),ASU1(b)));} + AL2 AMaxSL2(AL2 a,AL2 b){return AL2(max(ASU2(a),ASU2(b)));} + AL3 AMaxSL3(AL3 a,AL3 b){return AL3(max(ASU3(a),ASU3(b)));} + AL4 AMaxSL4(AL4 a,AL4 b){return AL4(max(ASU4(a),ASU4(b)));} +//------------------------------------------------------------------------------------------------------------------------------ + AL1 AMinSL1(AL1 a,AL1 b){return AL1(min(ASU1(a),ASU1(b)));} + AL2 AMinSL2(AL2 a,AL2 b){return AL2(min(ASU2(a),ASU2(b)));} + AL3 AMinSL3(AL3 a,AL3 b){return AL3(min(ASU3(a),ASU3(b)));} + AL4 AMinSL4(AL4 a,AL4 b){return AL4(min(ASU4(a),ASU4(b)));} + #endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// WAVE OPERATIONS +//============================================================================================================================== + #ifdef A_WAVE + // Where 'x' must be a compile time literal. + AF1 AWaveXorF1(AF1 v,AU1 x){return subgroupShuffleXor(v,x);} + AF2 AWaveXorF2(AF2 v,AU1 x){return subgroupShuffleXor(v,x);} + AF3 AWaveXorF3(AF3 v,AU1 x){return subgroupShuffleXor(v,x);} + AF4 AWaveXorF4(AF4 v,AU1 x){return subgroupShuffleXor(v,x);} + AU1 AWaveXorU1(AU1 v,AU1 x){return subgroupShuffleXor(v,x);} + AU2 AWaveXorU2(AU2 v,AU1 x){return subgroupShuffleXor(v,x);} + AU3 AWaveXorU3(AU3 v,AU1 x){return subgroupShuffleXor(v,x);} + AU4 AWaveXorU4(AU4 v,AU1 x){return subgroupShuffleXor(v,x);} + #endif +//============================================================================================================================== +#endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// +// +// HLSL +// +// +//============================================================================================================================== +#if defined(A_HLSL) && defined(A_GPU) + #ifdef A_HLSL_6_2 + #define AP1 bool + #define AP2 bool2 + #define AP3 bool3 + #define AP4 bool4 +//------------------------------------------------------------------------------------------------------------------------------ + #define AF1 float32_t + #define AF2 float32_t2 + #define AF3 float32_t3 + #define AF4 float32_t4 +//------------------------------------------------------------------------------------------------------------------------------ + #define AU1 uint32_t + #define AU2 uint32_t2 + #define AU3 uint32_t3 + #define AU4 uint32_t4 +//------------------------------------------------------------------------------------------------------------------------------ + #define ASU1 int32_t + #define ASU2 int32_t2 + #define ASU3 int32_t3 + #define ASU4 int32_t4 + #else + #define AP1 bool + #define AP2 bool2 + #define AP3 bool3 + #define AP4 bool4 +//------------------------------------------------------------------------------------------------------------------------------ + #define AF1 float + #define AF2 float2 + #define AF3 float3 + #define AF4 float4 +//------------------------------------------------------------------------------------------------------------------------------ + #define AU1 uint + #define AU2 uint2 + #define AU3 uint3 + #define AU4 uint4 +//------------------------------------------------------------------------------------------------------------------------------ + #define ASU1 int + #define ASU2 int2 + #define ASU3 int3 + #define ASU4 int4 + #endif +//============================================================================================================================== + #define AF1_AU1(x) asfloat(AU1(x)) + #define AF2_AU2(x) asfloat(AU2(x)) + #define AF3_AU3(x) asfloat(AU3(x)) + #define AF4_AU4(x) asfloat(AU4(x)) +//------------------------------------------------------------------------------------------------------------------------------ + #define AU1_AF1(x) asuint(AF1(x)) + #define AU2_AF2(x) asuint(AF2(x)) + #define AU3_AF3(x) asuint(AF3(x)) + #define AU4_AF4(x) asuint(AF4(x)) +//------------------------------------------------------------------------------------------------------------------------------ + AU1 AU1_AH1_AF1_x(AF1 a){return f32tof16(a);} + #define AU1_AH1_AF1(a) AU1_AH1_AF1_x(AF1(a)) +//------------------------------------------------------------------------------------------------------------------------------ + AU1 AU1_AH2_AF2_x(AF2 a){return f32tof16(a.x)|(f32tof16(a.y)<<16);} + #define AU1_AH2_AF2(a) AU1_AH2_AF2_x(AF2(a)) + #define AU1_AB4Unorm_AF4(x) D3DCOLORtoUBYTE4(AF4(x)) +//------------------------------------------------------------------------------------------------------------------------------ + AF2 AF2_AH2_AU1_x(AU1 x){return AF2(f16tof32(x&0xFFFF),f16tof32(x>>16));} + #define AF2_AH2_AU1(x) AF2_AH2_AU1_x(AU1(x)) +//============================================================================================================================== + AF1 AF1_x(AF1 a){return AF1(a);} + AF2 AF2_x(AF1 a){return AF2(a,a);} + AF3 AF3_x(AF1 a){return AF3(a,a,a);} + AF4 AF4_x(AF1 a){return AF4(a,a,a,a);} + #define AF1_(a) AF1_x(AF1(a)) + #define AF2_(a) AF2_x(AF1(a)) + #define AF3_(a) AF3_x(AF1(a)) + #define AF4_(a) AF4_x(AF1(a)) +//------------------------------------------------------------------------------------------------------------------------------ + AU1 AU1_x(AU1 a){return AU1(a);} + AU2 AU2_x(AU1 a){return AU2(a,a);} + AU3 AU3_x(AU1 a){return AU3(a,a,a);} + AU4 AU4_x(AU1 a){return AU4(a,a,a,a);} + #define AU1_(a) AU1_x(AU1(a)) + #define AU2_(a) AU2_x(AU1(a)) + #define AU3_(a) AU3_x(AU1(a)) + #define AU4_(a) AU4_x(AU1(a)) +//============================================================================================================================== + AU1 AAbsSU1(AU1 a){return AU1(abs(ASU1(a)));} + AU2 AAbsSU2(AU2 a){return AU2(abs(ASU2(a)));} + AU3 AAbsSU3(AU3 a){return AU3(abs(ASU3(a)));} + AU4 AAbsSU4(AU4 a){return AU4(abs(ASU4(a)));} +//------------------------------------------------------------------------------------------------------------------------------ + AU1 ABfe(AU1 src,AU1 off,AU1 bits){AU1 mask=(1u<<bits)-1;return (src>>off)&mask;} + AU1 ABfi(AU1 src,AU1 ins,AU1 mask){return (ins&mask)|(src&(~mask));} + AU1 ABfiM(AU1 src,AU1 ins,AU1 bits){AU1 mask=(1u<<bits)-1;return (ins&mask)|(src&(~mask));} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 AClampF1(AF1 x,AF1 n,AF1 m){return max(n,min(x,m));} + AF2 AClampF2(AF2 x,AF2 n,AF2 m){return max(n,min(x,m));} + AF3 AClampF3(AF3 x,AF3 n,AF3 m){return max(n,min(x,m));} + AF4 AClampF4(AF4 x,AF4 n,AF4 m){return max(n,min(x,m));} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 AFractF1(AF1 x){return x-floor(x);} + AF2 AFractF2(AF2 x){return x-floor(x);} + AF3 AFractF3(AF3 x){return x-floor(x);} + AF4 AFractF4(AF4 x){return x-floor(x);} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 ALerpF1(AF1 x,AF1 y,AF1 a){return lerp(x,y,a);} + AF2 ALerpF2(AF2 x,AF2 y,AF2 a){return lerp(x,y,a);} + AF3 ALerpF3(AF3 x,AF3 y,AF3 a){return lerp(x,y,a);} + AF4 ALerpF4(AF4 x,AF4 y,AF4 a){return lerp(x,y,a);} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 AMax3F1(AF1 x,AF1 y,AF1 z){return max(x,max(y,z));} + AF2 AMax3F2(AF2 x,AF2 y,AF2 z){return max(x,max(y,z));} + AF3 AMax3F3(AF3 x,AF3 y,AF3 z){return max(x,max(y,z));} + AF4 AMax3F4(AF4 x,AF4 y,AF4 z){return max(x,max(y,z));} +//------------------------------------------------------------------------------------------------------------------------------ + AU1 AMax3SU1(AU1 x,AU1 y,AU1 z){return AU1(max(ASU1(x),max(ASU1(y),ASU1(z))));} + AU2 AMax3SU2(AU2 x,AU2 y,AU2 z){return AU2(max(ASU2(x),max(ASU2(y),ASU2(z))));} + AU3 AMax3SU3(AU3 x,AU3 y,AU3 z){return AU3(max(ASU3(x),max(ASU3(y),ASU3(z))));} + AU4 AMax3SU4(AU4 x,AU4 y,AU4 z){return AU4(max(ASU4(x),max(ASU4(y),ASU4(z))));} +//------------------------------------------------------------------------------------------------------------------------------ + AU1 AMax3U1(AU1 x,AU1 y,AU1 z){return max(x,max(y,z));} + AU2 AMax3U2(AU2 x,AU2 y,AU2 z){return max(x,max(y,z));} + AU3 AMax3U3(AU3 x,AU3 y,AU3 z){return max(x,max(y,z));} + AU4 AMax3U4(AU4 x,AU4 y,AU4 z){return max(x,max(y,z));} +//------------------------------------------------------------------------------------------------------------------------------ + AU1 AMaxSU1(AU1 a,AU1 b){return AU1(max(ASU1(a),ASU1(b)));} + AU2 AMaxSU2(AU2 a,AU2 b){return AU2(max(ASU2(a),ASU2(b)));} + AU3 AMaxSU3(AU3 a,AU3 b){return AU3(max(ASU3(a),ASU3(b)));} + AU4 AMaxSU4(AU4 a,AU4 b){return AU4(max(ASU4(a),ASU4(b)));} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 AMed3F1(AF1 x,AF1 y,AF1 z){return max(min(x,y),min(max(x,y),z));} + AF2 AMed3F2(AF2 x,AF2 y,AF2 z){return max(min(x,y),min(max(x,y),z));} + AF3 AMed3F3(AF3 x,AF3 y,AF3 z){return max(min(x,y),min(max(x,y),z));} + AF4 AMed3F4(AF4 x,AF4 y,AF4 z){return max(min(x,y),min(max(x,y),z));} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 AMin3F1(AF1 x,AF1 y,AF1 z){return min(x,min(y,z));} + AF2 AMin3F2(AF2 x,AF2 y,AF2 z){return min(x,min(y,z));} + AF3 AMin3F3(AF3 x,AF3 y,AF3 z){return min(x,min(y,z));} + AF4 AMin3F4(AF4 x,AF4 y,AF4 z){return min(x,min(y,z));} +//------------------------------------------------------------------------------------------------------------------------------ + AU1 AMin3SU1(AU1 x,AU1 y,AU1 z){return AU1(min(ASU1(x),min(ASU1(y),ASU1(z))));} + AU2 AMin3SU2(AU2 x,AU2 y,AU2 z){return AU2(min(ASU2(x),min(ASU2(y),ASU2(z))));} + AU3 AMin3SU3(AU3 x,AU3 y,AU3 z){return AU3(min(ASU3(x),min(ASU3(y),ASU3(z))));} + AU4 AMin3SU4(AU4 x,AU4 y,AU4 z){return AU4(min(ASU4(x),min(ASU4(y),ASU4(z))));} +//------------------------------------------------------------------------------------------------------------------------------ + AU1 AMin3U1(AU1 x,AU1 y,AU1 z){return min(x,min(y,z));} + AU2 AMin3U2(AU2 x,AU2 y,AU2 z){return min(x,min(y,z));} + AU3 AMin3U3(AU3 x,AU3 y,AU3 z){return min(x,min(y,z));} + AU4 AMin3U4(AU4 x,AU4 y,AU4 z){return min(x,min(y,z));} +//------------------------------------------------------------------------------------------------------------------------------ + AU1 AMinSU1(AU1 a,AU1 b){return AU1(min(ASU1(a),ASU1(b)));} + AU2 AMinSU2(AU2 a,AU2 b){return AU2(min(ASU2(a),ASU2(b)));} + AU3 AMinSU3(AU3 a,AU3 b){return AU3(min(ASU3(a),ASU3(b)));} + AU4 AMinSU4(AU4 a,AU4 b){return AU4(min(ASU4(a),ASU4(b)));} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 ANCosF1(AF1 x){return cos(x*AF1_(A_2PI));} + AF2 ANCosF2(AF2 x){return cos(x*AF2_(A_2PI));} + AF3 ANCosF3(AF3 x){return cos(x*AF3_(A_2PI));} + AF4 ANCosF4(AF4 x){return cos(x*AF4_(A_2PI));} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 ANSinF1(AF1 x){return sin(x*AF1_(A_2PI));} + AF2 ANSinF2(AF2 x){return sin(x*AF2_(A_2PI));} + AF3 ANSinF3(AF3 x){return sin(x*AF3_(A_2PI));} + AF4 ANSinF4(AF4 x){return sin(x*AF4_(A_2PI));} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 ARcpF1(AF1 x){return rcp(x);} + AF2 ARcpF2(AF2 x){return rcp(x);} + AF3 ARcpF3(AF3 x){return rcp(x);} + AF4 ARcpF4(AF4 x){return rcp(x);} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 ARsqF1(AF1 x){return rsqrt(x);} + AF2 ARsqF2(AF2 x){return rsqrt(x);} + AF3 ARsqF3(AF3 x){return rsqrt(x);} + AF4 ARsqF4(AF4 x){return rsqrt(x);} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 ASatF1(AF1 x){return saturate(x);} + AF2 ASatF2(AF2 x){return saturate(x);} + AF3 ASatF3(AF3 x){return saturate(x);} + AF4 ASatF4(AF4 x){return saturate(x);} +//------------------------------------------------------------------------------------------------------------------------------ + AU1 AShrSU1(AU1 a,AU1 b){return AU1(ASU1(a)>>ASU1(b));} + AU2 AShrSU2(AU2 a,AU2 b){return AU2(ASU2(a)>>ASU2(b));} + AU3 AShrSU3(AU3 a,AU3 b){return AU3(ASU3(a)>>ASU3(b));} + AU4 AShrSU4(AU4 a,AU4 b){return AU4(ASU4(a)>>ASU4(b));} +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// HLSL BYTE +//============================================================================================================================== + #ifdef A_BYTE + #endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// HLSL DOUBLE +//============================================================================================================================== + #ifdef A_DUBL + #ifdef A_HLSL_6_2 + #define AD1 float64_t + #define AD2 float64_t2 + #define AD3 float64_t3 + #define AD4 float64_t4 + #else + #define AD1 double + #define AD2 double2 + #define AD3 double3 + #define AD4 double4 + #endif +//------------------------------------------------------------------------------------------------------------------------------ + AD1 AD1_x(AD1 a){return AD1(a);} + AD2 AD2_x(AD1 a){return AD2(a,a);} + AD3 AD3_x(AD1 a){return AD3(a,a,a);} + AD4 AD4_x(AD1 a){return AD4(a,a,a,a);} + #define AD1_(a) AD1_x(AD1(a)) + #define AD2_(a) AD2_x(AD1(a)) + #define AD3_(a) AD3_x(AD1(a)) + #define AD4_(a) AD4_x(AD1(a)) +//============================================================================================================================== + AD1 AFractD1(AD1 a){return a-floor(a);} + AD2 AFractD2(AD2 a){return a-floor(a);} + AD3 AFractD3(AD3 a){return a-floor(a);} + AD4 AFractD4(AD4 a){return a-floor(a);} +//------------------------------------------------------------------------------------------------------------------------------ + AD1 ALerpD1(AD1 x,AD1 y,AD1 a){return lerp(x,y,a);} + AD2 ALerpD2(AD2 x,AD2 y,AD2 a){return lerp(x,y,a);} + AD3 ALerpD3(AD3 x,AD3 y,AD3 a){return lerp(x,y,a);} + AD4 ALerpD4(AD4 x,AD4 y,AD4 a){return lerp(x,y,a);} +//------------------------------------------------------------------------------------------------------------------------------ + AD1 ARcpD1(AD1 x){return rcp(x);} + AD2 ARcpD2(AD2 x){return rcp(x);} + AD3 ARcpD3(AD3 x){return rcp(x);} + AD4 ARcpD4(AD4 x){return rcp(x);} +//------------------------------------------------------------------------------------------------------------------------------ + AD1 ARsqD1(AD1 x){return rsqrt(x);} + AD2 ARsqD2(AD2 x){return rsqrt(x);} + AD3 ARsqD3(AD3 x){return rsqrt(x);} + AD4 ARsqD4(AD4 x){return rsqrt(x);} +//------------------------------------------------------------------------------------------------------------------------------ + AD1 ASatD1(AD1 x){return saturate(x);} + AD2 ASatD2(AD2 x){return saturate(x);} + AD3 ASatD3(AD3 x){return saturate(x);} + AD4 ASatD4(AD4 x){return saturate(x);} + #endif +//============================================================================================================================== +// HLSL WAVE +//============================================================================================================================== + #ifdef A_WAVE + // Where 'x' must be a compile time literal. + AF1 AWaveXorF1(AF1 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);} + AF2 AWaveXorF2(AF2 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);} + AF3 AWaveXorF3(AF3 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);} + AF4 AWaveXorF4(AF4 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);} + AU1 AWaveXorU1(AU1 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);} + AU2 AWaveXorU1(AU2 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);} + AU3 AWaveXorU1(AU3 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);} + AU4 AWaveXorU1(AU4 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);} + #endif +//============================================================================================================================== +#endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// +// +// GPU COMMON +// +// +//============================================================================================================================== +#ifdef A_GPU + // Negative and positive infinity. + #define A_INFP_F AF1_AU1(0x7f800000u) + #define A_INFN_F AF1_AU1(0xff800000u) +//------------------------------------------------------------------------------------------------------------------------------ + // Copy sign from 's' to positive 'd'. + AF1 ACpySgnF1(AF1 d,AF1 s){return AF1_AU1(AU1_AF1(d)|(AU1_AF1(s)&AU1_(0x80000000u)));} + AF2 ACpySgnF2(AF2 d,AF2 s){return AF2_AU2(AU2_AF2(d)|(AU2_AF2(s)&AU2_(0x80000000u)));} + AF3 ACpySgnF3(AF3 d,AF3 s){return AF3_AU3(AU3_AF3(d)|(AU3_AF3(s)&AU3_(0x80000000u)));} + AF4 ACpySgnF4(AF4 d,AF4 s){return AF4_AU4(AU4_AF4(d)|(AU4_AF4(s)&AU4_(0x80000000u)));} +//------------------------------------------------------------------------------------------------------------------------------ + // Single operation to return (useful to create a mask to use in lerp for branch free logic), + // m=NaN := 0 + // m>=0 := 0 + // m<0 := 1 + // Uses the following useful floating point logic, + // saturate(+a*(-INF)==-INF) := 0 + // saturate( 0*(-INF)== NaN) := 0 + // saturate(-a*(-INF)==+INF) := 1 + AF1 ASignedF1(AF1 m){return ASatF1(m*AF1_(A_INFN_F));} + AF2 ASignedF2(AF2 m){return ASatF2(m*AF2_(A_INFN_F));} + AF3 ASignedF3(AF3 m){return ASatF3(m*AF3_(A_INFN_F));} + AF4 ASignedF4(AF4 m){return ASatF4(m*AF4_(A_INFN_F));} +//------------------------------------------------------------------------------------------------------------------------------ +// #2744 avoid constant overflow AF1 AGtZeroF1(AF1 m){return ASatF1(m*AF1_(A_INFP_F));} + AF2 AGtZeroF2(AF2 m){return ASatF2(m*AF2_(A_INFP_F));} + AF3 AGtZeroF3(AF3 m){return ASatF3(m*AF3_(A_INFP_F));} + AF4 AGtZeroF4(AF4 m){return ASatF4(m*AF4_(A_INFP_F));} +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// [FIS] FLOAT INTEGER SORTABLE +//------------------------------------------------------------------------------------------------------------------------------ +// Float to integer sortable. +// - If sign bit=0, flip the sign bit (positives). +// - If sign bit=1, flip all bits (negatives). +// Integer sortable to float. +// - If sign bit=1, flip the sign bit (positives). +// - If sign bit=0, flip all bits (negatives). +// Has nice side effects. +// - Larger integers are more positive values. +// - Float zero is mapped to center of integers (so clear to integer zero is a nice default for atomic max usage). +// Burns 3 ops for conversion {shift,or,xor}. +//============================================================================================================================== + AU1 AFisToU1(AU1 x){return x^(( AShrSU1(x,AU1_(31)))|AU1_(0x80000000));} + AU1 AFisFromU1(AU1 x){return x^((~AShrSU1(x,AU1_(31)))|AU1_(0x80000000));} +//------------------------------------------------------------------------------------------------------------------------------ + // Just adjust high 16-bit value (useful when upper part of 32-bit word is a 16-bit float value). + AU1 AFisToHiU1(AU1 x){return x^(( AShrSU1(x,AU1_(15)))|AU1_(0x80000000));} + AU1 AFisFromHiU1(AU1 x){return x^((~AShrSU1(x,AU1_(15)))|AU1_(0x80000000));} +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// [BUC] BYTE UNSIGNED CONVERSION +//------------------------------------------------------------------------------------------------------------------------------ +// Designed to use the optimal conversion, enables the scaling to possibly be factored into other computation. +// Works on a range of {0 to A_BUC_<32,16>}, for <32-bit, and 16-bit> respectively. +//------------------------------------------------------------------------------------------------------------------------------ +// OPCODE NOTES +// ============ +// GCN does not do UNORM or SNORM for bytes in opcodes. +// - V_CVT_F32_UBYTE{0,1,2,3} - Unsigned byte to float. +// - V_CVT_PKACC_U8_F32 - Float to unsigned byte (does bit-field insert into 32-bit integer). +// V_PERM_B32 does byte packing with ability to zero fill bytes as well. +// - Can pull out byte values from two sources, and zero fill upper 8-bits of packed hi and lo. +//------------------------------------------------------------------------------------------------------------------------------ +// BYTE : FLOAT - ABuc{0,1,2,3}{To,From}U1() - Designed for V_CVT_F32_UBYTE* and V_CVT_PKACCUM_U8_F32 ops. +// ==== ===== +// 0 : 0 +// 1 : 1 +// ... +// 255 : 255 +// : 256 (just outside the encoding range) +//------------------------------------------------------------------------------------------------------------------------------ +// BYTE : FLOAT - ABuc{0,1,2,3}{To,From}U2() - Designed for 16-bit denormal tricks and V_PERM_B32. +// ==== ===== +// 0 : 0 +// 1 : 1/512 +// 2 : 1/256 +// ... +// 64 : 1/8 +// 128 : 1/4 +// 255 : 255/512 +// : 1/2 (just outside the encoding range) +//------------------------------------------------------------------------------------------------------------------------------ +// OPTIMAL IMPLEMENTATIONS ON AMD ARCHITECTURES +// ============================================ +// r=ABuc0FromU1(i) +// V_CVT_F32_UBYTE0 r,i +// -------------------------------------------- +// r=ABuc0ToU1(d,i) +// V_CVT_PKACCUM_U8_F32 r,i,0,d +// -------------------------------------------- +// d=ABuc0FromU2(i) +// Where 'k0' is an SGPR with 0x0E0A +// Where 'k1' is an SGPR with {32768.0} packed into the lower 16-bits +// V_PERM_B32 d,i.x,i.y,k0 +// V_PK_FMA_F16 d,d,k1.x,0 +// -------------------------------------------- +// r=ABuc0ToU2(d,i) +// Where 'k0' is an SGPR with {1.0/32768.0} packed into the lower 16-bits +// Where 'k1' is an SGPR with 0x???? +// Where 'k2' is an SGPR with 0x???? +// V_PK_FMA_F16 i,i,k0.x,0 +// V_PERM_B32 r.x,i,i,k1 +// V_PERM_B32 r.y,i,i,k2 +//============================================================================================================================== + // Peak range for 32-bit and 16-bit operations. + #define A_BUC_32 (255.0) + #define A_BUC_16 (255.0/512.0) +//============================================================================================================================== + #if 1 + // Designed to be one V_CVT_PKACCUM_U8_F32. + // The extra min is required to pattern match to V_CVT_PKACCUM_U8_F32. + AU1 ABuc0ToU1(AU1 d,AF1 i){return (d&0xffffff00u)|((min(AU1(i),255u) )&(0x000000ffu));} + AU1 ABuc1ToU1(AU1 d,AF1 i){return (d&0xffff00ffu)|((min(AU1(i),255u)<< 8)&(0x0000ff00u));} + AU1 ABuc2ToU1(AU1 d,AF1 i){return (d&0xff00ffffu)|((min(AU1(i),255u)<<16)&(0x00ff0000u));} + AU1 ABuc3ToU1(AU1 d,AF1 i){return (d&0x00ffffffu)|((min(AU1(i),255u)<<24)&(0xff000000u));} +//------------------------------------------------------------------------------------------------------------------------------ + // Designed to be one V_CVT_F32_UBYTE*. + AF1 ABuc0FromU1(AU1 i){return AF1((i )&255u);} + AF1 ABuc1FromU1(AU1 i){return AF1((i>> 8)&255u);} + AF1 ABuc2FromU1(AU1 i){return AF1((i>>16)&255u);} + AF1 ABuc3FromU1(AU1 i){return AF1((i>>24)&255u);} + #endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// [BSC] BYTE SIGNED CONVERSION +//------------------------------------------------------------------------------------------------------------------------------ +// Similar to [BUC]. +// Works on a range of {-/+ A_BSC_<32,16>}, for <32-bit, and 16-bit> respectively. +//------------------------------------------------------------------------------------------------------------------------------ +// ENCODING (without zero-based encoding) +// ======== +// 0 = unused (can be used to mean something else) +// 1 = lowest value +// 128 = exact zero center (zero based encoding +// 255 = highest value +//------------------------------------------------------------------------------------------------------------------------------ +// Zero-based [Zb] flips the MSB bit of the byte (making 128 "exact zero" actually zero). +// This is useful if there is a desire for cleared values to decode as zero. +//------------------------------------------------------------------------------------------------------------------------------ +// BYTE : FLOAT - ABsc{0,1,2,3}{To,From}U2() - Designed for 16-bit denormal tricks and V_PERM_B32. +// ==== ===== +// 0 : -127/512 (unused) +// 1 : -126/512 +// 2 : -125/512 +// ... +// 128 : 0 +// ... +// 255 : 127/512 +// : 1/4 (just outside the encoding range) +//============================================================================================================================== + // Peak range for 32-bit and 16-bit operations. + #define A_BSC_32 (127.0) + #define A_BSC_16 (127.0/512.0) +//============================================================================================================================== + #if 1 + AU1 ABsc0ToU1(AU1 d,AF1 i){return (d&0xffffff00u)|((min(AU1(i+128.0),255u) )&(0x000000ffu));} + AU1 ABsc1ToU1(AU1 d,AF1 i){return (d&0xffff00ffu)|((min(AU1(i+128.0),255u)<< 8)&(0x0000ff00u));} + AU1 ABsc2ToU1(AU1 d,AF1 i){return (d&0xff00ffffu)|((min(AU1(i+128.0),255u)<<16)&(0x00ff0000u));} + AU1 ABsc3ToU1(AU1 d,AF1 i){return (d&0x00ffffffu)|((min(AU1(i+128.0),255u)<<24)&(0xff000000u));} +//------------------------------------------------------------------------------------------------------------------------------ + AU1 ABsc0ToZbU1(AU1 d,AF1 i){return ((d&0xffffff00u)|((min(AU1(trunc(i)+128.0),255u) )&(0x000000ffu)))^0x00000080u;} + AU1 ABsc1ToZbU1(AU1 d,AF1 i){return ((d&0xffff00ffu)|((min(AU1(trunc(i)+128.0),255u)<< 8)&(0x0000ff00u)))^0x00008000u;} + AU1 ABsc2ToZbU1(AU1 d,AF1 i){return ((d&0xff00ffffu)|((min(AU1(trunc(i)+128.0),255u)<<16)&(0x00ff0000u)))^0x00800000u;} + AU1 ABsc3ToZbU1(AU1 d,AF1 i){return ((d&0x00ffffffu)|((min(AU1(trunc(i)+128.0),255u)<<24)&(0xff000000u)))^0x80000000u;} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 ABsc0FromU1(AU1 i){return AF1((i )&255u)-128.0;} + AF1 ABsc1FromU1(AU1 i){return AF1((i>> 8)&255u)-128.0;} + AF1 ABsc2FromU1(AU1 i){return AF1((i>>16)&255u)-128.0;} + AF1 ABsc3FromU1(AU1 i){return AF1((i>>24)&255u)-128.0;} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 ABsc0FromZbU1(AU1 i){return AF1(((i )&255u)^0x80u)-128.0;} + AF1 ABsc1FromZbU1(AU1 i){return AF1(((i>> 8)&255u)^0x80u)-128.0;} + AF1 ABsc2FromZbU1(AU1 i){return AF1(((i>>16)&255u)^0x80u)-128.0;} + AF1 ABsc3FromZbU1(AU1 i){return AF1(((i>>24)&255u)^0x80u)-128.0;} + #endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// FLOAT APPROXIMATIONS +//------------------------------------------------------------------------------------------------------------------------------ +// Michal Drobot has an excellent presentation on these: "Low Level Optimizations For GCN", +// - Idea dates back to SGI, then to Quake 3, etc. +// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf +// - sqrt(x)=rsqrt(x)*x +// - rcp(x)=rsqrt(x)*rsqrt(x) for positive x +// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h +//------------------------------------------------------------------------------------------------------------------------------ +// These below are from perhaps less complete searching for optimal. +// Used FP16 normal range for testing with +4096 32-bit step size for sampling error. +// So these match up well with the half approximations. +//============================================================================================================================== + AF1 APrxLoSqrtF1(AF1 a){return AF1_AU1((AU1_AF1(a)>>AU1_(1))+AU1_(0x1fbc4639));} + AF1 APrxLoRcpF1(AF1 a){return AF1_AU1(AU1_(0x7ef07ebb)-AU1_AF1(a));} + AF1 APrxMedRcpF1(AF1 a){AF1 b=AF1_AU1(AU1_(0x7ef19fff)-AU1_AF1(a));return b*(-b*a+AF1_(2.0));} + AF1 APrxLoRsqF1(AF1 a){return AF1_AU1(AU1_(0x5f347d74)-(AU1_AF1(a)>>AU1_(1)));} +//------------------------------------------------------------------------------------------------------------------------------ + AF2 APrxLoSqrtF2(AF2 a){return AF2_AU2((AU2_AF2(a)>>AU2_(1))+AU2_(0x1fbc4639));} + AF2 APrxLoRcpF2(AF2 a){return AF2_AU2(AU2_(0x7ef07ebb)-AU2_AF2(a));} + AF2 APrxMedRcpF2(AF2 a){AF2 b=AF2_AU2(AU2_(0x7ef19fff)-AU2_AF2(a));return b*(-b*a+AF2_(2.0));} + AF2 APrxLoRsqF2(AF2 a){return AF2_AU2(AU2_(0x5f347d74)-(AU2_AF2(a)>>AU2_(1)));} +//------------------------------------------------------------------------------------------------------------------------------ + AF3 APrxLoSqrtF3(AF3 a){return AF3_AU3((AU3_AF3(a)>>AU3_(1))+AU3_(0x1fbc4639));} + AF3 APrxLoRcpF3(AF3 a){return AF3_AU3(AU3_(0x7ef07ebb)-AU3_AF3(a));} + AF3 APrxMedRcpF3(AF3 a){AF3 b=AF3_AU3(AU3_(0x7ef19fff)-AU3_AF3(a));return b*(-b*a+AF3_(2.0));} + AF3 APrxLoRsqF3(AF3 a){return AF3_AU3(AU3_(0x5f347d74)-(AU3_AF3(a)>>AU3_(1)));} +//------------------------------------------------------------------------------------------------------------------------------ + AF4 APrxLoSqrtF4(AF4 a){return AF4_AU4((AU4_AF4(a)>>AU4_(1))+AU4_(0x1fbc4639));} + AF4 APrxLoRcpF4(AF4 a){return AF4_AU4(AU4_(0x7ef07ebb)-AU4_AF4(a));} + AF4 APrxMedRcpF4(AF4 a){AF4 b=AF4_AU4(AU4_(0x7ef19fff)-AU4_AF4(a));return b*(-b*a+AF4_(2.0));} + AF4 APrxLoRsqF4(AF4 a){return AF4_AU4(AU4_(0x5f347d74)-(AU4_AF4(a)>>AU4_(1)));} +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// PQ APPROXIMATIONS +//------------------------------------------------------------------------------------------------------------------------------ +// PQ is very close to x^(1/8). The functions below Use the fast float approximation method to do +// PQ<~>Gamma2 (4th power and fast 4th root) and PQ<~>Linear (8th power and fast 8th root). Maximum error is ~0.2%. +//============================================================================================================================== +// Helpers + AF1 Quart(AF1 a) { a = a * a; return a * a;} + AF1 Oct(AF1 a) { a = a * a; a = a * a; return a * a; } + AF2 Quart(AF2 a) { a = a * a; return a * a; } + AF2 Oct(AF2 a) { a = a * a; a = a * a; return a * a; } + AF3 Quart(AF3 a) { a = a * a; return a * a; } + AF3 Oct(AF3 a) { a = a * a; a = a * a; return a * a; } + AF4 Quart(AF4 a) { a = a * a; return a * a; } + AF4 Oct(AF4 a) { a = a * a; a = a * a; return a * a; } + //------------------------------------------------------------------------------------------------------------------------------ + AF1 APrxPQToGamma2(AF1 a) { return Quart(a); } + AF1 APrxPQToLinear(AF1 a) { return Oct(a); } + AF1 APrxLoGamma2ToPQ(AF1 a) { return AF1_AU1((AU1_AF1(a) >> AU1_(2)) + AU1_(0x2F9A4E46)); } + AF1 APrxMedGamma2ToPQ(AF1 a) { AF1 b = AF1_AU1((AU1_AF1(a) >> AU1_(2)) + AU1_(0x2F9A4E46)); AF1 b4 = Quart(b); return b - b * (b4 - a) / (AF1_(4.0) * b4); } + AF1 APrxHighGamma2ToPQ(AF1 a) { return sqrt(sqrt(a)); } + AF1 APrxLoLinearToPQ(AF1 a) { return AF1_AU1((AU1_AF1(a) >> AU1_(3)) + AU1_(0x378D8723)); } + AF1 APrxMedLinearToPQ(AF1 a) { AF1 b = AF1_AU1((AU1_AF1(a) >> AU1_(3)) + AU1_(0x378D8723)); AF1 b8 = Oct(b); return b - b * (b8 - a) / (AF1_(8.0) * b8); } + AF1 APrxHighLinearToPQ(AF1 a) { return sqrt(sqrt(sqrt(a))); } + //------------------------------------------------------------------------------------------------------------------------------ + AF2 APrxPQToGamma2(AF2 a) { return Quart(a); } + AF2 APrxPQToLinear(AF2 a) { return Oct(a); } + AF2 APrxLoGamma2ToPQ(AF2 a) { return AF2_AU2((AU2_AF2(a) >> AU2_(2)) + AU2_(0x2F9A4E46)); } + AF2 APrxMedGamma2ToPQ(AF2 a) { AF2 b = AF2_AU2((AU2_AF2(a) >> AU2_(2)) + AU2_(0x2F9A4E46)); AF2 b4 = Quart(b); return b - b * (b4 - a) / (AF1_(4.0) * b4); } + AF2 APrxHighGamma2ToPQ(AF2 a) { return sqrt(sqrt(a)); } + AF2 APrxLoLinearToPQ(AF2 a) { return AF2_AU2((AU2_AF2(a) >> AU2_(3)) + AU2_(0x378D8723)); } + AF2 APrxMedLinearToPQ(AF2 a) { AF2 b = AF2_AU2((AU2_AF2(a) >> AU2_(3)) + AU2_(0x378D8723)); AF2 b8 = Oct(b); return b - b * (b8 - a) / (AF1_(8.0) * b8); } + AF2 APrxHighLinearToPQ(AF2 a) { return sqrt(sqrt(sqrt(a))); } + //------------------------------------------------------------------------------------------------------------------------------ + AF3 APrxPQToGamma2(AF3 a) { return Quart(a); } + AF3 APrxPQToLinear(AF3 a) { return Oct(a); } + AF3 APrxLoGamma2ToPQ(AF3 a) { return AF3_AU3((AU3_AF3(a) >> AU3_(2)) + AU3_(0x2F9A4E46)); } + AF3 APrxMedGamma2ToPQ(AF3 a) { AF3 b = AF3_AU3((AU3_AF3(a) >> AU3_(2)) + AU3_(0x2F9A4E46)); AF3 b4 = Quart(b); return b - b * (b4 - a) / (AF1_(4.0) * b4); } + AF3 APrxHighGamma2ToPQ(AF3 a) { return sqrt(sqrt(a)); } + AF3 APrxLoLinearToPQ(AF3 a) { return AF3_AU3((AU3_AF3(a) >> AU3_(3)) + AU3_(0x378D8723)); } + AF3 APrxMedLinearToPQ(AF3 a) { AF3 b = AF3_AU3((AU3_AF3(a) >> AU3_(3)) + AU3_(0x378D8723)); AF3 b8 = Oct(b); return b - b * (b8 - a) / (AF1_(8.0) * b8); } + AF3 APrxHighLinearToPQ(AF3 a) { return sqrt(sqrt(sqrt(a))); } + //------------------------------------------------------------------------------------------------------------------------------ + AF4 APrxPQToGamma2(AF4 a) { return Quart(a); } + AF4 APrxPQToLinear(AF4 a) { return Oct(a); } + AF4 APrxLoGamma2ToPQ(AF4 a) { return AF4_AU4((AU4_AF4(a) >> AU4_(2)) + AU4_(0x2F9A4E46)); } + AF4 APrxMedGamma2ToPQ(AF4 a) { AF4 b = AF4_AU4((AU4_AF4(a) >> AU4_(2)) + AU4_(0x2F9A4E46)); AF4 b4 = Quart(b); return b - b * (b4 - a) / (AF1_(4.0) * b4); } + AF4 APrxHighGamma2ToPQ(AF4 a) { return sqrt(sqrt(a)); } + AF4 APrxLoLinearToPQ(AF4 a) { return AF4_AU4((AU4_AF4(a) >> AU4_(3)) + AU4_(0x378D8723)); } + AF4 APrxMedLinearToPQ(AF4 a) { AF4 b = AF4_AU4((AU4_AF4(a) >> AU4_(3)) + AU4_(0x378D8723)); AF4 b8 = Oct(b); return b - b * (b8 - a) / (AF1_(8.0) * b8); } + AF4 APrxHighLinearToPQ(AF4 a) { return sqrt(sqrt(sqrt(a))); } +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// PARABOLIC SIN & COS +//------------------------------------------------------------------------------------------------------------------------------ +// Approximate answers to transcendental questions. +//------------------------------------------------------------------------------------------------------------------------------ +//============================================================================================================================== + #if 1 + // Valid input range is {-1 to 1} representing {0 to 2 pi}. + // Output range is {-1/4 to 1/4} representing {-1 to 1}. + AF1 APSinF1(AF1 x){return x*abs(x)-x;} // MAD. + AF2 APSinF2(AF2 x){return x*abs(x)-x;} + AF1 APCosF1(AF1 x){x=AFractF1(x*AF1_(0.5)+AF1_(0.75));x=x*AF1_(2.0)-AF1_(1.0);return APSinF1(x);} // 3x MAD, FRACT + AF2 APCosF2(AF2 x){x=AFractF2(x*AF2_(0.5)+AF2_(0.75));x=x*AF2_(2.0)-AF2_(1.0);return APSinF2(x);} + AF2 APSinCosF1(AF1 x){AF1 y=AFractF1(x*AF1_(0.5)+AF1_(0.75));y=y*AF1_(2.0)-AF1_(1.0);return APSinF2(AF2(x,y));} + #endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// [ZOL] ZERO ONE LOGIC +//------------------------------------------------------------------------------------------------------------------------------ +// Conditional free logic designed for easy 16-bit packing, and backwards porting to 32-bit. +//------------------------------------------------------------------------------------------------------------------------------ +// 0 := false +// 1 := true +//------------------------------------------------------------------------------------------------------------------------------ +// AndNot(x,y) -> !(x&y) .... One op. +// AndOr(x,y,z) -> (x&y)|z ... One op. +// GtZero(x) -> x>0.0 ..... One op. +// Sel(x,y,z) -> x?y:z ..... Two ops, has no precision loss. +// Signed(x) -> x<0.0 ..... One op. +// ZeroPass(x,y) -> x?0:y ..... Two ops, 'y' is a pass through safe for aliasing as integer. +//------------------------------------------------------------------------------------------------------------------------------ +// OPTIMIZATION NOTES +// ================== +// - On Vega to use 2 constants in a packed op, pass in as one AW2 or one AH2 'k.xy' and use as 'k.xx' and 'k.yy'. +// For example 'a.xy*k.xx+k.yy'. +//============================================================================================================================== + #if 1 + AU1 AZolAndU1(AU1 x,AU1 y){return min(x,y);} + AU2 AZolAndU2(AU2 x,AU2 y){return min(x,y);} + AU3 AZolAndU3(AU3 x,AU3 y){return min(x,y);} + AU4 AZolAndU4(AU4 x,AU4 y){return min(x,y);} +//------------------------------------------------------------------------------------------------------------------------------ + AU1 AZolNotU1(AU1 x){return x^AU1_(1);} + AU2 AZolNotU2(AU2 x){return x^AU2_(1);} + AU3 AZolNotU3(AU3 x){return x^AU3_(1);} + AU4 AZolNotU4(AU4 x){return x^AU4_(1);} +//------------------------------------------------------------------------------------------------------------------------------ + AU1 AZolOrU1(AU1 x,AU1 y){return max(x,y);} + AU2 AZolOrU2(AU2 x,AU2 y){return max(x,y);} + AU3 AZolOrU3(AU3 x,AU3 y){return max(x,y);} + AU4 AZolOrU4(AU4 x,AU4 y){return max(x,y);} +//============================================================================================================================== + AU1 AZolF1ToU1(AF1 x){return AU1(x);} + AU2 AZolF2ToU2(AF2 x){return AU2(x);} + AU3 AZolF3ToU3(AF3 x){return AU3(x);} + AU4 AZolF4ToU4(AF4 x){return AU4(x);} +//------------------------------------------------------------------------------------------------------------------------------ + // 2 ops, denormals don't work in 32-bit on PC (and if they are enabled, OMOD is disabled). + AU1 AZolNotF1ToU1(AF1 x){return AU1(AF1_(1.0)-x);} + AU2 AZolNotF2ToU2(AF2 x){return AU2(AF2_(1.0)-x);} + AU3 AZolNotF3ToU3(AF3 x){return AU3(AF3_(1.0)-x);} + AU4 AZolNotF4ToU4(AF4 x){return AU4(AF4_(1.0)-x);} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 AZolU1ToF1(AU1 x){return AF1(x);} + AF2 AZolU2ToF2(AU2 x){return AF2(x);} + AF3 AZolU3ToF3(AU3 x){return AF3(x);} + AF4 AZolU4ToF4(AU4 x){return AF4(x);} +//============================================================================================================================== + AF1 AZolAndF1(AF1 x,AF1 y){return min(x,y);} + AF2 AZolAndF2(AF2 x,AF2 y){return min(x,y);} + AF3 AZolAndF3(AF3 x,AF3 y){return min(x,y);} + AF4 AZolAndF4(AF4 x,AF4 y){return min(x,y);} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 ASolAndNotF1(AF1 x,AF1 y){return (-x)*y+AF1_(1.0);} + AF2 ASolAndNotF2(AF2 x,AF2 y){return (-x)*y+AF2_(1.0);} + AF3 ASolAndNotF3(AF3 x,AF3 y){return (-x)*y+AF3_(1.0);} + AF4 ASolAndNotF4(AF4 x,AF4 y){return (-x)*y+AF4_(1.0);} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 AZolAndOrF1(AF1 x,AF1 y,AF1 z){return ASatF1(x*y+z);} + AF2 AZolAndOrF2(AF2 x,AF2 y,AF2 z){return ASatF2(x*y+z);} + AF3 AZolAndOrF3(AF3 x,AF3 y,AF3 z){return ASatF3(x*y+z);} + AF4 AZolAndOrF4(AF4 x,AF4 y,AF4 z){return ASatF4(x*y+z);} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 AZolGtZeroF1(AF1 x){return ASatF1(x*AF1_(A_INFP_F));} + AF2 AZolGtZeroF2(AF2 x){return ASatF2(x*AF2_(A_INFP_F));} + AF3 AZolGtZeroF3(AF3 x){return ASatF3(x*AF3_(A_INFP_F));} + AF4 AZolGtZeroF4(AF4 x){return ASatF4(x*AF4_(A_INFP_F));} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 AZolNotF1(AF1 x){return AF1_(1.0)-x;} + AF2 AZolNotF2(AF2 x){return AF2_(1.0)-x;} + AF3 AZolNotF3(AF3 x){return AF3_(1.0)-x;} + AF4 AZolNotF4(AF4 x){return AF4_(1.0)-x;} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 AZolOrF1(AF1 x,AF1 y){return max(x,y);} + AF2 AZolOrF2(AF2 x,AF2 y){return max(x,y);} + AF3 AZolOrF3(AF3 x,AF3 y){return max(x,y);} + AF4 AZolOrF4(AF4 x,AF4 y){return max(x,y);} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 AZolSelF1(AF1 x,AF1 y,AF1 z){AF1 r=(-x)*z+z;return x*y+r;} + AF2 AZolSelF2(AF2 x,AF2 y,AF2 z){AF2 r=(-x)*z+z;return x*y+r;} + AF3 AZolSelF3(AF3 x,AF3 y,AF3 z){AF3 r=(-x)*z+z;return x*y+r;} + AF4 AZolSelF4(AF4 x,AF4 y,AF4 z){AF4 r=(-x)*z+z;return x*y+r;} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 AZolSignedF1(AF1 x){return ASatF1(x*AF1_(A_INFN_F));} + AF2 AZolSignedF2(AF2 x){return ASatF2(x*AF2_(A_INFN_F));} + AF3 AZolSignedF3(AF3 x){return ASatF3(x*AF3_(A_INFN_F));} + AF4 AZolSignedF4(AF4 x){return ASatF4(x*AF4_(A_INFN_F));} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 AZolZeroPassF1(AF1 x,AF1 y){return AF1_AU1((AU1_AF1(x)!=AU1_(0))?AU1_(0):AU1_AF1(y));} + AF2 AZolZeroPassF2(AF2 x,AF2 y){return AF2_AU2((AU2_AF2(x)!=AU2_(0))?AU2_(0):AU2_AF2(y));} + AF3 AZolZeroPassF3(AF3 x,AF3 y){return AF3_AU3((AU3_AF3(x)!=AU3_(0))?AU3_(0):AU3_AF3(y));} + AF4 AZolZeroPassF4(AF4 x,AF4 y){return AF4_AU4((AU4_AF4(x)!=AU4_(0))?AU4_(0):AU4_AF4(y));} + #endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// COLOR CONVERSIONS +//------------------------------------------------------------------------------------------------------------------------------ +// These are all linear to/from some other space (where 'linear' has been shortened out of the function name). +// So 'ToGamma' is 'LinearToGamma', and 'FromGamma' is 'LinearFromGamma'. +// These are branch free implementations. +// The AToSrgbF1() function is useful for stores for compute shaders for GPUs without hardware linear->sRGB store conversion. +//------------------------------------------------------------------------------------------------------------------------------ +// TRANSFER FUNCTIONS +// ================== +// 709 ..... Rec709 used for some HDTVs +// Gamma ... Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native +// Pq ...... PQ native for HDR10 +// Srgb .... The sRGB output, typical of PC displays, useful for 10-bit output, or storing to 8-bit UNORM without SRGB type +// Two ..... Gamma 2.0, fastest conversion (useful for intermediate pass approximations) +// Three ... Gamma 3.0, less fast, but good for HDR. +//------------------------------------------------------------------------------------------------------------------------------ +// KEEPING TO SPEC +// =============== +// Both Rec.709 and sRGB have a linear segment which as spec'ed would intersect the curved segment 2 times. +// (a.) For 8-bit sRGB, steps {0 to 10.3} are in the linear region (4% of the encoding range). +// (b.) For 8-bit 709, steps {0 to 20.7} are in the linear region (8% of the encoding range). +// Also there is a slight step in the transition regions. +// Precision of the coefficients in the spec being the likely cause. +// Main usage case of the sRGB code is to do the linear->sRGB converstion in a compute shader before store. +// This is to work around lack of hardware (typically only ROP does the conversion for free). +// To "correct" the linear segment, would be to introduce error, because hardware decode of sRGB->linear is fixed (and free). +// So this header keeps with the spec. +// For linear->sRGB transforms, the linear segment in some respects reduces error, because rounding in that region is linear. +// Rounding in the curved region in hardware (and fast software code) introduces error due to rounding in non-linear. +//------------------------------------------------------------------------------------------------------------------------------ +// FOR PQ +// ====== +// Both input and output is {0.0-1.0}, and where output 1.0 represents 10000.0 cd/m^2. +// All constants are only specified to FP32 precision. +// External PQ source reference, +// - https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESlib.Utilities_Color.a1.0.1.ctl +//------------------------------------------------------------------------------------------------------------------------------ +// PACKED VERSIONS +// =============== +// These are the A*H2() functions. +// There is no PQ functions as FP16 seemed to not have enough precision for the conversion. +// The remaining functions are "good enough" for 8-bit, and maybe 10-bit if not concerned about a few 1-bit errors. +// Precision is lowest in the 709 conversion, higher in sRGB, higher still in Two and Gamma (when using 2.2 at least). +//------------------------------------------------------------------------------------------------------------------------------ +// NOTES +// ===== +// Could be faster for PQ conversions to be in ALU or a texture lookup depending on usage case. +//============================================================================================================================== + #if 1 + AF1 ATo709F1(AF1 c){AF3 j=AF3(0.018*4.5,4.5,0.45);AF2 k=AF2(1.099,-0.099); + return clamp(j.x ,c*j.y ,pow(c,j.z )*k.x +k.y );} + AF2 ATo709F2(AF2 c){AF3 j=AF3(0.018*4.5,4.5,0.45);AF2 k=AF2(1.099,-0.099); + return clamp(j.xx ,c*j.yy ,pow(c,j.zz )*k.xx +k.yy );} + AF3 ATo709F3(AF3 c){AF3 j=AF3(0.018*4.5,4.5,0.45);AF2 k=AF2(1.099,-0.099); + return clamp(j.xxx,c*j.yyy,pow(c,j.zzz)*k.xxx+k.yyy);} +//------------------------------------------------------------------------------------------------------------------------------ + // Note 'rcpX' is '1/x', where the 'x' is what would be used in AFromGamma(). + AF1 AToGammaF1(AF1 c,AF1 rcpX){return pow(c,AF1_(rcpX));} + AF2 AToGammaF2(AF2 c,AF1 rcpX){return pow(c,AF2_(rcpX));} + AF3 AToGammaF3(AF3 c,AF1 rcpX){return pow(c,AF3_(rcpX));} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 AToPqF1(AF1 x){AF1 p=pow(x,AF1_(0.159302)); + return pow((AF1_(0.835938)+AF1_(18.8516)*p)/(AF1_(1.0)+AF1_(18.6875)*p),AF1_(78.8438));} + AF2 AToPqF1(AF2 x){AF2 p=pow(x,AF2_(0.159302)); + return pow((AF2_(0.835938)+AF2_(18.8516)*p)/(AF2_(1.0)+AF2_(18.6875)*p),AF2_(78.8438));} + AF3 AToPqF1(AF3 x){AF3 p=pow(x,AF3_(0.159302)); + return pow((AF3_(0.835938)+AF3_(18.8516)*p)/(AF3_(1.0)+AF3_(18.6875)*p),AF3_(78.8438));} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 AToSrgbF1(AF1 c){AF3 j=AF3(0.0031308*12.92,12.92,1.0/2.4);AF2 k=AF2(1.055,-0.055); + return clamp(j.x ,c*j.y ,pow(c,j.z )*k.x +k.y );} + AF2 AToSrgbF2(AF2 c){AF3 j=AF3(0.0031308*12.92,12.92,1.0/2.4);AF2 k=AF2(1.055,-0.055); + return clamp(j.xx ,c*j.yy ,pow(c,j.zz )*k.xx +k.yy );} + AF3 AToSrgbF3(AF3 c){AF3 j=AF3(0.0031308*12.92,12.92,1.0/2.4);AF2 k=AF2(1.055,-0.055); + return clamp(j.xxx,c*j.yyy,pow(c,j.zzz)*k.xxx+k.yyy);} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 AToTwoF1(AF1 c){return sqrt(c);} + AF2 AToTwoF2(AF2 c){return sqrt(c);} + AF3 AToTwoF3(AF3 c){return sqrt(c);} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 AToThreeF1(AF1 c){return pow(c,AF1_(1.0/3.0));} + AF2 AToThreeF2(AF2 c){return pow(c,AF2_(1.0/3.0));} + AF3 AToThreeF3(AF3 c){return pow(c,AF3_(1.0/3.0));} + #endif +//============================================================================================================================== + #if 1 + // Unfortunately median won't work here. + AF1 AFrom709F1(AF1 c){AF3 j=AF3(0.081/4.5,1.0/4.5,1.0/0.45);AF2 k=AF2(1.0/1.099,0.099/1.099); + return AZolSelF1(AZolSignedF1(c-j.x ),c*j.y ,pow(c*k.x +k.y ,j.z ));} + AF2 AFrom709F2(AF2 c){AF3 j=AF3(0.081/4.5,1.0/4.5,1.0/0.45);AF2 k=AF2(1.0/1.099,0.099/1.099); + return AZolSelF2(AZolSignedF2(c-j.xx ),c*j.yy ,pow(c*k.xx +k.yy ,j.zz ));} + AF3 AFrom709F3(AF3 c){AF3 j=AF3(0.081/4.5,1.0/4.5,1.0/0.45);AF2 k=AF2(1.0/1.099,0.099/1.099); + return AZolSelF3(AZolSignedF3(c-j.xxx),c*j.yyy,pow(c*k.xxx+k.yyy,j.zzz));} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 AFromGammaF1(AF1 c,AF1 x){return pow(c,AF1_(x));} + AF2 AFromGammaF2(AF2 c,AF1 x){return pow(c,AF2_(x));} + AF3 AFromGammaF3(AF3 c,AF1 x){return pow(c,AF3_(x));} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 AFromPqF1(AF1 x){AF1 p=pow(x,AF1_(0.0126833)); + return pow(ASatF1(p-AF1_(0.835938))/(AF1_(18.8516)-AF1_(18.6875)*p),AF1_(6.27739));} + AF2 AFromPqF1(AF2 x){AF2 p=pow(x,AF2_(0.0126833)); + return pow(ASatF2(p-AF2_(0.835938))/(AF2_(18.8516)-AF2_(18.6875)*p),AF2_(6.27739));} + AF3 AFromPqF1(AF3 x){AF3 p=pow(x,AF3_(0.0126833)); + return pow(ASatF3(p-AF3_(0.835938))/(AF3_(18.8516)-AF3_(18.6875)*p),AF3_(6.27739));} +//------------------------------------------------------------------------------------------------------------------------------ + // Unfortunately median won't work here. + AF1 AFromSrgbF1(AF1 c){AF3 j=AF3(0.04045/12.92,1.0/12.92,2.4);AF2 k=AF2(1.0/1.055,0.055/1.055); + return AZolSelF1(AZolSignedF1(c-j.x ),c*j.y ,pow(c*k.x +k.y ,j.z ));} + AF2 AFromSrgbF2(AF2 c){AF3 j=AF3(0.04045/12.92,1.0/12.92,2.4);AF2 k=AF2(1.0/1.055,0.055/1.055); + return AZolSelF2(AZolSignedF2(c-j.xx ),c*j.yy ,pow(c*k.xx +k.yy ,j.zz ));} + AF3 AFromSrgbF3(AF3 c){AF3 j=AF3(0.04045/12.92,1.0/12.92,2.4);AF2 k=AF2(1.0/1.055,0.055/1.055); + return AZolSelF3(AZolSignedF3(c-j.xxx),c*j.yyy,pow(c*k.xxx+k.yyy,j.zzz));} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 AFromTwoF1(AF1 c){return c*c;} + AF2 AFromTwoF2(AF2 c){return c*c;} + AF3 AFromTwoF3(AF3 c){return c*c;} +//------------------------------------------------------------------------------------------------------------------------------ + AF1 AFromThreeF1(AF1 c){return c*c*c;} + AF2 AFromThreeF2(AF2 c){return c*c*c;} + AF3 AFromThreeF3(AF3 c){return c*c*c;} + #endif +//============================================================================================================================== +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// CS REMAP +//============================================================================================================================== + // Simple remap 64x1 to 8x8 with rotated 2x2 pixel quads in quad linear. + // 543210 + // ====== + // ..xxx. + // yy...y + AU2 ARmp8x8(AU1 a){return AU2(ABfe(a,1u,3u),ABfiM(ABfe(a,3u,3u),a,1u));} +//============================================================================================================================== + // More complex remap 64x1 to 8x8 which is necessary for 2D wave reductions. + // 543210 + // ====== + // .xx..x + // y..yy. + // Details, + // LANE TO 8x8 MAPPING + // =================== + // 00 01 08 09 10 11 18 19 + // 02 03 0a 0b 12 13 1a 1b + // 04 05 0c 0d 14 15 1c 1d + // 06 07 0e 0f 16 17 1e 1f + // 20 21 28 29 30 31 38 39 + // 22 23 2a 2b 32 33 3a 3b + // 24 25 2c 2d 34 35 3c 3d + // 26 27 2e 2f 36 37 3e 3f + AU2 ARmpRed8x8(AU1 a){return AU2(ABfiM(ABfe(a,2u,3u),a,1u),ABfiM(ABfe(a,3u,3u),ABfe(a,1u,2u),2u));} +//============================================================================================================================== +#endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// +// REFERENCE +// +//------------------------------------------------------------------------------------------------------------------------------ +// IEEE FLOAT RULES +// ================ +// - saturate(NaN)=0, saturate(-INF)=0, saturate(+INF)=1 +// - {+/-}0 * {+/-}INF = NaN +// - -INF + (+INF) = NaN +// - {+/-}0 / {+/-}0 = NaN +// - {+/-}INF / {+/-}INF = NaN +// - a<(-0) := sqrt(a) = NaN (a=-0.0 won't NaN) +// - 0 == -0 +// - 4/0 = +INF +// - 4/-0 = -INF +// - 4+INF = +INF +// - 4-INF = -INF +// - 4*(+INF) = +INF +// - 4*(-INF) = -INF +// - -4*(+INF) = -INF +// - sqrt(+INF) = +INF +//------------------------------------------------------------------------------------------------------------------------------ +// FP16 ENCODING +// ============= +// fedcba9876543210 +// ---------------- +// ......mmmmmmmmmm 10-bit mantissa (encodes 11-bit 0.5 to 1.0 except for denormals) +// .eeeee.......... 5-bit exponent +// .00000.......... denormals +// .00001.......... -14 exponent +// .11110.......... 15 exponent +// .111110000000000 infinity +// .11111nnnnnnnnnn NaN with n!=0 +// s............... sign +//------------------------------------------------------------------------------------------------------------------------------ +// FP16/INT16 ALIASING DENORMAL +// ============================ +// 11-bit unsigned integers alias with half float denormal/normal values, +// 1 = 2^(-24) = 1/16777216 ....................... first denormal value +// 2 = 2^(-23) +// ... +// 1023 = 2^(-14)*(1-2^(-10)) = 2^(-14)*(1-1/1024) ... last denormal value +// 1024 = 2^(-14) = 1/16384 .......................... first normal value that still maps to integers +// 2047 .............................................. last normal value that still maps to integers +// Scaling limits, +// 2^15 = 32768 ...................................... largest power of 2 scaling +// Largest pow2 conversion mapping is at *32768, +// 1 : 2^(-9) = 1/512 +// 2 : 1/256 +// 4 : 1/128 +// 8 : 1/64 +// 16 : 1/32 +// 32 : 1/16 +// 64 : 1/8 +// 128 : 1/4 +// 256 : 1/2 +// 512 : 1 +// 1024 : 2 +// 2047 : a little less than 4 +//============================================================================================================================== +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// +// +// GPU/CPU PORTABILITY +// +// +//------------------------------------------------------------------------------------------------------------------------------ +// This is the GPU implementation. +// See the CPU implementation for docs. +//============================================================================================================================== +#ifdef A_GPU + #define A_TRUE true + #define A_FALSE false + #define A_STATIC +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// VECTOR ARGUMENT/RETURN/INITIALIZATION PORTABILITY +//============================================================================================================================== + #define retAD2 AD2 + #define retAD3 AD3 + #define retAD4 AD4 + #define retAF2 AF2 + #define retAF3 AF3 + #define retAF4 AF4 + #define retAL2 AL2 + #define retAL3 AL3 + #define retAL4 AL4 + #define retAU2 AU2 + #define retAU3 AU3 + #define retAU4 AU4 +//------------------------------------------------------------------------------------------------------------------------------ + #define inAD2 in AD2 + #define inAD3 in AD3 + #define inAD4 in AD4 + #define inAF2 in AF2 + #define inAF3 in AF3 + #define inAF4 in AF4 + #define inAL2 in AL2 + #define inAL3 in AL3 + #define inAL4 in AL4 + #define inAU2 in AU2 + #define inAU3 in AU3 + #define inAU4 in AU4 +//------------------------------------------------------------------------------------------------------------------------------ + #define inoutAD2 inout AD2 + #define inoutAD3 inout AD3 + #define inoutAD4 inout AD4 + #define inoutAF2 inout AF2 + #define inoutAF3 inout AF3 + #define inoutAF4 inout AF4 + #define inoutAL2 inout AL2 + #define inoutAL3 inout AL3 + #define inoutAL4 inout AL4 + #define inoutAU2 inout AU2 + #define inoutAU3 inout AU3 + #define inoutAU4 inout AU4 +//------------------------------------------------------------------------------------------------------------------------------ + #define outAD2 out AD2 + #define outAD3 out AD3 + #define outAD4 out AD4 + #define outAF2 out AF2 + #define outAF3 out AF3 + #define outAF4 out AF4 + #define outAL2 out AL2 + #define outAL3 out AL3 + #define outAL4 out AL4 + #define outAU2 out AU2 + #define outAU3 out AU3 + #define outAU4 out AU4 +//------------------------------------------------------------------------------------------------------------------------------ + #define varAD2(x) AD2 x + #define varAD3(x) AD3 x + #define varAD4(x) AD4 x + #define varAF2(x) AF2 x + #define varAF3(x) AF3 x + #define varAF4(x) AF4 x + #define varAL2(x) AL2 x + #define varAL3(x) AL3 x + #define varAL4(x) AL4 x + #define varAU2(x) AU2 x + #define varAU3(x) AU3 x + #define varAU4(x) AU4 x +//------------------------------------------------------------------------------------------------------------------------------ + #define initAD2(x,y) AD2(x,y) + #define initAD3(x,y,z) AD3(x,y,z) + #define initAD4(x,y,z,w) AD4(x,y,z,w) + #define initAF2(x,y) AF2(x,y) + #define initAF3(x,y,z) AF3(x,y,z) + #define initAF4(x,y,z,w) AF4(x,y,z,w) + #define initAL2(x,y) AL2(x,y) + #define initAL3(x,y,z) AL3(x,y,z) + #define initAL4(x,y,z,w) AL4(x,y,z,w) + #define initAU2(x,y) AU2(x,y) + #define initAU3(x,y,z) AU3(x,y,z) + #define initAU4(x,y,z,w) AU4(x,y,z,w) +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// SCALAR RETURN OPS +//============================================================================================================================== + #define AAbsD1(a) abs(AD1(a)) + #define AAbsF1(a) abs(AF1(a)) +//------------------------------------------------------------------------------------------------------------------------------ + #define ACosD1(a) cos(AD1(a)) + #define ACosF1(a) cos(AF1(a)) +//------------------------------------------------------------------------------------------------------------------------------ + #define ADotD2(a,b) dot(AD2(a),AD2(b)) + #define ADotD3(a,b) dot(AD3(a),AD3(b)) + #define ADotD4(a,b) dot(AD4(a),AD4(b)) + #define ADotF2(a,b) dot(AF2(a),AF2(b)) + #define ADotF3(a,b) dot(AF3(a),AF3(b)) + #define ADotF4(a,b) dot(AF4(a),AF4(b)) +//------------------------------------------------------------------------------------------------------------------------------ + #define AExp2D1(a) exp2(AD1(a)) + #define AExp2F1(a) exp2(AF1(a)) +//------------------------------------------------------------------------------------------------------------------------------ + #define AFloorD1(a) floor(AD1(a)) + #define AFloorF1(a) floor(AF1(a)) +//------------------------------------------------------------------------------------------------------------------------------ + #define ALog2D1(a) log2(AD1(a)) + #define ALog2F1(a) log2(AF1(a)) +//------------------------------------------------------------------------------------------------------------------------------ + #define AMaxD1(a,b) max(a,b) + #define AMaxF1(a,b) max(a,b) + #define AMaxL1(a,b) max(a,b) + #define AMaxU1(a,b) max(a,b) +//------------------------------------------------------------------------------------------------------------------------------ + #define AMinD1(a,b) min(a,b) + #define AMinF1(a,b) min(a,b) + #define AMinL1(a,b) min(a,b) + #define AMinU1(a,b) min(a,b) +//------------------------------------------------------------------------------------------------------------------------------ + #define ASinD1(a) sin(AD1(a)) + #define ASinF1(a) sin(AF1(a)) +//------------------------------------------------------------------------------------------------------------------------------ + #define ASqrtD1(a) sqrt(AD1(a)) + #define ASqrtF1(a) sqrt(AF1(a)) +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// SCALAR RETURN OPS - DEPENDENT +//============================================================================================================================== + #define APowD1(a,b) pow(AD1(a),AF1(b)) + #define APowF1(a,b) pow(AF1(a),AF1(b)) +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// VECTOR OPS +//------------------------------------------------------------------------------------------------------------------------------ +// These are added as needed for production or prototyping, so not necessarily a complete set. +// They follow a convention of taking in a destination and also returning the destination value to increase utility. +//============================================================================================================================== + #ifdef A_DUBL + AD2 opAAbsD2(outAD2 d,inAD2 a){d=abs(a);return d;} + AD3 opAAbsD3(outAD3 d,inAD3 a){d=abs(a);return d;} + AD4 opAAbsD4(outAD4 d,inAD4 a){d=abs(a);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AD2 opAAddD2(outAD2 d,inAD2 a,inAD2 b){d=a+b;return d;} + AD3 opAAddD3(outAD3 d,inAD3 a,inAD3 b){d=a+b;return d;} + AD4 opAAddD4(outAD4 d,inAD4 a,inAD4 b){d=a+b;return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AD2 opAAddOneD2(outAD2 d,inAD2 a,AD1 b){d=a+AD2_(b);return d;} + AD3 opAAddOneD3(outAD3 d,inAD3 a,AD1 b){d=a+AD3_(b);return d;} + AD4 opAAddOneD4(outAD4 d,inAD4 a,AD1 b){d=a+AD4_(b);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AD2 opACpyD2(outAD2 d,inAD2 a){d=a;return d;} + AD3 opACpyD3(outAD3 d,inAD3 a){d=a;return d;} + AD4 opACpyD4(outAD4 d,inAD4 a){d=a;return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AD2 opALerpD2(outAD2 d,inAD2 a,inAD2 b,inAD2 c){d=ALerpD2(a,b,c);return d;} + AD3 opALerpD3(outAD3 d,inAD3 a,inAD3 b,inAD3 c){d=ALerpD3(a,b,c);return d;} + AD4 opALerpD4(outAD4 d,inAD4 a,inAD4 b,inAD4 c){d=ALerpD4(a,b,c);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AD2 opALerpOneD2(outAD2 d,inAD2 a,inAD2 b,AD1 c){d=ALerpD2(a,b,AD2_(c));return d;} + AD3 opALerpOneD3(outAD3 d,inAD3 a,inAD3 b,AD1 c){d=ALerpD3(a,b,AD3_(c));return d;} + AD4 opALerpOneD4(outAD4 d,inAD4 a,inAD4 b,AD1 c){d=ALerpD4(a,b,AD4_(c));return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AD2 opAMaxD2(outAD2 d,inAD2 a,inAD2 b){d=max(a,b);return d;} + AD3 opAMaxD3(outAD3 d,inAD3 a,inAD3 b){d=max(a,b);return d;} + AD4 opAMaxD4(outAD4 d,inAD4 a,inAD4 b){d=max(a,b);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AD2 opAMinD2(outAD2 d,inAD2 a,inAD2 b){d=min(a,b);return d;} + AD3 opAMinD3(outAD3 d,inAD3 a,inAD3 b){d=min(a,b);return d;} + AD4 opAMinD4(outAD4 d,inAD4 a,inAD4 b){d=min(a,b);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AD2 opAMulD2(outAD2 d,inAD2 a,inAD2 b){d=a*b;return d;} + AD3 opAMulD3(outAD3 d,inAD3 a,inAD3 b){d=a*b;return d;} + AD4 opAMulD4(outAD4 d,inAD4 a,inAD4 b){d=a*b;return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AD2 opAMulOneD2(outAD2 d,inAD2 a,AD1 b){d=a*AD2_(b);return d;} + AD3 opAMulOneD3(outAD3 d,inAD3 a,AD1 b){d=a*AD3_(b);return d;} + AD4 opAMulOneD4(outAD4 d,inAD4 a,AD1 b){d=a*AD4_(b);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AD2 opANegD2(outAD2 d,inAD2 a){d=-a;return d;} + AD3 opANegD3(outAD3 d,inAD3 a){d=-a;return d;} + AD4 opANegD4(outAD4 d,inAD4 a){d=-a;return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AD2 opARcpD2(outAD2 d,inAD2 a){d=ARcpD2(a);return d;} + AD3 opARcpD3(outAD3 d,inAD3 a){d=ARcpD3(a);return d;} + AD4 opARcpD4(outAD4 d,inAD4 a){d=ARcpD4(a);return d;} + #endif +//============================================================================================================================== + AF2 opAAbsF2(outAF2 d,inAF2 a){d=abs(a);return d;} + AF3 opAAbsF3(outAF3 d,inAF3 a){d=abs(a);return d;} + AF4 opAAbsF4(outAF4 d,inAF4 a){d=abs(a);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AF2 opAAddF2(outAF2 d,inAF2 a,inAF2 b){d=a+b;return d;} + AF3 opAAddF3(outAF3 d,inAF3 a,inAF3 b){d=a+b;return d;} + AF4 opAAddF4(outAF4 d,inAF4 a,inAF4 b){d=a+b;return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AF2 opAAddOneF2(outAF2 d,inAF2 a,AF1 b){d=a+AF2_(b);return d;} + AF3 opAAddOneF3(outAF3 d,inAF3 a,AF1 b){d=a+AF3_(b);return d;} + AF4 opAAddOneF4(outAF4 d,inAF4 a,AF1 b){d=a+AF4_(b);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AF2 opACpyF2(outAF2 d,inAF2 a){d=a;return d;} + AF3 opACpyF3(outAF3 d,inAF3 a){d=a;return d;} + AF4 opACpyF4(outAF4 d,inAF4 a){d=a;return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AF2 opALerpF2(outAF2 d,inAF2 a,inAF2 b,inAF2 c){d=ALerpF2(a,b,c);return d;} + AF3 opALerpF3(outAF3 d,inAF3 a,inAF3 b,inAF3 c){d=ALerpF3(a,b,c);return d;} + AF4 opALerpF4(outAF4 d,inAF4 a,inAF4 b,inAF4 c){d=ALerpF4(a,b,c);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AF2 opALerpOneF2(outAF2 d,inAF2 a,inAF2 b,AF1 c){d=ALerpF2(a,b,AF2_(c));return d;} + AF3 opALerpOneF3(outAF3 d,inAF3 a,inAF3 b,AF1 c){d=ALerpF3(a,b,AF3_(c));return d;} + AF4 opALerpOneF4(outAF4 d,inAF4 a,inAF4 b,AF1 c){d=ALerpF4(a,b,AF4_(c));return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AF2 opAMaxF2(outAF2 d,inAF2 a,inAF2 b){d=max(a,b);return d;} + AF3 opAMaxF3(outAF3 d,inAF3 a,inAF3 b){d=max(a,b);return d;} + AF4 opAMaxF4(outAF4 d,inAF4 a,inAF4 b){d=max(a,b);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AF2 opAMinF2(outAF2 d,inAF2 a,inAF2 b){d=min(a,b);return d;} + AF3 opAMinF3(outAF3 d,inAF3 a,inAF3 b){d=min(a,b);return d;} + AF4 opAMinF4(outAF4 d,inAF4 a,inAF4 b){d=min(a,b);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AF2 opAMulF2(outAF2 d,inAF2 a,inAF2 b){d=a*b;return d;} + AF3 opAMulF3(outAF3 d,inAF3 a,inAF3 b){d=a*b;return d;} + AF4 opAMulF4(outAF4 d,inAF4 a,inAF4 b){d=a*b;return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AF2 opAMulOneF2(outAF2 d,inAF2 a,AF1 b){d=a*AF2_(b);return d;} + AF3 opAMulOneF3(outAF3 d,inAF3 a,AF1 b){d=a*AF3_(b);return d;} + AF4 opAMulOneF4(outAF4 d,inAF4 a,AF1 b){d=a*AF4_(b);return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AF2 opANegF2(outAF2 d,inAF2 a){d=-a;return d;} + AF3 opANegF3(outAF3 d,inAF3 a){d=-a;return d;} + AF4 opANegF4(outAF4 d,inAF4 a){d=-a;return d;} +//------------------------------------------------------------------------------------------------------------------------------ + AF2 opARcpF2(outAF2 d,inAF2 a){d=ARcpF2(a);return d;} + AF3 opARcpF3(outAF3 d,inAF3 a){d=ARcpF3(a);return d;} + AF4 opARcpF4(outAF4 d,inAF4 a){d=ARcpF4(a);return d;} +#endif + +#endif + +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// +// [CAS] FIDELITY FX - CONSTRAST ADAPTIVE SHARPENING 1.20190610 +// +//============================================================================================================================== +// LICENSE +// ======= +// Copyright (c) 2017-2019 Advanced Micro Devices, Inc. All rights reserved. +// ------- +// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation +// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, +// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the +// Software is furnished to do so, subject to the following conditions: +// ------- +// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the +// Software. +// ------- +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE +// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, +// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. +//------------------------------------------------------------------------------------------------------------------------------ +#define CAS_AREA_LIMIT 4.0 +//------------------------------------------------------------------------------------------------------------------------------ +// Pass in output and input resolution in pixels. +// This returns true if CAS supports scaling in the given configuration. +AP1 CasSupportScaling(AF1 outX,AF1 outY,AF1 inX,AF1 inY){return ((outX*outY)*ARcpF1(inX*inY))<=CAS_AREA_LIMIT;} +//============================================================================================================================== +// Call to setup required constant values (works on CPU or GPU). +#ifndef A_GPU +A_STATIC void CasSetup( + outAU4 const0, + outAU4 const1, + AF1 sharpness, // 0 := default (lower ringing), 1 := maximum (higest ringing) + AF1 inputSizeInPixelsX, + AF1 inputSizeInPixelsY, + AF1 outputSizeInPixelsX, + AF1 outputSizeInPixelsY){ + // Scaling terms. + const0[0]=AU1_AF1(inputSizeInPixelsX*ARcpF1(outputSizeInPixelsX)); + const0[1]=AU1_AF1(inputSizeInPixelsY*ARcpF1(outputSizeInPixelsY)); + const0[2]=AU1_AF1(AF1_(0.5)*inputSizeInPixelsX*ARcpF1(outputSizeInPixelsX)-AF1_(0.5)); + const0[3]=AU1_AF1(AF1_(0.5)*inputSizeInPixelsY*ARcpF1(outputSizeInPixelsY)-AF1_(0.5)); + // Sharpness value. + AF1 sharp=-ARcpF1(ALerpF1(8.0,5.0,ASatF1(sharpness))); + varAF2(hSharp)=initAF2(sharp,0.0); + const1[0]=AU1_AF1(sharp); + const1[1]=AU1_AH2_AF2(hSharp); + const1[2]=AU1_AF1(AF1_(8.0)*inputSizeInPixelsX*ARcpF1(outputSizeInPixelsX)); + const1[3]=0;} +#endif + +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// NON-PACKED VERSION +//============================================================================================================================== +#ifdef A_GPU + AF3 CasLoad(ASU2 p) { return texelFetch(diffuseRect, p, 0).rgb; } + void CasInput(inout AF1 r,inout AF1 g,inout AF1 b) + { + } + +//------------------------------------------------------------------------------------------------------------------------------ + void CasFilter( + out AF1 pixR, // Output values, non-vector so port between CasFilter() and CasFilterH() is easy. + out AF1 pixG, + out AF1 pixB, + AU2 ip, // Integer pixel position in output. + AU4 const0, // Constants generated by CasSetup(). + AU4 const1, + AP1 noScaling){ // Must be a compile-time literal value, true = sharpen only (no resize). +//------------------------------------------------------------------------------------------------------------------------------ + // Debug a checker pattern of on/off tiles for visual inspection. + #ifdef CAS_DEBUG_CHECKER + if((((ip.x^ip.y)>>8u)&1u)==0u){AF3 pix0=CasLoad(ASU2(ip)); + pixR=pix0.r;pixG=pix0.g;pixB=pix0.b;CasInput(pixR,pixG,pixB);return;} + #endif +//------------------------------------------------------------------------------------------------------------------------------ + // No scaling algorithm uses minimal 3x3 pixel neighborhood. + if(noScaling){ + // a b c + // d e f + // g h i + ASU2 sp=ASU2(ip); + AF3 a=CasLoad(sp+ASU2(-1,-1)); + AF3 b=CasLoad(sp+ASU2( 0,-1)); + AF3 c=CasLoad(sp+ASU2( 1,-1)); + AF3 d=CasLoad(sp+ASU2(-1, 0)); + AF3 e=CasLoad(sp); + AF3 f=CasLoad(sp+ASU2( 1, 0)); + AF3 g=CasLoad(sp+ASU2(-1, 1)); + AF3 h=CasLoad(sp+ASU2( 0, 1)); + AF3 i=CasLoad(sp+ASU2( 1, 1)); + // Run optional input transform. + CasInput(a.r,a.g,a.b); + CasInput(b.r,b.g,b.b); + CasInput(c.r,c.g,c.b); + CasInput(d.r,d.g,d.b); + CasInput(e.r,e.g,e.b); + CasInput(f.r,f.g,f.b); + CasInput(g.r,g.g,g.b); + CasInput(h.r,h.g,h.b); + CasInput(i.r,i.g,i.b); + // Soft min and max. + // a b c b + // d e f * 0.5 + d e f * 0.5 + // g h i h + // These are 2.0x bigger (factored out the extra multiply). + AF1 mnR=AMin3F1(AMin3F1(d.r,e.r,f.r),b.r,h.r); + AF1 mnG=AMin3F1(AMin3F1(d.g,e.g,f.g),b.g,h.g); + AF1 mnB=AMin3F1(AMin3F1(d.b,e.b,f.b),b.b,h.b); + #ifdef CAS_BETTER_DIAGONALS + AF1 mnR2=AMin3F1(AMin3F1(mnR,a.r,c.r),g.r,i.r); + AF1 mnG2=AMin3F1(AMin3F1(mnG,a.g,c.g),g.g,i.g); + AF1 mnB2=AMin3F1(AMin3F1(mnB,a.b,c.b),g.b,i.b); + mnR=mnR+mnR2; + mnG=mnG+mnG2; + mnB=mnB+mnB2; + #endif + AF1 mxR=AMax3F1(AMax3F1(d.r,e.r,f.r),b.r,h.r); + AF1 mxG=AMax3F1(AMax3F1(d.g,e.g,f.g),b.g,h.g); + AF1 mxB=AMax3F1(AMax3F1(d.b,e.b,f.b),b.b,h.b); + #ifdef CAS_BETTER_DIAGONALS + AF1 mxR2=AMax3F1(AMax3F1(mxR,a.r,c.r),g.r,i.r); + AF1 mxG2=AMax3F1(AMax3F1(mxG,a.g,c.g),g.g,i.g); + AF1 mxB2=AMax3F1(AMax3F1(mxB,a.b,c.b),g.b,i.b); + mxR=mxR+mxR2; + mxG=mxG+mxG2; + mxB=mxB+mxB2; + #endif + // Smooth minimum distance to signal limit divided by smooth max. + #ifdef CAS_GO_SLOWER + AF1 rcpMR=ARcpF1(mxR); + AF1 rcpMG=ARcpF1(mxG); + AF1 rcpMB=ARcpF1(mxB); + #else + AF1 rcpMR=APrxLoRcpF1(mxR); + AF1 rcpMG=APrxLoRcpF1(mxG); + AF1 rcpMB=APrxLoRcpF1(mxB); + #endif + #ifdef CAS_BETTER_DIAGONALS + AF1 ampR=ASatF1(min(mnR,AF1_(2.0)-mxR)*rcpMR); + AF1 ampG=ASatF1(min(mnG,AF1_(2.0)-mxG)*rcpMG); + AF1 ampB=ASatF1(min(mnB,AF1_(2.0)-mxB)*rcpMB); + #else + AF1 ampR=ASatF1(min(mnR,AF1_(1.0)-mxR)*rcpMR); + AF1 ampG=ASatF1(min(mnG,AF1_(1.0)-mxG)*rcpMG); + AF1 ampB=ASatF1(min(mnB,AF1_(1.0)-mxB)*rcpMB); + #endif + // Shaping amount of sharpening. + #ifdef CAS_GO_SLOWER + ampR=sqrt(ampR); + ampG=sqrt(ampG); + ampB=sqrt(ampB); + #else + ampR=APrxLoSqrtF1(ampR); + ampG=APrxLoSqrtF1(ampG); + ampB=APrxLoSqrtF1(ampB); + #endif + // Filter shape. + // 0 w 0 + // w 1 w + // 0 w 0 + AF1 peak=AF1_AU1(const1.x); + AF1 wR=ampR*peak; + AF1 wG=ampG*peak; + AF1 wB=ampB*peak; + // Filter. + #ifndef CAS_SLOW + // Using green coef only, depending on dead code removal to strip out the extra overhead. + #ifdef CAS_GO_SLOWER + AF1 rcpWeight=ARcpF1(AF1_(1.0)+AF1_(4.0)*wG); + #else + AF1 rcpWeight=APrxMedRcpF1(AF1_(1.0)+AF1_(4.0)*wG); + #endif + pixR=ASatF1((b.r*wG+d.r*wG+f.r*wG+h.r*wG+e.r)*rcpWeight); + pixG=ASatF1((b.g*wG+d.g*wG+f.g*wG+h.g*wG+e.g)*rcpWeight); + pixB=ASatF1((b.b*wG+d.b*wG+f.b*wG+h.b*wG+e.b)*rcpWeight); + #else + #ifdef CAS_GO_SLOWER + AF1 rcpWeightR=ARcpF1(AF1_(1.0)+AF1_(4.0)*wR); + AF1 rcpWeightG=ARcpF1(AF1_(1.0)+AF1_(4.0)*wG); + AF1 rcpWeightB=ARcpF1(AF1_(1.0)+AF1_(4.0)*wB); + #else + AF1 rcpWeightR=APrxMedRcpF1(AF1_(1.0)+AF1_(4.0)*wR); + AF1 rcpWeightG=APrxMedRcpF1(AF1_(1.0)+AF1_(4.0)*wG); + AF1 rcpWeightB=APrxMedRcpF1(AF1_(1.0)+AF1_(4.0)*wB); + #endif + pixR=ASatF1((b.r*wR+d.r*wR+f.r*wR+h.r*wR+e.r)*rcpWeightR); + pixG=ASatF1((b.g*wG+d.g*wG+f.g*wG+h.g*wG+e.g)*rcpWeightG); + pixB=ASatF1((b.b*wB+d.b*wB+f.b*wB+h.b*wB+e.b)*rcpWeightB); + #endif + return;} +//------------------------------------------------------------------------------------------------------------------------------ + // Scaling algorithm adaptively interpolates between nearest 4 results of the non-scaling algorithm. + // a b c d + // e f g h + // i j k l + // m n o p + // Working these 4 results. + // +-----+-----+ + // | | | + // | f..|..g | + // | . | . | + // +-----+-----+ + // | . | . | + // | j..|..k | + // | | | + // +-----+-----+ + AF2 pp=AF2(ip)*AF2_AU2(const0.xy)+AF2_AU2(const0.zw); + AF2 fp=floor(pp); + pp-=fp; + ASU2 sp=ASU2(fp); + AF3 a=CasLoad(sp+ASU2(-1,-1)); + AF3 b=CasLoad(sp+ASU2( 0,-1)); + AF3 e=CasLoad(sp+ASU2(-1, 0)); + AF3 f=CasLoad(sp); + AF3 c=CasLoad(sp+ASU2( 1,-1)); + AF3 d=CasLoad(sp+ASU2( 2,-1)); + AF3 g=CasLoad(sp+ASU2( 1, 0)); + AF3 h=CasLoad(sp+ASU2( 2, 0)); + AF3 i=CasLoad(sp+ASU2(-1, 1)); + AF3 j=CasLoad(sp+ASU2( 0, 1)); + AF3 m=CasLoad(sp+ASU2(-1, 2)); + AF3 n=CasLoad(sp+ASU2( 0, 2)); + AF3 k=CasLoad(sp+ASU2( 1, 1)); + AF3 l=CasLoad(sp+ASU2( 2, 1)); + AF3 o=CasLoad(sp+ASU2( 1, 2)); + AF3 p=CasLoad(sp+ASU2( 2, 2)); + // Run optional input transform. + CasInput(a.r,a.g,a.b); + CasInput(b.r,b.g,b.b); + CasInput(c.r,c.g,c.b); + CasInput(d.r,d.g,d.b); + CasInput(e.r,e.g,e.b); + CasInput(f.r,f.g,f.b); + CasInput(g.r,g.g,g.b); + CasInput(h.r,h.g,h.b); + CasInput(i.r,i.g,i.b); + CasInput(j.r,j.g,j.b); + CasInput(k.r,k.g,k.b); + CasInput(l.r,l.g,l.b); + CasInput(m.r,m.g,m.b); + CasInput(n.r,n.g,n.b); + CasInput(o.r,o.g,o.b); + CasInput(p.r,p.g,p.b); + // Soft min and max. + // These are 2.0x bigger (factored out the extra multiply). + // a b c b + // e f g * 0.5 + e f g * 0.5 [F] + // i j k j + AF1 mnfR=AMin3F1(AMin3F1(b.r,e.r,f.r),g.r,j.r); + AF1 mnfG=AMin3F1(AMin3F1(b.g,e.g,f.g),g.g,j.g); + AF1 mnfB=AMin3F1(AMin3F1(b.b,e.b,f.b),g.b,j.b); + #ifdef CAS_BETTER_DIAGONALS + AF1 mnfR2=AMin3F1(AMin3F1(mnfR,a.r,c.r),i.r,k.r); + AF1 mnfG2=AMin3F1(AMin3F1(mnfG,a.g,c.g),i.g,k.g); + AF1 mnfB2=AMin3F1(AMin3F1(mnfB,a.b,c.b),i.b,k.b); + mnfR=mnfR+mnfR2; + mnfG=mnfG+mnfG2; + mnfB=mnfB+mnfB2; + #endif + AF1 mxfR=AMax3F1(AMax3F1(b.r,e.r,f.r),g.r,j.r); + AF1 mxfG=AMax3F1(AMax3F1(b.g,e.g,f.g),g.g,j.g); + AF1 mxfB=AMax3F1(AMax3F1(b.b,e.b,f.b),g.b,j.b); + #ifdef CAS_BETTER_DIAGONALS + AF1 mxfR2=AMax3F1(AMax3F1(mxfR,a.r,c.r),i.r,k.r); + AF1 mxfG2=AMax3F1(AMax3F1(mxfG,a.g,c.g),i.g,k.g); + AF1 mxfB2=AMax3F1(AMax3F1(mxfB,a.b,c.b),i.b,k.b); + mxfR=mxfR+mxfR2; + mxfG=mxfG+mxfG2; + mxfB=mxfB+mxfB2; + #endif + // b c d c + // f g h * 0.5 + f g h * 0.5 [G] + // j k l k + AF1 mngR=AMin3F1(AMin3F1(c.r,f.r,g.r),h.r,k.r); + AF1 mngG=AMin3F1(AMin3F1(c.g,f.g,g.g),h.g,k.g); + AF1 mngB=AMin3F1(AMin3F1(c.b,f.b,g.b),h.b,k.b); + #ifdef CAS_BETTER_DIAGONALS + AF1 mngR2=AMin3F1(AMin3F1(mngR,b.r,d.r),j.r,l.r); + AF1 mngG2=AMin3F1(AMin3F1(mngG,b.g,d.g),j.g,l.g); + AF1 mngB2=AMin3F1(AMin3F1(mngB,b.b,d.b),j.b,l.b); + mngR=mngR+mngR2; + mngG=mngG+mngG2; + mngB=mngB+mngB2; + #endif + AF1 mxgR=AMax3F1(AMax3F1(c.r,f.r,g.r),h.r,k.r); + AF1 mxgG=AMax3F1(AMax3F1(c.g,f.g,g.g),h.g,k.g); + AF1 mxgB=AMax3F1(AMax3F1(c.b,f.b,g.b),h.b,k.b); + #ifdef CAS_BETTER_DIAGONALS + AF1 mxgR2=AMax3F1(AMax3F1(mxgR,b.r,d.r),j.r,l.r); + AF1 mxgG2=AMax3F1(AMax3F1(mxgG,b.g,d.g),j.g,l.g); + AF1 mxgB2=AMax3F1(AMax3F1(mxgB,b.b,d.b),j.b,l.b); + mxgR=mxgR+mxgR2; + mxgG=mxgG+mxgG2; + mxgB=mxgB+mxgB2; + #endif + // e f g f + // i j k * 0.5 + i j k * 0.5 [J] + // m n o n + AF1 mnjR=AMin3F1(AMin3F1(f.r,i.r,j.r),k.r,n.r); + AF1 mnjG=AMin3F1(AMin3F1(f.g,i.g,j.g),k.g,n.g); + AF1 mnjB=AMin3F1(AMin3F1(f.b,i.b,j.b),k.b,n.b); + #ifdef CAS_BETTER_DIAGONALS + AF1 mnjR2=AMin3F1(AMin3F1(mnjR,e.r,g.r),m.r,o.r); + AF1 mnjG2=AMin3F1(AMin3F1(mnjG,e.g,g.g),m.g,o.g); + AF1 mnjB2=AMin3F1(AMin3F1(mnjB,e.b,g.b),m.b,o.b); + mnjR=mnjR+mnjR2; + mnjG=mnjG+mnjG2; + mnjB=mnjB+mnjB2; + #endif + AF1 mxjR=AMax3F1(AMax3F1(f.r,i.r,j.r),k.r,n.r); + AF1 mxjG=AMax3F1(AMax3F1(f.g,i.g,j.g),k.g,n.g); + AF1 mxjB=AMax3F1(AMax3F1(f.b,i.b,j.b),k.b,n.b); + #ifdef CAS_BETTER_DIAGONALS + AF1 mxjR2=AMax3F1(AMax3F1(mxjR,e.r,g.r),m.r,o.r); + AF1 mxjG2=AMax3F1(AMax3F1(mxjG,e.g,g.g),m.g,o.g); + AF1 mxjB2=AMax3F1(AMax3F1(mxjB,e.b,g.b),m.b,o.b); + mxjR=mxjR+mxjR2; + mxjG=mxjG+mxjG2; + mxjB=mxjB+mxjB2; + #endif + // f g h g + // j k l * 0.5 + j k l * 0.5 [K] + // n o p o + AF1 mnkR=AMin3F1(AMin3F1(g.r,j.r,k.r),l.r,o.r); + AF1 mnkG=AMin3F1(AMin3F1(g.g,j.g,k.g),l.g,o.g); + AF1 mnkB=AMin3F1(AMin3F1(g.b,j.b,k.b),l.b,o.b); + #ifdef CAS_BETTER_DIAGONALS + AF1 mnkR2=AMin3F1(AMin3F1(mnkR,f.r,h.r),n.r,p.r); + AF1 mnkG2=AMin3F1(AMin3F1(mnkG,f.g,h.g),n.g,p.g); + AF1 mnkB2=AMin3F1(AMin3F1(mnkB,f.b,h.b),n.b,p.b); + mnkR=mnkR+mnkR2; + mnkG=mnkG+mnkG2; + mnkB=mnkB+mnkB2; + #endif + AF1 mxkR=AMax3F1(AMax3F1(g.r,j.r,k.r),l.r,o.r); + AF1 mxkG=AMax3F1(AMax3F1(g.g,j.g,k.g),l.g,o.g); + AF1 mxkB=AMax3F1(AMax3F1(g.b,j.b,k.b),l.b,o.b); + #ifdef CAS_BETTER_DIAGONALS + AF1 mxkR2=AMax3F1(AMax3F1(mxkR,f.r,h.r),n.r,p.r); + AF1 mxkG2=AMax3F1(AMax3F1(mxkG,f.g,h.g),n.g,p.g); + AF1 mxkB2=AMax3F1(AMax3F1(mxkB,f.b,h.b),n.b,p.b); + mxkR=mxkR+mxkR2; + mxkG=mxkG+mxkG2; + mxkB=mxkB+mxkB2; + #endif + // Smooth minimum distance to signal limit divided by smooth max. + #ifdef CAS_GO_SLOWER + AF1 rcpMfR=ARcpF1(mxfR); + AF1 rcpMfG=ARcpF1(mxfG); + AF1 rcpMfB=ARcpF1(mxfB); + AF1 rcpMgR=ARcpF1(mxgR); + AF1 rcpMgG=ARcpF1(mxgG); + AF1 rcpMgB=ARcpF1(mxgB); + AF1 rcpMjR=ARcpF1(mxjR); + AF1 rcpMjG=ARcpF1(mxjG); + AF1 rcpMjB=ARcpF1(mxjB); + AF1 rcpMkR=ARcpF1(mxkR); + AF1 rcpMkG=ARcpF1(mxkG); + AF1 rcpMkB=ARcpF1(mxkB); + #else + AF1 rcpMfR=APrxLoRcpF1(mxfR); + AF1 rcpMfG=APrxLoRcpF1(mxfG); + AF1 rcpMfB=APrxLoRcpF1(mxfB); + AF1 rcpMgR=APrxLoRcpF1(mxgR); + AF1 rcpMgG=APrxLoRcpF1(mxgG); + AF1 rcpMgB=APrxLoRcpF1(mxgB); + AF1 rcpMjR=APrxLoRcpF1(mxjR); + AF1 rcpMjG=APrxLoRcpF1(mxjG); + AF1 rcpMjB=APrxLoRcpF1(mxjB); + AF1 rcpMkR=APrxLoRcpF1(mxkR); + AF1 rcpMkG=APrxLoRcpF1(mxkG); + AF1 rcpMkB=APrxLoRcpF1(mxkB); + #endif + #ifdef CAS_BETTER_DIAGONALS + AF1 ampfR=ASatF1(min(mnfR,AF1_(2.0)-mxfR)*rcpMfR); + AF1 ampfG=ASatF1(min(mnfG,AF1_(2.0)-mxfG)*rcpMfG); + AF1 ampfB=ASatF1(min(mnfB,AF1_(2.0)-mxfB)*rcpMfB); + AF1 ampgR=ASatF1(min(mngR,AF1_(2.0)-mxgR)*rcpMgR); + AF1 ampgG=ASatF1(min(mngG,AF1_(2.0)-mxgG)*rcpMgG); + AF1 ampgB=ASatF1(min(mngB,AF1_(2.0)-mxgB)*rcpMgB); + AF1 ampjR=ASatF1(min(mnjR,AF1_(2.0)-mxjR)*rcpMjR); + AF1 ampjG=ASatF1(min(mnjG,AF1_(2.0)-mxjG)*rcpMjG); + AF1 ampjB=ASatF1(min(mnjB,AF1_(2.0)-mxjB)*rcpMjB); + AF1 ampkR=ASatF1(min(mnkR,AF1_(2.0)-mxkR)*rcpMkR); + AF1 ampkG=ASatF1(min(mnkG,AF1_(2.0)-mxkG)*rcpMkG); + AF1 ampkB=ASatF1(min(mnkB,AF1_(2.0)-mxkB)*rcpMkB); + #else + AF1 ampfR=ASatF1(min(mnfR,AF1_(1.0)-mxfR)*rcpMfR); + AF1 ampfG=ASatF1(min(mnfG,AF1_(1.0)-mxfG)*rcpMfG); + AF1 ampfB=ASatF1(min(mnfB,AF1_(1.0)-mxfB)*rcpMfB); + AF1 ampgR=ASatF1(min(mngR,AF1_(1.0)-mxgR)*rcpMgR); + AF1 ampgG=ASatF1(min(mngG,AF1_(1.0)-mxgG)*rcpMgG); + AF1 ampgB=ASatF1(min(mngB,AF1_(1.0)-mxgB)*rcpMgB); + AF1 ampjR=ASatF1(min(mnjR,AF1_(1.0)-mxjR)*rcpMjR); + AF1 ampjG=ASatF1(min(mnjG,AF1_(1.0)-mxjG)*rcpMjG); + AF1 ampjB=ASatF1(min(mnjB,AF1_(1.0)-mxjB)*rcpMjB); + AF1 ampkR=ASatF1(min(mnkR,AF1_(1.0)-mxkR)*rcpMkR); + AF1 ampkG=ASatF1(min(mnkG,AF1_(1.0)-mxkG)*rcpMkG); + AF1 ampkB=ASatF1(min(mnkB,AF1_(1.0)-mxkB)*rcpMkB); + #endif + // Shaping amount of sharpening. + #ifdef CAS_GO_SLOWER + ampfR=sqrt(ampfR); + ampfG=sqrt(ampfG); + ampfB=sqrt(ampfB); + ampgR=sqrt(ampgR); + ampgG=sqrt(ampgG); + ampgB=sqrt(ampgB); + ampjR=sqrt(ampjR); + ampjG=sqrt(ampjG); + ampjB=sqrt(ampjB); + ampkR=sqrt(ampkR); + ampkG=sqrt(ampkG); + ampkB=sqrt(ampkB); + #else + ampfR=APrxLoSqrtF1(ampfR); + ampfG=APrxLoSqrtF1(ampfG); + ampfB=APrxLoSqrtF1(ampfB); + ampgR=APrxLoSqrtF1(ampgR); + ampgG=APrxLoSqrtF1(ampgG); + ampgB=APrxLoSqrtF1(ampgB); + ampjR=APrxLoSqrtF1(ampjR); + ampjG=APrxLoSqrtF1(ampjG); + ampjB=APrxLoSqrtF1(ampjB); + ampkR=APrxLoSqrtF1(ampkR); + ampkG=APrxLoSqrtF1(ampkG); + ampkB=APrxLoSqrtF1(ampkB); + #endif + // Filter shape. + // 0 w 0 + // w 1 w + // 0 w 0 + AF1 peak=AF1_AU1(const1.x); + AF1 wfR=ampfR*peak; + AF1 wfG=ampfG*peak; + AF1 wfB=ampfB*peak; + AF1 wgR=ampgR*peak; + AF1 wgG=ampgG*peak; + AF1 wgB=ampgB*peak; + AF1 wjR=ampjR*peak; + AF1 wjG=ampjG*peak; + AF1 wjB=ampjB*peak; + AF1 wkR=ampkR*peak; + AF1 wkG=ampkG*peak; + AF1 wkB=ampkB*peak; + // Blend between 4 results. + // s t + // u v + AF1 s=(AF1_(1.0)-pp.x)*(AF1_(1.0)-pp.y); + AF1 t= pp.x *(AF1_(1.0)-pp.y); + AF1 u=(AF1_(1.0)-pp.x)* pp.y ; + AF1 v= pp.x * pp.y ; + // Thin edges to hide bilinear interpolation (helps diagonals). + AF1 thinB=1.0/32.0; + #ifdef CAS_GO_SLOWER + s*=ARcpF1(thinB+(mxfG-mnfG)); + t*=ARcpF1(thinB+(mxgG-mngG)); + u*=ARcpF1(thinB+(mxjG-mnjG)); + v*=ARcpF1(thinB+(mxkG-mnkG)); + #else + s*=APrxLoRcpF1(thinB+(mxfG-mnfG)); + t*=APrxLoRcpF1(thinB+(mxgG-mngG)); + u*=APrxLoRcpF1(thinB+(mxjG-mnjG)); + v*=APrxLoRcpF1(thinB+(mxkG-mnkG)); + #endif + // Final weighting. + // b c + // e f g h + // i j k l + // n o + // _____ _____ _____ _____ + // fs gt + // + // _____ _____ _____ _____ + // fs s gt fs t gt + // ju kv + // _____ _____ _____ _____ + // fs gt + // ju u kv ju v kv + // _____ _____ _____ _____ + // + // ju kv + AF1 qbeR=wfR*s; + AF1 qbeG=wfG*s; + AF1 qbeB=wfB*s; + AF1 qchR=wgR*t; + AF1 qchG=wgG*t; + AF1 qchB=wgB*t; + AF1 qfR=wgR*t+wjR*u+s; + AF1 qfG=wgG*t+wjG*u+s; + AF1 qfB=wgB*t+wjB*u+s; + AF1 qgR=wfR*s+wkR*v+t; + AF1 qgG=wfG*s+wkG*v+t; + AF1 qgB=wfB*s+wkB*v+t; + AF1 qjR=wfR*s+wkR*v+u; + AF1 qjG=wfG*s+wkG*v+u; + AF1 qjB=wfB*s+wkB*v+u; + AF1 qkR=wgR*t+wjR*u+v; + AF1 qkG=wgG*t+wjG*u+v; + AF1 qkB=wgB*t+wjB*u+v; + AF1 qinR=wjR*u; + AF1 qinG=wjG*u; + AF1 qinB=wjB*u; + AF1 qloR=wkR*v; + AF1 qloG=wkG*v; + AF1 qloB=wkB*v; + // Filter. + #ifndef CAS_SLOW + // Using green coef only, depending on dead code removal to strip out the extra overhead. + #ifdef CAS_GO_SLOWER + AF1 rcpWG=ARcpF1(AF1_(2.0)*qbeG+AF1_(2.0)*qchG+AF1_(2.0)*qinG+AF1_(2.0)*qloG+qfG+qgG+qjG+qkG); + #else + AF1 rcpWG=APrxMedRcpF1(AF1_(2.0)*qbeG+AF1_(2.0)*qchG+AF1_(2.0)*qinG+AF1_(2.0)*qloG+qfG+qgG+qjG+qkG); + #endif + pixR=ASatF1((b.r*qbeG+e.r*qbeG+c.r*qchG+h.r*qchG+i.r*qinG+n.r*qinG+l.r*qloG+o.r*qloG+f.r*qfG+g.r*qgG+j.r*qjG+k.r*qkG)*rcpWG); + pixG=ASatF1((b.g*qbeG+e.g*qbeG+c.g*qchG+h.g*qchG+i.g*qinG+n.g*qinG+l.g*qloG+o.g*qloG+f.g*qfG+g.g*qgG+j.g*qjG+k.g*qkG)*rcpWG); + pixB=ASatF1((b.b*qbeG+e.b*qbeG+c.b*qchG+h.b*qchG+i.b*qinG+n.b*qinG+l.b*qloG+o.b*qloG+f.b*qfG+g.b*qgG+j.b*qjG+k.b*qkG)*rcpWG); + #else + #ifdef CAS_GO_SLOWER + AF1 rcpWR=ARcpF1(AF1_(2.0)*qbeR+AF1_(2.0)*qchR+AF1_(2.0)*qinR+AF1_(2.0)*qloR+qfR+qgR+qjR+qkR); + AF1 rcpWG=ARcpF1(AF1_(2.0)*qbeG+AF1_(2.0)*qchG+AF1_(2.0)*qinG+AF1_(2.0)*qloG+qfG+qgG+qjG+qkG); + AF1 rcpWB=ARcpF1(AF1_(2.0)*qbeB+AF1_(2.0)*qchB+AF1_(2.0)*qinB+AF1_(2.0)*qloB+qfB+qgB+qjB+qkB); + #else + AF1 rcpWR=APrxMedRcpF1(AF1_(2.0)*qbeR+AF1_(2.0)*qchR+AF1_(2.0)*qinR+AF1_(2.0)*qloR+qfR+qgR+qjR+qkR); + AF1 rcpWG=APrxMedRcpF1(AF1_(2.0)*qbeG+AF1_(2.0)*qchG+AF1_(2.0)*qinG+AF1_(2.0)*qloG+qfG+qgG+qjG+qkG); + AF1 rcpWB=APrxMedRcpF1(AF1_(2.0)*qbeB+AF1_(2.0)*qchB+AF1_(2.0)*qinB+AF1_(2.0)*qloB+qfB+qgB+qjB+qkB); + #endif + pixR=ASatF1((b.r*qbeR+e.r*qbeR+c.r*qchR+h.r*qchR+i.r*qinR+n.r*qinR+l.r*qloR+o.r*qloR+f.r*qfR+g.r*qgR+j.r*qjR+k.r*qkR)*rcpWR); + pixG=ASatF1((b.g*qbeG+e.g*qbeG+c.g*qchG+h.g*qchG+i.g*qinG+n.g*qinG+l.g*qloG+o.g*qloG+f.g*qfG+g.g*qgG+j.g*qjG+k.g*qkG)*rcpWG); + pixB=ASatF1((b.b*qbeB+e.b*qbeB+c.b*qchB+h.b*qchB+i.b*qinB+n.b*qinB+l.b*qloB+o.b*qloB+f.b*qfB+g.b*qgB+j.b*qjB+k.b*qkB)*rcpWB); + #endif + } +#endif + +#ifdef A_GPU +void main() +{ + vec4 diff = vec4(0.f); + uvec2 point = uvec2(vary_fragcoord * out_screen_res.xy); + CasFilter(diff.r, diff.g, diff.b, point, cas_param_0, cas_param_1, true); + diff.a = texture(diffuseRect, vary_fragcoord).a; + frag_color = diff; +} +#endif diff --git a/indra/newview/app_settings/shaders/class1/deferred/SMAA.glsl b/indra/newview/app_settings/shaders/class1/deferred/SMAA.glsl new file mode 100644 index 0000000000..fdb77cce6e --- /dev/null +++ b/indra/newview/app_settings/shaders/class1/deferred/SMAA.glsl @@ -0,0 +1,1463 @@ +/** + * @file SMAA.glsl + * + * $LicenseInfo:firstyear=2024&license=viewerlgpl$ + * Second Life Viewer Source Code + * Copyright (C) 2024, Linden Research, Inc. + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; + * version 2.1 of the License only. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA + * $/LicenseInfo$ + */ + +#extension GL_ARB_texture_rectangle : enable +#extension GL_ARB_shader_texture_lod : enable +#extension GL_EXT_gpu_shader4 : enable + +/*[EXTRA_CODE_HERE]*/ + +#ifdef VERTEX_SHADER + #define SMAA_INCLUDE_VS 1 + #define SMAA_INCLUDE_PS 0 +#else + #define SMAA_INCLUDE_VS 0 + #define SMAA_INCLUDE_PS 1 +#endif + +uniform vec4 SMAA_RT_METRICS; + +/** + * Copyright (C) 2013 Jorge Jimenez (jorge@iryoku.com) + * Copyright (C) 2013 Jose I. Echevarria (joseignacioechevarria@gmail.com) + * Copyright (C) 2013 Belen Masia (bmasia@unizar.es) + * Copyright (C) 2013 Fernando Navarro (fernandn@microsoft.com) + * Copyright (C) 2013 Diego Gutierrez (diegog@unizar.es) + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * this software and associated documentation files (the "Software"), to deal in + * the Software without restriction, including without limitation the rights to + * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies + * of the Software, and to permit persons to whom the Software is furnished to + * do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. As clarification, there + * is no requirement that the copyright notice and permission be included in + * binary distributions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + + +/** + * _______ ___ ___ ___ ___ + * / || \/ | / \ / \ + * | (---- | \ / | / ^ \ / ^ \ + * \ \ | |\/| | / /_\ \ / /_\ \ + * ----) | | | | | / _____ \ / _____ \ + * |_______/ |__| |__| /__/ \__\ /__/ \__\ + * + * E N H A N C E D + * S U B P I X E L M O R P H O L O G I C A L A N T I A L I A S I N G + * + * http://www.iryoku.com/smaa/ + * + * Hi, welcome aboard! + * + * Here you'll find instructions to get the shader up and running as fast as + * possible. + * + * IMPORTANTE NOTICE: when updating, remember to update both this file and the + * precomputed textures! They may change from version to version. + * + * The shader has three passes, chained together as follows: + * + * |input|------------------� + * v | + * [ SMAA*EdgeDetection ] | + * v | + * |edgesTex| | + * v | + * [ SMAABlendingWeightCalculation ] | + * v | + * |blendTex| | + * v | + * [ SMAANeighborhoodBlending ] <------� + * v + * |output| + * + * Note that each [pass] has its own vertex and pixel shader. Remember to use + * oversized triangles instead of quads to avoid overshading along the + * diagonal. + * + * You've three edge detection methods to choose from: luma, color or depth. + * They represent different quality/performance and anti-aliasing/sharpness + * tradeoffs, so our recommendation is for you to choose the one that best + * suits your particular scenario: + * + * - Depth edge detection is usually the fastest but it may miss some edges. + * + * - Luma edge detection is usually more expensive than depth edge detection, + * but catches visible edges that depth edge detection can miss. + * + * - Color edge detection is usually the most expensive one but catches + * chroma-only edges. + * + * For quickstarters: just use luma edge detection. + * + * The general advice is to not rush the integration process and ensure each + * step is done correctly (don't try to integrate SMAA T2x with predicated edge + * detection from the start!). Ok then, let's go! + * + * 1. The first step is to create two RGBA temporal render targets for holding + * |edgesTex| and |blendTex|. + * + * In DX10 or DX11, you can use a RG render target for the edges texture. + * In the case of NVIDIA GPUs, using RG render targets seems to actually be + * slower. + * + * On the Xbox 360, you can use the same render target for resolving both + * |edgesTex| and |blendTex|, as they aren't needed simultaneously. + * + * 2. Both temporal render targets |edgesTex| and |blendTex| must be cleared + * each frame. Do not forget to clear the alpha channel! + * + * 3. The next step is loading the two supporting precalculated textures, + * 'areaTex' and 'searchTex'. You'll find them in the 'Textures' folder as + * C++ headers, and also as regular DDS files. They'll be needed for the + * 'SMAABlendingWeightCalculation' pass. + * + * If you use the C++ headers, be sure to load them in the format specified + * inside of them. + * + * You can also compress 'areaTex' and 'searchTex' using BC5 and BC4 + * respectively, if you have that option in your content processor pipeline. + * When compressing then, you get a non-perceptible quality decrease, and a + * marginal performance increase. + * + * 4. All samplers must be set to linear filtering and clamp. + * + * After you get the technique working, remember that 64-bit inputs have + * half-rate linear filtering on GCN. + * + * If SMAA is applied to 64-bit color buffers, switching to point filtering + * when accesing them will increase the performance. Search for + * 'SMAASamplePoint' to see which textures may benefit from point + * filtering, and where (which is basically the color input in the edge + * detection and resolve passes). + * + * 5. All texture reads and buffer writes must be non-sRGB, with the exception + * of the input read and the output write in + * 'SMAANeighborhoodBlending' (and only in this pass!). If sRGB reads in + * this last pass are not possible, the technique will work anyway, but + * will perform antialiasing in gamma space. + * + * IMPORTANT: for best results the input read for the color/luma edge + * detection should *NOT* be sRGB. + * + * 6. Before including SMAA.h you'll have to setup the render target metrics, + * the target and any optional configuration defines. Optionally you can + * use a preset. + * + * You have the following targets available: + * SMAA_HLSL_3 + * SMAA_HLSL_4 + * SMAA_HLSL_4_1 + * SMAA_GLSL_2 * + * SMAA_GLSL_3 * + * SMAA_GLSL_4 * + * + * * (See SMAA_INCLUDE_VS and SMAA_INCLUDE_PS below). + * + * And four presets: + * SMAA_PRESET_LOW (%60 of the quality) + * SMAA_PRESET_MEDIUM (%80 of the quality) + * SMAA_PRESET_HIGH (%95 of the quality) + * SMAA_PRESET_ULTRA (%99 of the quality) + * + * For example: + * #define SMAA_RT_METRICS float4(1.0 / 1280.0, 1.0 / 720.0, 1280.0, 720.0) + * #define SMAA_HLSL_4 + * #define SMAA_PRESET_HIGH + * #include "SMAA.h" + * + * Note that SMAA_RT_METRICS doesn't need to be a macro, it can be a + * uniform variable. The code is designed to minimize the impact of not + * using a constant value, but it is still better to hardcode it. + * + * Depending on how you encoded 'areaTex' and 'searchTex', you may have to + * add (and customize) the following defines before including SMAA.h: + * #define SMAA_AREATEX_SELECT(sample) sample.rg + * #define SMAA_SEARCHTEX_SELECT(sample) sample.r + * + * If your engine is already using porting macros, you can define + * SMAA_CUSTOM_SL, and define the porting functions by yourself. + * + * 7. Then, you'll have to setup the passes as indicated in the scheme above. + * You can take a look into SMAA.fx, to see how we did it for our demo. + * Checkout the function wrappers, you may want to copy-paste them! + * + * 8. It's recommended to validate the produced |edgesTex| and |blendTex|. + * You can use a screenshot from your engine to compare the |edgesTex| + * and |blendTex| produced inside of the engine with the results obtained + * with the reference demo. + * + * 9. After you get the last pass to work, it's time to optimize. You'll have + * to initialize a stencil buffer in the first pass (discard is already in + * the code), then mask execution by using it the second pass. The last + * pass should be executed in all pixels. + * + * + * After this point you can choose to enable predicated thresholding, + * temporal supersampling and motion blur integration: + * + * a) If you want to use predicated thresholding, take a look into + * SMAA_PREDICATION; you'll need to pass an extra texture in the edge + * detection pass. + * + * b) If you want to enable temporal supersampling (SMAA T2x): + * + * 1. The first step is to render using subpixel jitters. I won't go into + * detail, but it's as simple as moving each vertex position in the + * vertex shader, you can check how we do it in our DX10 demo. + * + * 2. Then, you must setup the temporal resolve. You may want to take a look + * into SMAAResolve for resolving 2x modes. After you get it working, you'll + * probably see ghosting everywhere. But fear not, you can enable the + * CryENGINE temporal reprojection by setting the SMAA_REPROJECTION macro. + * Check out SMAA_DECODE_VELOCITY if your velocity buffer is encoded. + * + * 3. The next step is to apply SMAA to each subpixel jittered frame, just as + * done for 1x. + * + * 4. At this point you should already have something usable, but for best + * results the proper area textures must be set depending on current jitter. + * For this, the parameter 'subsampleIndices' of + * 'SMAABlendingWeightCalculationPS' must be set as follows, for our T2x + * mode: + * + * @SUBSAMPLE_INDICES + * + * | S# | Camera Jitter | subsampleIndices | + * +----+------------------+---------------------+ + * | 0 | ( 0.25, -0.25) | float4(1, 1, 1, 0) | + * | 1 | (-0.25, 0.25) | float4(2, 2, 2, 0) | + * + * These jitter positions assume a bottom-to-top y axis. S# stands for the + * sample number. + * + * More information about temporal supersampling here: + * http://iryoku.com/aacourse/downloads/13-Anti-Aliasing-Methods-in-CryENGINE-3.pdf + * + * c) If you want to enable spatial multisampling (SMAA S2x): + * + * 1. The scene must be rendered using MSAA 2x. The MSAA 2x buffer must be + * created with: + * - DX10: see below (*) + * - DX10.1: D3D10_STANDARD_MULTISAMPLE_PATTERN or + * - DX11: D3D11_STANDARD_MULTISAMPLE_PATTERN + * + * This allows to ensure that the subsample order matches the table in + * @SUBSAMPLE_INDICES. + * + * (*) In the case of DX10, we refer the reader to: + * - SMAA::detectMSAAOrder and + * - SMAA::msaaReorder + * + * These functions allow to match the standard multisample patterns by + * detecting the subsample order for a specific GPU, and reordering + * them appropriately. + * + * 2. A shader must be run to output each subsample into a separate buffer + * (DX10 is required). You can use SMAASeparate for this purpose, or just do + * it in an existing pass (for example, in the tone mapping pass, which has + * the advantage of feeding tone mapped subsamples to SMAA, which will yield + * better results). + * + * 3. The full SMAA 1x pipeline must be run for each separated buffer, storing + * the results in the final buffer. The second run should alpha blend with + * the existing final buffer using a blending factor of 0.5. + * 'subsampleIndices' must be adjusted as in the SMAA T2x case (see point + * b). + * + * d) If you want to enable temporal supersampling on top of SMAA S2x + * (which actually is SMAA 4x): + * + * 1. SMAA 4x consists on temporally jittering SMAA S2x, so the first step is + * to calculate SMAA S2x for current frame. In this case, 'subsampleIndices' + * must be set as follows: + * + * | F# | S# | Camera Jitter | Net Jitter | subsampleIndices | + * +----+----+--------------------+-------------------+----------------------+ + * | 0 | 0 | ( 0.125, 0.125) | ( 0.375, -0.125) | float4(5, 3, 1, 3) | + * | 0 | 1 | ( 0.125, 0.125) | (-0.125, 0.375) | float4(4, 6, 2, 3) | + * +----+----+--------------------+-------------------+----------------------+ + * | 1 | 2 | (-0.125, -0.125) | ( 0.125, -0.375) | float4(3, 5, 1, 4) | + * | 1 | 3 | (-0.125, -0.125) | (-0.375, 0.125) | float4(6, 4, 2, 4) | + * + * These jitter positions assume a bottom-to-top y axis. F# stands for the + * frame number. S# stands for the sample number. + * + * 2. After calculating SMAA S2x for current frame (with the new subsample + * indices), previous frame must be reprojected as in SMAA T2x mode (see + * point b). + * + * e) If motion blur is used, you may want to do the edge detection pass + * together with motion blur. This has two advantages: + * + * 1. Pixels under heavy motion can be omitted from the edge detection process. + * For these pixels we can just store "no edge", as motion blur will take + * care of them. + * 2. The center pixel tap is reused. + * + * Note that in this case depth testing should be used instead of stenciling, + * as we have to write all the pixels in the motion blur pass. + * + * That's it! + */ + +//----------------------------------------------------------------------------- +// SMAA Presets + +/** + * Note that if you use one of these presets, the following configuration + * macros will be ignored if set in the "Configurable Defines" section. + */ + +#if defined(SMAA_PRESET_LOW) +#define SMAA_THRESHOLD 0.15 +#define SMAA_MAX_SEARCH_STEPS 4 +#define SMAA_DISABLE_DIAG_DETECTION +#define SMAA_DISABLE_CORNER_DETECTION +#elif defined(SMAA_PRESET_MEDIUM) +#define SMAA_THRESHOLD 0.1 +#define SMAA_MAX_SEARCH_STEPS 8 +#define SMAA_DISABLE_DIAG_DETECTION +#define SMAA_DISABLE_CORNER_DETECTION +#elif defined(SMAA_PRESET_HIGH) +#define SMAA_THRESHOLD 0.1 +#define SMAA_MAX_SEARCH_STEPS 16 +#define SMAA_MAX_SEARCH_STEPS_DIAG 8 +#define SMAA_CORNER_ROUNDING 25 +#elif defined(SMAA_PRESET_ULTRA) +#define SMAA_THRESHOLD 0.05 +#define SMAA_MAX_SEARCH_STEPS 32 +#define SMAA_MAX_SEARCH_STEPS_DIAG 16 +#define SMAA_CORNER_ROUNDING 25 +#endif + +//----------------------------------------------------------------------------- +// Configurable Defines + +/** + * SMAA_THRESHOLD specifies the threshold or sensitivity to edges. + * Lowering this value you will be able to detect more edges at the expense of + * performance. + * + * Range: [0, 0.5] + * 0.1 is a reasonable value, and allows to catch most visible edges. + * 0.05 is a rather overkill value, that allows to catch 'em all. + * + * If temporal supersampling is used, 0.2 could be a reasonable value, as low + * contrast edges are properly filtered by just 2x. + */ +#ifndef SMAA_THRESHOLD +#define SMAA_THRESHOLD 0.1 +#endif + +/** + * SMAA_DEPTH_THRESHOLD specifies the threshold for depth edge detection. + * + * Range: depends on the depth range of the scene. + */ +#ifndef SMAA_DEPTH_THRESHOLD +#define SMAA_DEPTH_THRESHOLD (0.1 * SMAA_THRESHOLD) +#endif + +/** + * SMAA_MAX_SEARCH_STEPS specifies the maximum steps performed in the + * horizontal/vertical pattern searches, at each side of the pixel. + * + * In number of pixels, it's actually the double. So the maximum line length + * perfectly handled by, for example 16, is 64 (by perfectly, we meant that + * longer lines won't look as good, but still antialiased). + * + * Range: [0, 112] + */ +#ifndef SMAA_MAX_SEARCH_STEPS +#define SMAA_MAX_SEARCH_STEPS 16 +#endif + +/** + * SMAA_MAX_SEARCH_STEPS_DIAG specifies the maximum steps performed in the + * diagonal pattern searches, at each side of the pixel. In this case we jump + * one pixel at time, instead of two. + * + * Range: [0, 20] + * + * On high-end machines it is cheap (between a 0.8x and 0.9x slower for 16 + * steps), but it can have a significant impact on older machines. + * + * Define SMAA_DISABLE_DIAG_DETECTION to disable diagonal processing. + */ +#ifndef SMAA_MAX_SEARCH_STEPS_DIAG +#define SMAA_MAX_SEARCH_STEPS_DIAG 8 +#endif + +/** + * SMAA_CORNER_ROUNDING specifies how much sharp corners will be rounded. + * + * Range: [0, 100] + * + * Define SMAA_DISABLE_CORNER_DETECTION to disable corner processing. + */ +#ifndef SMAA_CORNER_ROUNDING +#define SMAA_CORNER_ROUNDING 25 +#endif + +/** + * If there is an neighbor edge that has SMAA_LOCAL_CONTRAST_FACTOR times + * bigger contrast than current edge, current edge will be discarded. + * + * This allows to eliminate spurious crossing edges, and is based on the fact + * that, if there is too much contrast in a direction, that will hide + * perceptually contrast in the other neighbors. + */ +#ifndef SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR +#define SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR 2.0 +#endif + +/** + * Predicated thresholding allows to better preserve texture details and to + * improve performance, by decreasing the number of detected edges using an + * additional buffer like the light accumulation buffer, object ids or even the + * depth buffer (the depth buffer usage may be limited to indoor or short range + * scenes). + * + * It locally decreases the luma or color threshold if an edge is found in an + * additional buffer (so the global threshold can be higher). + * + * This method was developed by Playstation EDGE MLAA team, and used in + * Killzone 3, by using the light accumulation buffer. More information here: + * http://iryoku.com/aacourse/downloads/06-MLAA-on-PS3.pptx + */ +#ifndef SMAA_PREDICATION +#define SMAA_PREDICATION 0 +#endif + +/** + * Threshold to be used in the additional predication buffer. + * + * Range: depends on the input, so you'll have to find the magic number that + * works for you. + */ +#ifndef SMAA_PREDICATION_THRESHOLD +#define SMAA_PREDICATION_THRESHOLD 0.01 +#endif + +/** + * How much to scale the global threshold used for luma or color edge + * detection when using predication. + * + * Range: [1, 5] + */ +#ifndef SMAA_PREDICATION_SCALE +#define SMAA_PREDICATION_SCALE 2.0 +#endif + +/** + * How much to locally decrease the threshold. + * + * Range: [0, 1] + */ +#ifndef SMAA_PREDICATION_STRENGTH +#define SMAA_PREDICATION_STRENGTH 0.4 +#endif + +/** + * Temporal reprojection allows to remove ghosting artifacts when using + * temporal supersampling. We use the CryEngine 3 method which also introduces + * velocity weighting. This feature is of extreme importance for totally + * removing ghosting. More information here: + * http://iryoku.com/aacourse/downloads/13-Anti-Aliasing-Methods-in-CryENGINE-3.pdf + * + * Note that you'll need to setup a velocity buffer for enabling reprojection. + * For static geometry, saving the previous depth buffer is a viable + * alternative. + */ +#ifndef SMAA_REPROJECTION +#define SMAA_REPROJECTION 0 +#endif + +/** + * SMAA_REPROJECTION_WEIGHT_SCALE controls the velocity weighting. It allows to + * remove ghosting trails behind the moving object, which are not removed by + * just using reprojection. Using low values will exhibit ghosting, while using + * high values will disable temporal supersampling under motion. + * + * Behind the scenes, velocity weighting removes temporal supersampling when + * the velocity of the subsamples differs (meaning they are different objects). + * + * Range: [0, 80] + */ +#ifndef SMAA_REPROJECTION_WEIGHT_SCALE +#define SMAA_REPROJECTION_WEIGHT_SCALE 30.0 +#endif + +/** + * On some compilers, discard and texture cannot be used in vertex shaders. Thus, they need + * to be compiled separately. + */ +#ifndef SMAA_INCLUDE_VS +#define SMAA_INCLUDE_VS 1 +#endif +#ifndef SMAA_INCLUDE_PS +#define SMAA_INCLUDE_PS 1 +#endif + +//----------------------------------------------------------------------------- +// Texture Access Defines + +#ifndef SMAA_AREATEX_SELECT +#if defined(SMAA_HLSL_3) +#define SMAA_AREATEX_SELECT(sample) sample.ra +#else +#define SMAA_AREATEX_SELECT(sample) sample.rg +#endif +#endif + +#ifndef SMAA_SEARCHTEX_SELECT +#define SMAA_SEARCHTEX_SELECT(sample) sample.r +#endif + +#ifndef SMAA_DECODE_VELOCITY +#define SMAA_DECODE_VELOCITY(sample) sample.rg +#endif + +//----------------------------------------------------------------------------- +// Non-Configurable Defines + +#define SMAA_AREATEX_MAX_DISTANCE 16 +#define SMAA_AREATEX_MAX_DISTANCE_DIAG 20 +#define SMAA_AREATEX_PIXEL_SIZE (1.0 / float2(160.0, 560.0)) +#define SMAA_AREATEX_SUBTEX_SIZE (1.0 / 7.0) +#define SMAA_SEARCHTEX_SIZE float2(66.0, 33.0) +#define SMAA_SEARCHTEX_PACKED_SIZE float2(64.0, 16.0) +#define SMAA_CORNER_ROUNDING_NORM (float(SMAA_CORNER_ROUNDING) / 100.0) + +//----------------------------------------------------------------------------- +// Porting Functions + +#if defined(SMAA_HLSL_3) +#ifndef SMAA_FLIP_Y +#define SMAA_FLIP_Y 0 +#endif // SMAA_FLIP_Y +#define SMAATexture2D(tex) sampler2D tex +#define SMAATexturePass2D(tex) tex +#define SMAASampleLevelZero(tex, coord) tex2Dlod(tex, float4(coord, 0.0, 0.0)) +#define SMAASampleLevelZeroPoint(tex, coord) tex2Dlod(tex, float4(coord, 0.0, 0.0)) +#define SMAASampleLevelZeroOffset(tex, coord, offset) tex2Dlod(tex, float4(coord + offset * SMAA_RT_METRICS.xy, 0.0, 0.0)) +#define SMAASample(tex, coord) tex2D(tex, coord) +#define SMAASamplePoint(tex, coord) tex2D(tex, coord) +#define SMAASampleOffset(tex, coord, offset) tex2D(tex, coord + offset * SMAA_RT_METRICS.xy) +#define SMAA_FLATTEN [flatten] +#define SMAA_BRANCH [branch] +#endif +#if defined(SMAA_HLSL_4) || defined(SMAA_HLSL_4_1) +#ifndef SMAA_FLIP_Y +#define SMAA_FLIP_Y 0 +#endif // SMAA_FLIP_Y +SamplerState LinearSampler { Filter = MIN_MAG_LINEAR_MIP_POINT; AddressU = Clamp; AddressV = Clamp; }; +SamplerState PointSampler { Filter = MIN_MAG_MIP_POINT; AddressU = Clamp; AddressV = Clamp; }; +#define SMAATexture2D(tex) Texture2D tex +#define SMAATexturePass2D(tex) tex +#define SMAASampleLevelZero(tex, coord) tex.SampleLevel(LinearSampler, coord, 0) +#define SMAASampleLevelZeroPoint(tex, coord) tex.SampleLevel(PointSampler, coord, 0) +#define SMAASampleLevelZeroOffset(tex, coord, offset) tex.SampleLevel(LinearSampler, coord, 0, offset) +#define SMAASample(tex, coord) tex.Sample(LinearSampler, coord) +#define SMAASamplePoint(tex, coord) tex.Sample(PointSampler, coord) +#define SMAASampleOffset(tex, coord, offset) tex.Sample(LinearSampler, coord, offset) +#define SMAA_FLATTEN [flatten] +#define SMAA_BRANCH [branch] +#define SMAATexture2DMS2(tex) Texture2DMS<float4, 2> tex +#define SMAALoad(tex, pos, sample) tex.Load(pos, sample) +#if defined(SMAA_HLSL_4_1) +#define SMAAGather(tex, coord) tex.Gather(LinearSampler, coord, 0) +#endif +#endif + +#if defined(SMAA_GLSL_2) || defined(SMAA_GLSL_3) || defined(SMAA_GLSL_4) +#ifndef SMAA_FLIP_Y +#define SMAA_FLIP_Y 1 +#endif // SMAA_FLIP_Y + +#define SMAATexture2D(tex) sampler2D tex +#define SMAATexturePass2D(tex) tex +#if defined(SMAA_GLSL_2) +#define SMAASampleLevelZero(tex, coord) texture2DLod(tex, coord, 0.0) +#define SMAASampleLevelZeroPoint(tex, coord) texture2DLod(tex, coord, 0.0) +#define SMAASampleLevelZeroOffset(tex, coord, offset) texture2DLodOffset(tex, coord, 0.0, offset) +#define SMAASample(tex, coord) texture2D(tex, coord) +#define SMAASamplePoint(tex, coord) texture2D(tex, coord) +#define SMAASampleOffset(tex, coord, offset) texture2D(tex, coord, offset) +#else +#define SMAASampleLevelZero(tex, coord) textureLod(tex, coord, 0.0) +#define SMAASampleLevelZeroPoint(tex, coord) textureLod(tex, coord, 0.0) +#define SMAASampleLevelZeroOffset(tex, coord, offset) textureLodOffset(tex, coord, 0.0, offset) +#define SMAASample(tex, coord) texture(tex, coord) +#define SMAASamplePoint(tex, coord) texture(tex, coord) +#define SMAASampleOffset(tex, coord, offset) textureOffset(tex, coord, offset) +#endif +#define SMAA_FLATTEN +#define SMAA_BRANCH +#define lerp(a, b, t) mix(a, b, t) +#define saturate(a) clamp(a, 0.0, 1.0) +#if defined(SMAA_GLSL_4) +#define mad(a, b, c) fma(a, b, c) +#define SMAAGather(tex, coord) textureGather(tex, coord) +#else +#define mad(a, b, c) (a * b + c) +#endif +#if defined(SMAA_GLSL_3) || defined(SMAA_GLSL_4) +#define SMAATexture2DMS2(tex) sampler2DMS tex +#define SMAALoad(tex, pos, sample) texelFetch(tex, pos, sample) +#endif +#define float2 vec2 +#define float3 vec3 +#define float4 vec4 +#define int2 ivec2 +#define int3 ivec3 +#define int4 ivec4 +#define bool2 bvec2 +#define bool3 bvec3 +#define bool4 bvec4 +#endif + +#if !defined(SMAA_HLSL_3) && !defined(SMAA_HLSL_4) && !defined(SMAA_HLSL_4_1) && !defined(SMAA_GLSL_2) && !defined(SMAA_GLSL_3) && !defined(SMAA_GLSL_4) && !defined(SMAA_CUSTOM_SL) +#error you must define the shading language: SMAA_HLSL_*, SMAA_GLSL_* or SMAA_CUSTOM_SL +#endif + + +#if SMAA_FLIP_Y + +#define API_V_DIR(v) -(v) +#define API_V_COORD(v) (1.0 - v) +#define API_V_BELOW(v1, v2) v1 < v2 +#define API_V_ABOVE(v1, v2) v1 > v2 + +#else // VULKAN_FLIP + +#define API_V_DIR(v) v +#define API_V_COORD(v) v +#define API_V_BELOW(v1, v2) v1 > v2 +#define API_V_ABOVE(v1, v2) v1 < v2 + +#endif // VULKAN_FLIP + + +//----------------------------------------------------------------------------- +// Misc functions + +#if SMAA_INCLUDE_PS +/** + * Gathers current pixel, and the top-left neighbors. + */ +float3 SMAAGatherNeighbours(float2 texcoord, + float4 offset[3], + SMAATexture2D(tex)) { + #ifdef SMAAGather + + #if SMAA_FLIP_Y + return SMAAGather(tex, texcoord + SMAA_RT_METRICS.xy * float2(-0.5, 0.5)).zwy; + #else // SMAA_FLIP_Y + return SMAAGather(tex, texcoord + SMAA_RT_METRICS.xy * float2(-0.5, -0.5)).grb; + #endif // SMAA_FLIP_Y + + #else // SMAAGather + float P = SMAASamplePoint(tex, texcoord).r; + float Pleft = SMAASamplePoint(tex, offset[0].xy).r; + float Ptop = SMAASamplePoint(tex, offset[0].zw).r; + return float3(P, Pleft, Ptop); + #endif +} + +/** + * Adjusts the threshold by means of predication. + */ +float2 SMAACalculatePredicatedThreshold(float2 texcoord, + float4 offset[3], + SMAATexture2D(predicationTex)) { + float3 neighbours = SMAAGatherNeighbours(texcoord, offset, SMAATexturePass2D(predicationTex)); + float2 delta = abs(neighbours.xx - neighbours.yz); + float2 edges = step(SMAA_PREDICATION_THRESHOLD, delta); + return SMAA_PREDICATION_SCALE * SMAA_THRESHOLD * (1.0 - SMAA_PREDICATION_STRENGTH * edges); +} + +#endif // SMAA_INCLUDE_PS + +/** + * Conditional move: + */ +void SMAAMovc(bool2 cond, inout float2 variable, float2 value) { + SMAA_FLATTEN if (cond.x) variable.x = value.x; + SMAA_FLATTEN if (cond.y) variable.y = value.y; +} + +void SMAAMovc(bool4 cond, inout float4 variable, float4 value) { + SMAAMovc(cond.xy, variable.xy, value.xy); + SMAAMovc(cond.zw, variable.zw, value.zw); +} + + +#if SMAA_INCLUDE_VS +//----------------------------------------------------------------------------- +// Vertex Shaders + +/** + * Edge Detection Vertex Shader + */ +void SMAAEdgeDetectionVS(float2 texcoord, + out float4 offset[3]) { + offset[0] = mad(SMAA_RT_METRICS.xyxy, float4(-1.0, 0.0, 0.0, API_V_DIR(-1.0)), texcoord.xyxy); + offset[1] = mad(SMAA_RT_METRICS.xyxy, float4( 1.0, 0.0, 0.0, API_V_DIR(1.0)), texcoord.xyxy); + offset[2] = mad(SMAA_RT_METRICS.xyxy, float4(-2.0, 0.0, 0.0, API_V_DIR(-2.0)), texcoord.xyxy); +} + +/** + * Blend Weight Calculation Vertex Shader + */ +void SMAABlendingWeightCalculationVS(float2 texcoord, + out float2 pixcoord, + out float4 offset[3]) { + pixcoord = texcoord * SMAA_RT_METRICS.zw; + + // We will use these offsets for the searches later on (see @PSEUDO_GATHER4): + offset[0] = mad(SMAA_RT_METRICS.xyxy, float4(-0.25, API_V_DIR(-0.125), 1.25, API_V_DIR(-0.125)), texcoord.xyxy); + offset[1] = mad(SMAA_RT_METRICS.xyxy, float4(-0.125, API_V_DIR(-0.25), -0.125, API_V_DIR(1.25)), texcoord.xyxy); + + // And these for the searches, they indicate the ends of the loops: + offset[2] = mad(SMAA_RT_METRICS.xxyy, + float4(-2.0, 2.0, API_V_DIR(-2.0), API_V_DIR(2.0)) * float(SMAA_MAX_SEARCH_STEPS), + float4(offset[0].xz, offset[1].yw)); +} + +/** + * Neighborhood Blending Vertex Shader + */ +void SMAANeighborhoodBlendingVS(float2 texcoord, + out float4 offset) { + offset = mad(SMAA_RT_METRICS.xyxy, float4( 1.0, 0.0, 0.0, API_V_DIR(1.0)), texcoord.xyxy); +} +#endif // SMAA_INCLUDE_VS + +#if SMAA_INCLUDE_PS +//----------------------------------------------------------------------------- +// Edge Detection Pixel Shaders (First Pass) + +/** + * Luma Edge Detection + * + * IMPORTANT NOTICE: luma edge detection requires gamma-corrected colors, and + * thus 'colorTex' should be a non-sRGB texture. + */ +float2 SMAALumaEdgeDetectionPS(float2 texcoord, + float4 offset[3], + SMAATexture2D(colorTex) + #if SMAA_PREDICATION + , SMAATexture2D(predicationTex) + #endif + ) { + // Calculate the threshold: + #if SMAA_PREDICATION + float2 threshold = SMAACalculatePredicatedThreshold(texcoord, offset, SMAATexturePass2D(predicationTex)); + #else + float2 threshold = float2(SMAA_THRESHOLD, SMAA_THRESHOLD); + #endif + + // Calculate lumas: + float3 weights = float3(0.2126, 0.7152, 0.0722); + float L = dot(SMAASamplePoint(colorTex, texcoord).rgb, weights); + + float Lleft = dot(SMAASamplePoint(colorTex, offset[0].xy).rgb, weights); + float Ltop = dot(SMAASamplePoint(colorTex, offset[0].zw).rgb, weights); + + // We do the usual threshold: + float4 delta; + delta.xy = abs(L - float2(Lleft, Ltop)); + float2 edges = step(threshold, delta.xy); + + // Then discard if there is no edge: + if (dot(edges, float2(1.0, 1.0)) == 0.0) + discard; + + // Calculate right and bottom deltas: + float Lright = dot(SMAASamplePoint(colorTex, offset[1].xy).rgb, weights); + float Lbottom = dot(SMAASamplePoint(colorTex, offset[1].zw).rgb, weights); + delta.zw = abs(L - float2(Lright, Lbottom)); + + // Calculate the maximum delta in the direct neighborhood: + float2 maxDelta = max(delta.xy, delta.zw); + + // Calculate left-left and top-top deltas: + float Lleftleft = dot(SMAASamplePoint(colorTex, offset[2].xy).rgb, weights); + float Ltoptop = dot(SMAASamplePoint(colorTex, offset[2].zw).rgb, weights); + delta.zw = abs(float2(Lleft, Ltop) - float2(Lleftleft, Ltoptop)); + + // Calculate the final maximum delta: + maxDelta = max(maxDelta.xy, delta.zw); + float finalDelta = max(maxDelta.x, maxDelta.y); + + // Local contrast adaptation: + edges.xy *= step(finalDelta, SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR * delta.xy); + + return edges; +} + +/** + * Color Edge Detection + * + * IMPORTANT NOTICE: color edge detection requires gamma-corrected colors, and + * thus 'colorTex' should be a non-sRGB texture. + */ +float2 SMAAColorEdgeDetectionPS(float2 texcoord, + float4 offset[3], + SMAATexture2D(colorTex) + #if SMAA_PREDICATION + , SMAATexture2D(predicationTex) + #endif + ) { + // Calculate the threshold: + #if SMAA_PREDICATION + float2 threshold = SMAACalculatePredicatedThreshold(texcoord, offset, predicationTex); + #else + float2 threshold = float2(SMAA_THRESHOLD, SMAA_THRESHOLD); + #endif + + // Calculate color deltas: + float4 delta; + float3 C = SMAASamplePoint(colorTex, texcoord).rgb; + + float3 Cleft = SMAASamplePoint(colorTex, offset[0].xy).rgb; + float3 t = abs(C - Cleft); + delta.x = max(max(t.r, t.g), t.b); + + float3 Ctop = SMAASamplePoint(colorTex, offset[0].zw).rgb; + t = abs(C - Ctop); + delta.y = max(max(t.r, t.g), t.b); + + // We do the usual threshold: + float2 edges = step(threshold, delta.xy); + + // Then discard if there is no edge: + if (dot(edges, float2(1.0, 1.0)) == 0.0) + discard; + + // Calculate right and bottom deltas: + float3 Cright = SMAASamplePoint(colorTex, offset[1].xy).rgb; + t = abs(C - Cright); + delta.z = max(max(t.r, t.g), t.b); + + float3 Cbottom = SMAASamplePoint(colorTex, offset[1].zw).rgb; + t = abs(C - Cbottom); + delta.w = max(max(t.r, t.g), t.b); + + // Calculate the maximum delta in the direct neighborhood: + float2 maxDelta = max(delta.xy, delta.zw); + + // Calculate left-left and top-top deltas: + float3 Cleftleft = SMAASamplePoint(colorTex, offset[2].xy).rgb; + t = abs(C - Cleftleft); + delta.z = max(max(t.r, t.g), t.b); + + float3 Ctoptop = SMAASamplePoint(colorTex, offset[2].zw).rgb; + t = abs(C - Ctoptop); + delta.w = max(max(t.r, t.g), t.b); + + // Calculate the final maximum delta: + maxDelta = max(maxDelta.xy, delta.zw); + float finalDelta = max(maxDelta.x, maxDelta.y); + + // Local contrast adaptation: + edges.xy *= step(finalDelta, SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR * delta.xy); + + return edges; +} + +/** + * Depth Edge Detection + */ +float2 SMAADepthEdgeDetectionPS(float2 texcoord, + float4 offset[3], + SMAATexture2D(depthTex)) { + float3 neighbours = SMAAGatherNeighbours(texcoord, offset, SMAATexturePass2D(depthTex)); + float2 delta = abs(neighbours.xx - float2(neighbours.y, neighbours.z)); + float2 edges = step(SMAA_DEPTH_THRESHOLD, delta); + + if (dot(edges, float2(1.0, 1.0)) == 0.0) + discard; + + return edges; +} + +//----------------------------------------------------------------------------- +// Diagonal Search Functions + +#if !defined(SMAA_DISABLE_DIAG_DETECTION) + +/** + * Allows to decode two binary values from a bilinear-filtered access. + */ +float2 SMAADecodeDiagBilinearAccess(float2 e) { + // Bilinear access for fetching 'e' have a 0.25 offset, and we are + // interested in the R and G edges: + // + // +---G---+-------+ + // | x o R x | + // +-------+-------+ + // + // Then, if one of these edge is enabled: + // Red: (0.75 * X + 0.25 * 1) => 0.25 or 1.0 + // Green: (0.75 * 1 + 0.25 * X) => 0.75 or 1.0 + // + // This function will unpack the values (mad + mul + round): + // wolframalpha.com: round(x * abs(5 * x - 5 * 0.75)) plot 0 to 1 + e.r = e.r * abs(5.0 * e.r - 5.0 * 0.75); + return round(e); +} + +float4 SMAADecodeDiagBilinearAccess(float4 e) { + e.rb = e.rb * abs(5.0 * e.rb - 5.0 * 0.75); + return round(e); +} + +/** + * These functions allows to perform diagonal pattern searches. + */ +float2 SMAASearchDiag1(SMAATexture2D(edgesTex), float2 texcoord, float2 dir, out float2 e) { + dir.y = API_V_DIR(dir.y); + float4 coord = float4(texcoord, -1.0, 1.0); + float3 t = float3(SMAA_RT_METRICS.xy, 1.0); + while (coord.z < float(SMAA_MAX_SEARCH_STEPS_DIAG - 1) && + coord.w > 0.9) { + coord.xyz = mad(t, float3(dir, 1.0), coord.xyz); + e = SMAASampleLevelZero(edgesTex, coord.xy).rg; + coord.w = dot(e, float2(0.5, 0.5)); + } + return coord.zw; +} + +float2 SMAASearchDiag2(SMAATexture2D(edgesTex), float2 texcoord, float2 dir, out float2 e) { + dir.y = API_V_DIR(dir.y); + float4 coord = float4(texcoord, -1.0, 1.0); + coord.x += 0.25 * SMAA_RT_METRICS.x; // See @SearchDiag2Optimization + float3 t = float3(SMAA_RT_METRICS.xy, 1.0); + while (coord.z < float(SMAA_MAX_SEARCH_STEPS_DIAG - 1) && + coord.w > 0.9) { + coord.xyz = mad(t, float3(dir, 1.0), coord.xyz); + + // @SearchDiag2Optimization + // Fetch both edges at once using bilinear filtering: + e = SMAASampleLevelZero(edgesTex, coord.xy).rg; + e = SMAADecodeDiagBilinearAccess(e); + + // Non-optimized version: + // e.g = SMAASampleLevelZero(edgesTex, coord.xy).g; + // e.r = SMAASampleLevelZeroOffset(edgesTex, coord.xy, int2(1, 0)).r; + + coord.w = dot(e, float2(0.5, 0.5)); + } + return coord.zw; +} + +/** + * Similar to SMAAArea, this calculates the area corresponding to a certain + * diagonal distance and crossing edges 'e'. + */ +float2 SMAAAreaDiag(SMAATexture2D(areaTex), float2 dist, float2 e, float offset) { + float2 texcoord = mad(float2(SMAA_AREATEX_MAX_DISTANCE_DIAG, SMAA_AREATEX_MAX_DISTANCE_DIAG), e, dist); + + // We do a scale and bias for mapping to texel space: + texcoord = mad(SMAA_AREATEX_PIXEL_SIZE, texcoord, 0.5 * SMAA_AREATEX_PIXEL_SIZE); + + // Diagonal areas are on the second half of the texture: + texcoord.x += 0.5; + + // Move to proper place, according to the subpixel offset: + texcoord.y += SMAA_AREATEX_SUBTEX_SIZE * offset; + + texcoord.y = API_V_COORD(texcoord.y); + + // Do it! + return SMAA_AREATEX_SELECT(SMAASampleLevelZero(areaTex, texcoord)); +} + +/** + * This searches for diagonal patterns and returns the corresponding weights. + */ +float2 SMAACalculateDiagWeights(SMAATexture2D(edgesTex), SMAATexture2D(areaTex), float2 texcoord, float2 e, float4 subsampleIndices) { + float2 weights = float2(0.0, 0.0); + + // Search for the line ends: + float4 d; + float2 end; + if (e.r > 0.0) { + d.xz = SMAASearchDiag1(SMAATexturePass2D(edgesTex), texcoord, float2(-1.0, 1.0), end); + d.x += float(end.y > 0.9); + } else + d.xz = float2(0.0, 0.0); + d.yw = SMAASearchDiag1(SMAATexturePass2D(edgesTex), texcoord, float2(1.0, -1.0), end); + + SMAA_BRANCH + if (d.x + d.y > 2.0) { // d.x + d.y + 1 > 3 + // Fetch the crossing edges: + float4 coords = mad(float4(-d.x + 0.25, API_V_DIR(d.x), d.y, API_V_DIR(-d.y - 0.25)), SMAA_RT_METRICS.xyxy, texcoord.xyxy); + float4 c; + c.xy = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(-1, 0)).rg; + c.zw = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2( 1, 0)).rg; + c.yxwz = SMAADecodeDiagBilinearAccess(c.xyzw); + + // Non-optimized version: + // float4 coords = mad(float4(-d.x, d.x, d.y, -d.y), SMAA_RT_METRICS.xyxy, texcoord.xyxy); + // float4 c; + // c.x = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(-1, 0)).g; + // c.y = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2( 0, 0)).r; + // c.z = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2( 1, 0)).g; + // c.w = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2( 1, -1)).r; + + // Merge crossing edges at each side into a single value: + float2 cc = mad(float2(2.0, 2.0), c.xz, c.yw); + + // Remove the crossing edge if we didn't found the end of the line: + SMAAMovc(bool2(step(0.9, d.zw)), cc, float2(0.0, 0.0)); + + // Fetch the areas for this line: + weights += SMAAAreaDiag(SMAATexturePass2D(areaTex), d.xy, cc, subsampleIndices.z); + } + + // Search for the line ends: + d.xz = SMAASearchDiag2(SMAATexturePass2D(edgesTex), texcoord, float2(-1.0, -1.0), end); + if (SMAASampleLevelZeroOffset(edgesTex, texcoord, int2(1, 0)).r > 0.0) { + d.yw = SMAASearchDiag2(SMAATexturePass2D(edgesTex), texcoord, float2(1.0, 1.0), end); + d.y += float(end.y > 0.9); + } else + d.yw = float2(0.0, 0.0); + + SMAA_BRANCH + if (d.x + d.y > 2.0) { // d.x + d.y + 1 > 3 + // Fetch the crossing edges: + float4 coords = mad(float4(-d.x, API_V_DIR(-d.x), d.y, API_V_DIR(d.y)), SMAA_RT_METRICS.xyxy, texcoord.xyxy); + float4 c; + c.x = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(-1, 0)).g; + c.y = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2( 0, API_V_DIR(-1))).r; + c.zw = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2( 1, 0)).gr; + float2 cc = mad(float2(2.0, 2.0), c.xz, c.yw); + + // Remove the crossing edge if we didn't found the end of the line: + SMAAMovc(bool2(step(0.9, d.zw)), cc, float2(0.0, 0.0)); + + // Fetch the areas for this line: + weights += SMAAAreaDiag(SMAATexturePass2D(areaTex), d.xy, cc, subsampleIndices.w).gr; + } + + return weights; +} +#endif + +//----------------------------------------------------------------------------- +// Horizontal/Vertical Search Functions + +/** + * This allows to determine how much length should we add in the last step + * of the searches. It takes the bilinearly interpolated edge (see + * @PSEUDO_GATHER4), and adds 0, 1 or 2, depending on which edges and + * crossing edges are active. + */ +float SMAASearchLength(SMAATexture2D(searchTex), float2 e, float offset) { + // The texture is flipped vertically, with left and right cases taking half + // of the space horizontally: + float2 scale = SMAA_SEARCHTEX_SIZE * float2(0.5, -1.0); + float2 bias = SMAA_SEARCHTEX_SIZE * float2(offset, 1.0); + + // Scale and bias to access texel centers: + scale += float2(-1.0, 1.0); + bias += float2( 0.5, -0.5); + + // Convert from pixel coordinates to texcoords: + // (We use SMAA_SEARCHTEX_PACKED_SIZE because the texture is cropped) + scale *= 1.0 / SMAA_SEARCHTEX_PACKED_SIZE; + bias *= 1.0 / SMAA_SEARCHTEX_PACKED_SIZE; + + float2 coord = mad(scale, e, bias); + coord.y = API_V_COORD(coord.y); + + // Lookup the search texture: + return SMAA_SEARCHTEX_SELECT(SMAASampleLevelZero(searchTex, coord)); +} + +/** + * Horizontal/vertical search functions for the 2nd pass. + */ +float SMAASearchXLeft(SMAATexture2D(edgesTex), SMAATexture2D(searchTex), float2 texcoord, float end) { + /** + * @PSEUDO_GATHER4 + * This texcoord has been offset by (-0.25, -0.125) in the vertex shader to + * sample between edge, thus fetching four edges in a row. + * Sampling with different offsets in each direction allows to disambiguate + * which edges are active from the four fetched ones. + */ + float2 e = float2(0.0, 1.0); + while (texcoord.x > end && + e.g > 0.8281 && // Is there some edge not activated? + e.r == 0.0) { // Or is there a crossing edge that breaks the line? + e = SMAASampleLevelZero(edgesTex, texcoord).rg; + texcoord = mad(-float2(2.0, 0.0), SMAA_RT_METRICS.xy, texcoord); + } + + float offset = mad(-(255.0 / 127.0), SMAASearchLength(SMAATexturePass2D(searchTex), e, 0.0), 3.25); + return mad(SMAA_RT_METRICS.x, offset, texcoord.x); + + // Non-optimized version: + // We correct the previous (-0.25, -0.125) offset we applied: + // texcoord.x += 0.25 * SMAA_RT_METRICS.x; + + // The searches are bias by 1, so adjust the coords accordingly: + // texcoord.x += SMAA_RT_METRICS.x; + + // Disambiguate the length added by the last step: + // texcoord.x += 2.0 * SMAA_RT_METRICS.x; // Undo last step + // texcoord.x -= SMAA_RT_METRICS.x * (255.0 / 127.0) * SMAASearchLength(SMAATexturePass2D(searchTex), e, 0.0); + // return mad(SMAA_RT_METRICS.x, offset, texcoord.x); +} + +float SMAASearchXRight(SMAATexture2D(edgesTex), SMAATexture2D(searchTex), float2 texcoord, float end) { + float2 e = float2(0.0, 1.0); + while (texcoord.x < end && + e.g > 0.8281 && // Is there some edge not activated? + e.r == 0.0) { // Or is there a crossing edge that breaks the line? + e = SMAASampleLevelZero(edgesTex, texcoord).rg; + texcoord = mad(float2(2.0, 0.0), SMAA_RT_METRICS.xy, texcoord); + } + float offset = mad(-(255.0 / 127.0), SMAASearchLength(SMAATexturePass2D(searchTex), e, 0.5), 3.25); + return mad(-SMAA_RT_METRICS.x, offset, texcoord.x); +} + +float SMAASearchYUp(SMAATexture2D(edgesTex), SMAATexture2D(searchTex), float2 texcoord, float end) { + float2 e = float2(1.0, 0.0); + while (API_V_BELOW(texcoord.y, end) && + e.r > 0.8281 && // Is there some edge not activated? + e.g == 0.0) { // Or is there a crossing edge that breaks the line? + e = SMAASampleLevelZero(edgesTex, texcoord).rg; + texcoord = mad(-float2(0.0, API_V_DIR(2.0)), SMAA_RT_METRICS.xy, texcoord); + } + float offset = mad(-(255.0 / 127.0), SMAASearchLength(SMAATexturePass2D(searchTex), e.gr, 0.0), 3.25); + return mad(SMAA_RT_METRICS.y, API_V_DIR(offset), texcoord.y); +} + +float SMAASearchYDown(SMAATexture2D(edgesTex), SMAATexture2D(searchTex), float2 texcoord, float end) { + float2 e = float2(1.0, 0.0); + while (API_V_ABOVE(texcoord.y, end) && + e.r > 0.8281 && // Is there some edge not activated? + e.g == 0.0) { // Or is there a crossing edge that breaks the line? + e = SMAASampleLevelZero(edgesTex, texcoord).rg; + texcoord = mad(float2(0.0, API_V_DIR(2.0)), SMAA_RT_METRICS.xy, texcoord); + } + float offset = mad(-(255.0 / 127.0), SMAASearchLength(SMAATexturePass2D(searchTex), e.gr, 0.5), 3.25); + return mad(-SMAA_RT_METRICS.y, API_V_DIR(offset), texcoord.y); +} + +/** + * Ok, we have the distance and both crossing edges. So, what are the areas + * at each side of current edge? + */ +float2 SMAAArea(SMAATexture2D(areaTex), float2 dist, float e1, float e2, float offset) { + // Rounding prevents precision errors of bilinear filtering: + float2 texcoord = mad(float2(SMAA_AREATEX_MAX_DISTANCE, SMAA_AREATEX_MAX_DISTANCE), round(4.0 * float2(e1, e2)), dist); + + // We do a scale and bias for mapping to texel space: + texcoord = mad(SMAA_AREATEX_PIXEL_SIZE, texcoord, 0.5 * SMAA_AREATEX_PIXEL_SIZE); + + // Move to proper place, according to the subpixel offset: + texcoord.y = mad(SMAA_AREATEX_SUBTEX_SIZE, offset, texcoord.y); + + texcoord.y = API_V_COORD(texcoord.y); + + // Do it! + return SMAA_AREATEX_SELECT(SMAASampleLevelZero(areaTex, texcoord)); +} + +//----------------------------------------------------------------------------- +// Corner Detection Functions + +void SMAADetectHorizontalCornerPattern(SMAATexture2D(edgesTex), inout float2 weights, float4 texcoord, float2 d) { + #if !defined(SMAA_DISABLE_CORNER_DETECTION) + float2 leftRight = step(d.xy, d.yx); + float2 rounding = (1.0 - SMAA_CORNER_ROUNDING_NORM) * leftRight; + + rounding /= leftRight.x + leftRight.y; // Reduce blending for pixels in the center of a line. + + float2 factor = float2(1.0, 1.0); + factor.x -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, int2(0, API_V_DIR(1))).r; + factor.x -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, int2(1, API_V_DIR(1))).r; + factor.y -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, int2(0, API_V_DIR(-2))).r; + factor.y -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, int2(1, API_V_DIR(-2))).r; + + weights *= saturate(factor); + #endif +} + +void SMAADetectVerticalCornerPattern(SMAATexture2D(edgesTex), inout float2 weights, float4 texcoord, float2 d) { + #if !defined(SMAA_DISABLE_CORNER_DETECTION) + float2 leftRight = step(d.xy, d.yx); + float2 rounding = (1.0 - SMAA_CORNER_ROUNDING_NORM) * leftRight; + + rounding /= leftRight.x + leftRight.y; + + float2 factor = float2(1.0, 1.0); + factor.x -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, int2( 1, 0)).g; + factor.x -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, int2( 1, API_V_DIR(1))).g; + factor.y -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, int2(-2, 0)).g; + factor.y -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, int2(-2, API_V_DIR(1))).g; + + weights *= saturate(factor); + #endif +} + +//----------------------------------------------------------------------------- +// Blending Weight Calculation Pixel Shader (Second Pass) + +float4 SMAABlendingWeightCalculationPS(float2 texcoord, + float2 pixcoord, + float4 offset[3], + SMAATexture2D(edgesTex), + SMAATexture2D(areaTex), + SMAATexture2D(searchTex), + float4 subsampleIndices) { // Just pass zero for SMAA 1x, see @SUBSAMPLE_INDICES. + float4 weights = float4(0.0, 0.0, 0.0, 0.0); + + float2 e = SMAASample(edgesTex, texcoord).rg; + + SMAA_BRANCH + if (e.g > 0.0) { // Edge at north + #if !defined(SMAA_DISABLE_DIAG_DETECTION) + // Diagonals have both north and west edges, so searching for them in + // one of the boundaries is enough. + weights.rg = SMAACalculateDiagWeights(SMAATexturePass2D(edgesTex), SMAATexturePass2D(areaTex), texcoord, e, subsampleIndices); + + // We give priority to diagonals, so if we find a diagonal we skip + // horizontal/vertical processing. + SMAA_BRANCH + if (weights.r == -weights.g) { // weights.r + weights.g == 0.0 + #endif + + float2 d; + + // Find the distance to the left: + float3 coords; + coords.x = SMAASearchXLeft(SMAATexturePass2D(edgesTex), SMAATexturePass2D(searchTex), offset[0].xy, offset[2].x); + coords.y = offset[1].y; // offset[1].y = texcoord.y - 0.25 * SMAA_RT_METRICS.y (@CROSSING_OFFSET) + d.x = coords.x; + + // Now fetch the left crossing edges, two at a time using bilinear + // filtering. Sampling at -0.25 (see @CROSSING_OFFSET) enables to + // discern what value each edge has: + float e1 = SMAASampleLevelZero(edgesTex, coords.xy).r; + + // Find the distance to the right: + coords.z = SMAASearchXRight(SMAATexturePass2D(edgesTex), SMAATexturePass2D(searchTex), offset[0].zw, offset[2].y); + d.y = coords.z; + + // We want the distances to be in pixel units (doing this here allow to + // better interleave arithmetic and memory accesses): + d = abs(round(mad(SMAA_RT_METRICS.zz, d, -pixcoord.xx))); + + // SMAAArea below needs a sqrt, as the areas texture is compressed + // quadratically: + float2 sqrt_d = sqrt(d); + + // Fetch the right crossing edges: + float e2 = SMAASampleLevelZeroOffset(edgesTex, coords.zy, int2(1, 0)).r; + + // Ok, we know how this pattern looks like, now it is time for getting + // the actual area: + weights.rg = SMAAArea(SMAATexturePass2D(areaTex), sqrt_d, e1, e2, subsampleIndices.y); + + // Fix corners: + coords.y = texcoord.y; + SMAADetectHorizontalCornerPattern(SMAATexturePass2D(edgesTex), weights.rg, coords.xyzy, d); + + #if !defined(SMAA_DISABLE_DIAG_DETECTION) + } else + e.r = 0.0; // Skip vertical processing. + #endif + } + + SMAA_BRANCH + if (e.r > 0.0) { // Edge at west + float2 d; + + // Find the distance to the top: + float3 coords; + coords.y = SMAASearchYUp(SMAATexturePass2D(edgesTex), SMAATexturePass2D(searchTex), offset[1].xy, offset[2].z); + coords.x = offset[0].x; // offset[1].x = texcoord.x - 0.25 * SMAA_RT_METRICS.x; + d.x = coords.y; + + // Fetch the top crossing edges: + float e1 = SMAASampleLevelZero(edgesTex, coords.xy).g; + + // Find the distance to the bottom: + coords.z = SMAASearchYDown(SMAATexturePass2D(edgesTex), SMAATexturePass2D(searchTex), offset[1].zw, offset[2].w); + d.y = coords.z; + + // We want the distances to be in pixel units: + d = abs(round(mad(SMAA_RT_METRICS.ww, d, -pixcoord.yy))); + + // SMAAArea below needs a sqrt, as the areas texture is compressed + // quadratically: + float2 sqrt_d = sqrt(d); + + // Fetch the bottom crossing edges: + float e2 = SMAASampleLevelZeroOffset(edgesTex, coords.xz, int2(0, API_V_DIR(1))).g; + + // Get the area for this direction: + weights.ba = SMAAArea(SMAATexturePass2D(areaTex), sqrt_d, e1, e2, subsampleIndices.x); + + // Fix corners: + coords.x = texcoord.x; + SMAADetectVerticalCornerPattern(SMAATexturePass2D(edgesTex), weights.ba, coords.xyxz, d); + } + + return weights; +} + +//----------------------------------------------------------------------------- +// Neighborhood Blending Pixel Shader (Third Pass) + +float4 SMAANeighborhoodBlendingPS(float2 texcoord, + float4 offset, + SMAATexture2D(colorTex), + SMAATexture2D(blendTex) + #if SMAA_REPROJECTION + , SMAATexture2D(velocityTex) + #endif + ) { + // Fetch the blending weights for current pixel: + float4 a; + a.x = SMAASample(blendTex, offset.xy).a; // Right + a.y = SMAASample(blendTex, offset.zw).g; // Top + a.wz = SMAASample(blendTex, texcoord).xz; // Bottom / Left + + // Is there any blending weight with a value greater than 0.0? + SMAA_BRANCH + if (dot(a, float4(1.0, 1.0, 1.0, 1.0)) < 1e-5) { + float4 color = SMAASampleLevelZero(colorTex, texcoord); + + #if SMAA_REPROJECTION + float2 velocity = SMAA_DECODE_VELOCITY(SMAASampleLevelZero(velocityTex, texcoord)); + + // Pack velocity into the alpha channel: + color.a = sqrt(5.0 * length(velocity)); + #endif + + return color; + } else { + bool h = max(a.x, a.z) > max(a.y, a.w); // max(horizontal) > max(vertical) + + // Calculate the blending offsets: + float4 blendingOffset = float4(0.0, API_V_DIR(a.y), 0.0, API_V_DIR(a.w)); + float2 blendingWeight = a.yw; + SMAAMovc(bool4(h, h, h, h), blendingOffset, float4(a.x, 0.0, a.z, 0.0)); + SMAAMovc(bool2(h, h), blendingWeight, a.xz); + blendingWeight /= dot(blendingWeight, float2(1.0, 1.0)); + + // Calculate the texture coordinates: + float4 blendingCoord = mad(blendingOffset, float4(SMAA_RT_METRICS.xy, -SMAA_RT_METRICS.xy), texcoord.xyxy); + + // We exploit bilinear filtering to mix current pixel with the chosen + // neighbor: + float4 color = blendingWeight.x * SMAASampleLevelZero(colorTex, blendingCoord.xy); + color += blendingWeight.y * SMAASampleLevelZero(colorTex, blendingCoord.zw); + + #if SMAA_REPROJECTION + // Antialias velocity for proper reprojection in a later stage: + float2 velocity = blendingWeight.x * SMAA_DECODE_VELOCITY(SMAASampleLevelZero(velocityTex, blendingCoord.xy)); + velocity += blendingWeight.y * SMAA_DECODE_VELOCITY(SMAASampleLevelZero(velocityTex, blendingCoord.zw)); + + // Pack velocity into the alpha channel: + color.a = sqrt(5.0 * length(velocity)); + #endif + + return color; + } +} + +//----------------------------------------------------------------------------- +// Temporal Resolve Pixel Shader (Optional Pass) + +float4 SMAAResolvePS(float2 texcoord, + SMAATexture2D(currentColorTex), + SMAATexture2D(previousColorTex) + #if SMAA_REPROJECTION + , SMAATexture2D(velocityTex) + #endif + ) { + #if SMAA_REPROJECTION + // Velocity is assumed to be calculated for motion blur, so we need to + // inverse it for reprojection: + float2 velocity = -SMAA_DECODE_VELOCITY(SMAASamplePoint(velocityTex, texcoord).rg); + + // Fetch current pixel: + float4 current = SMAASamplePoint(currentColorTex, texcoord); + + // Reproject current coordinates and fetch previous pixel: + float4 previous = SMAASamplePoint(previousColorTex, texcoord + velocity); + + // Attenuate the previous pixel if the velocity is different: + float delta = abs(current.a * current.a - previous.a * previous.a) / 5.0; + float weight = 0.5 * saturate(1.0 - sqrt(delta) * SMAA_REPROJECTION_WEIGHT_SCALE); + + // Blend the pixels according to the calculated weight: + return lerp(current, previous, weight); + #else + // Just blend the pixels: + float4 current = SMAASamplePoint(currentColorTex, texcoord); + float4 previous = SMAASamplePoint(previousColorTex, texcoord); + return lerp(current, previous, 0.5); + #endif +} + +//----------------------------------------------------------------------------- +// Separate Multisamples Pixel Shader (Optional Pass) + +#ifdef SMAALoad +void SMAASeparatePS(float4 position, + float2 texcoord, + out float4 target0, + out float4 target1, + SMAATexture2DMS2(colorTexMS)) { + int2 pos = int2(position.xy); + target0 = SMAALoad(colorTexMS, pos, 0); + target1 = SMAALoad(colorTexMS, pos, 1); +} +#endif + +//----------------------------------------------------------------------------- +#endif // SMAA_INCLUDE_PS diff --git a/indra/newview/app_settings/shaders/class1/deferred/SMAABlendWeightsF.glsl b/indra/newview/app_settings/shaders/class1/deferred/SMAABlendWeightsF.glsl new file mode 100644 index 0000000000..3332c5f58f --- /dev/null +++ b/indra/newview/app_settings/shaders/class1/deferred/SMAABlendWeightsF.glsl @@ -0,0 +1,57 @@ +/** + * @file SMAABlendWeightsF.glsl + * + * $LicenseInfo:firstyear=2024&license=viewerlgpl$ + * Second Life Viewer Source Code + * Copyright (C) 2024, Linden Research, Inc. + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; + * version 2.1 of the License only. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA + * $/LicenseInfo$ + */ + +/*[EXTRA_CODE_HERE]*/ + +out vec4 frag_color; + +in vec2 vary_texcoord0; +in vec2 vary_pixcoord; +in vec4 vary_offset[3]; + +uniform sampler2D edgesTex; +uniform sampler2D areaTex; +uniform sampler2D searchTex; + +vec4 SMAABlendingWeightCalculationPS(vec2 texcoord, + vec2 pixcoord, + vec4 offset[3], + sampler2D edgesTex, + sampler2D areaTex, + sampler2D searchTex, + vec4 subsampleIndices); + +void main() +{ + frag_color = SMAABlendingWeightCalculationPS(vary_texcoord0, + vary_pixcoord, + vary_offset, + edgesTex, + areaTex, + searchTex, + vec4(0.0) + ); +} + diff --git a/indra/newview/app_settings/shaders/class1/deferred/SMAABlendWeightsV.glsl b/indra/newview/app_settings/shaders/class1/deferred/SMAABlendWeightsV.glsl new file mode 100644 index 0000000000..52f85ef30c --- /dev/null +++ b/indra/newview/app_settings/shaders/class1/deferred/SMAABlendWeightsV.glsl @@ -0,0 +1,51 @@ +/** + * @file SMAABlendWeightsV.glsl + * + * $LicenseInfo:firstyear=2024&license=viewerlgpl$ + * Second Life Viewer Source Code + * Copyright (C) 2024, Linden Research, Inc. + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; + * version 2.1 of the License only. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA + * $/LicenseInfo$ + */ + +/*[EXTRA_CODE_HERE]*/ + +uniform mat4 modelview_projection_matrix; + +in vec3 position; + +out vec2 vary_texcoord0; +out vec2 vary_pixcoord; +out vec4 vary_offset[3]; + +#define float4 vec4 +#define float2 vec2 +void SMAABlendingWeightCalculationVS(float2 texcoord, + out float2 pixcoord, + out float4 offset[3]); + +void main() +{ + gl_Position = vec4(position.xyz, 1.0); + vary_texcoord0 = (gl_Position.xy*0.5+0.5); + + SMAABlendingWeightCalculationVS(vary_texcoord0, + vary_pixcoord, + vary_offset); +} + diff --git a/indra/newview/app_settings/shaders/class1/deferred/SMAAEdgeDetectF.glsl b/indra/newview/app_settings/shaders/class1/deferred/SMAAEdgeDetectF.glsl new file mode 100644 index 0000000000..0a8cd4a4ea --- /dev/null +++ b/indra/newview/app_settings/shaders/class1/deferred/SMAAEdgeDetectF.glsl @@ -0,0 +1,59 @@ +/** + * @file SMAAEdgeDetectF.glsl + * $LicenseInfo:firstyear=2024&license=viewerlgpl$ + * Second Life Viewer Source Code + * Copyright (C) 2024, Linden Research, Inc. + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; + * version 2.1 of the License only. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA + * $/LicenseInfo$ + */ + +/*[EXTRA_CODE_HERE]*/ + +out vec4 frag_color; + +in vec2 vary_texcoord0; +in vec4 vary_offset[3]; + +uniform sampler2D diffuseRect; +#if SMAA_PREDICATION +uniform sampler2D predicationTex; +#endif + +#define float4 vec4 +#define float2 vec2 +#define SMAATexture2D(tex) sampler2D tex + +float2 SMAAColorEdgeDetectionPS(float2 texcoord, + float4 offset[3], + SMAATexture2D(colorTex) + #if SMAA_PREDICATION + , SMAATexture2D(predicationTex) + #endif + ); + +void main() +{ + vec2 val = SMAAColorEdgeDetectionPS(vary_texcoord0, + vary_offset, + diffuseRect + #if SMAA_PREDICATION + , predicationTex + #endif + ); + frag_color = float4(val,0.0,0.0); +} diff --git a/indra/newview/app_settings/shaders/class1/deferred/SMAAEdgeDetectV.glsl b/indra/newview/app_settings/shaders/class1/deferred/SMAAEdgeDetectV.glsl new file mode 100644 index 0000000000..7c0184bfc4 --- /dev/null +++ b/indra/newview/app_settings/shaders/class1/deferred/SMAAEdgeDetectV.glsl @@ -0,0 +1,45 @@ +/** + * @file SMAAEdgeDetectV.glsl + * $LicenseInfo:firstyear=2024&license=viewerlgpl$ + * Second Life Viewer Source Code + * Copyright (C) 2024, Linden Research, Inc. + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; + * version 2.1 of the License only. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA + * $/LicenseInfo$ + */ + +/*[EXTRA_CODE_HERE]*/ + +uniform mat4 modelview_projection_matrix; + +in vec3 position; + +out vec2 vary_texcoord0; +out vec4 vary_offset[3]; + +#define float4 vec4 +#define float2 vec2 +void SMAAEdgeDetectionVS(float2 texcoord, + out float4 offset[3]); + +void main() +{ + gl_Position = vec4(position.xyz, 1.0); + vary_texcoord0 = (gl_Position.xy*0.5+0.5); + + SMAAEdgeDetectionVS(vary_texcoord0, vary_offset); +} diff --git a/indra/newview/app_settings/shaders/class1/deferred/SMAANeighborhoodBlendF.glsl b/indra/newview/app_settings/shaders/class1/deferred/SMAANeighborhoodBlendF.glsl new file mode 100644 index 0000000000..3276405447 --- /dev/null +++ b/indra/newview/app_settings/shaders/class1/deferred/SMAANeighborhoodBlendF.glsl @@ -0,0 +1,63 @@ +/** + * @file SMAANeighborhoodBlendF.glsl + * + * $LicenseInfo:firstyear=2024&license=viewerlgpl$ + * Second Life Viewer Source Code + * Copyright (C) 2024, Linden Research, Inc. + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; + * version 2.1 of the License only. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA + * $/LicenseInfo$ + */ + +/*[EXTRA_CODE_HERE]*/ + +out vec4 frag_color; + +in vec2 vary_texcoord0; +in vec4 vary_offset; + +uniform sampler2D diffuseRect; +uniform sampler2D blendTex; +#if SMAA_REPROJECTION +uniform sampler2D velocityTex; +#endif + +#define float4 vec4 +#define float2 vec2 +#define SMAATexture2D(tex) sampler2D tex + +float4 SMAANeighborhoodBlendingPS(float2 texcoord, + float4 offset, + SMAATexture2D(colorTex), + SMAATexture2D(blendTex) + #if SMAA_REPROJECTION + , SMAATexture2D(velocityTex) + #endif + ); + +void main() +{ + frag_color = SMAANeighborhoodBlendingPS(vary_texcoord0, + vary_offset, + diffuseRect, + blendTex + #if SMAA_REPROJECTION + , velocityTex + #endif + ); +} + diff --git a/indra/newview/app_settings/shaders/class1/deferred/SMAANeighborhoodBlendV.glsl b/indra/newview/app_settings/shaders/class1/deferred/SMAANeighborhoodBlendV.glsl new file mode 100644 index 0000000000..7ea1ac61e3 --- /dev/null +++ b/indra/newview/app_settings/shaders/class1/deferred/SMAANeighborhoodBlendV.glsl @@ -0,0 +1,47 @@ +/** + * @file SMAANeighborhoodBlendV.glsl + * + * $LicenseInfo:firstyear=2024&license=viewerlgpl$ + * Second Life Viewer Source Code + * Copyright (C) 2024, Linden Research, Inc. + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; + * version 2.1 of the License only. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA + * $/LicenseInfo$ + */ + +/*[EXTRA_CODE_HERE]*/ + +uniform mat4 modelview_projection_matrix; + +in vec3 position; + +out vec2 vary_texcoord0; +out vec4 vary_offset; + +#define float4 vec4 +#define float2 vec2 +void SMAANeighborhoodBlendingVS(float2 texcoord, + out float4 offset); + +void main() +{ + gl_Position = vec4(position.xyz, 1.0); + vary_texcoord0 = (gl_Position.xy*0.5+0.5); + + SMAANeighborhoodBlendingVS(vary_texcoord0, vary_offset); +} + diff --git a/indra/newview/app_settings/shaders/class1/deferred/avatarF.glsl b/indra/newview/app_settings/shaders/class1/deferred/avatarF.glsl index b904df3a1b..32b768cc63 100644 --- a/indra/newview/app_settings/shaders/class1/deferred/avatarF.glsl +++ b/indra/newview/app_settings/shaders/class1/deferred/avatarF.glsl @@ -36,6 +36,7 @@ in vec2 vary_texcoord0; in vec3 vary_position; void mirrorClip(vec3 pos); +vec4 encodeNormal(vec3 norm, float gbuffer_flag); void main() { @@ -51,7 +52,7 @@ void main() frag_data[0] = vec4(diff.rgb, 0.0); frag_data[1] = vec4(0,0,0,0); vec3 nvn = normalize(vary_normal); - frag_data[2] = vec4(nvn.xyz, GBUFFER_FLAG_HAS_ATMOS); + frag_data[2] = encodeNormal(nvn.xyz, GBUFFER_FLAG_HAS_ATMOS); frag_data[3] = vec4(0); } diff --git a/indra/newview/app_settings/shaders/class1/deferred/bumpF.glsl b/indra/newview/app_settings/shaders/class1/deferred/bumpF.glsl index 2cc3085cd0..79c1b392e9 100644 --- a/indra/newview/app_settings/shaders/class1/deferred/bumpF.glsl +++ b/indra/newview/app_settings/shaders/class1/deferred/bumpF.glsl @@ -40,6 +40,8 @@ in vec2 vary_texcoord0; in vec3 vary_position; void mirrorClip(vec3 pos); +vec4 encodeNormal(vec3 norm, float gbuffer_flag); + void main() { mirrorClip(vary_position); @@ -62,6 +64,6 @@ void main() frag_data[1] = vertex_color.aaaa; // spec //frag_data[1] = vec4(vec3(vertex_color.a), vertex_color.a+(1.0-vertex_color.a)*vertex_color.a); // spec - from former class3 - maybe better, but not so well tested vec3 nvn = normalize(tnorm); - frag_data[2] = vec4(nvn, GBUFFER_FLAG_HAS_ATMOS); + frag_data[2] = encodeNormal(nvn, GBUFFER_FLAG_HAS_ATMOS); frag_data[3] = vec4(vertex_color.a, 0, 0, 0); } diff --git a/indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl b/indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl index 8588a93648..0e8d8d010b 100644 --- a/indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl +++ b/indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl @@ -75,6 +75,9 @@ const float ONE_OVER_PI = 0.3183098861; vec3 srgb_to_linear(vec3 cs); vec3 atmosFragLightingLinear(vec3 light, vec3 additive, vec3 atten); +vec4 decodeNormal(vec4 norm); + + float calcLegacyDistanceAttenuation(float distance, float falloff) { float dist_atten = 1.0 - clamp((distance + falloff)/(1.0 + falloff), 0.0, 1.0); @@ -145,8 +148,7 @@ vec2 getScreenCoordinate(vec2 screenpos) vec4 getNorm(vec2 screenpos) { - vec4 norm = texture(normalMap, screenpos.xy); - norm.xyz = normalize(norm.xyz); + vec4 norm = decodeNormal(texture(normalMap, screenpos.xy)); return norm; } diff --git a/indra/newview/app_settings/shaders/class1/deferred/diffuseAlphaMaskF.glsl b/indra/newview/app_settings/shaders/class1/deferred/diffuseAlphaMaskF.glsl index 1751e17814..fadf06d592 100644 --- a/indra/newview/app_settings/shaders/class1/deferred/diffuseAlphaMaskF.glsl +++ b/indra/newview/app_settings/shaders/class1/deferred/diffuseAlphaMaskF.glsl @@ -39,6 +39,8 @@ in vec2 vary_texcoord0; void mirrorClip(vec3 pos); +vec4 encodeNormal(vec3 norm, float gbuffer_flag); + void main() { mirrorClip(vary_position); @@ -53,7 +55,7 @@ void main() frag_data[0] = vec4(col.rgb, 0.0); frag_data[1] = vec4(0,0,0,0); // spec vec3 nvn = normalize(vary_normal); - frag_data[2] = vec4(nvn.xyz, GBUFFER_FLAG_HAS_ATMOS); + frag_data[2] = encodeNormal(nvn.xyz, GBUFFER_FLAG_HAS_ATMOS); frag_data[3] = vec4(0); } diff --git a/indra/newview/app_settings/shaders/class1/deferred/diffuseAlphaMaskIndexedF.glsl b/indra/newview/app_settings/shaders/class1/deferred/diffuseAlphaMaskIndexedF.glsl index f5b517a8ea..10d06da416 100644 --- a/indra/newview/app_settings/shaders/class1/deferred/diffuseAlphaMaskIndexedF.glsl +++ b/indra/newview/app_settings/shaders/class1/deferred/diffuseAlphaMaskIndexedF.glsl @@ -36,6 +36,7 @@ in vec4 vertex_color; in vec2 vary_texcoord0; void mirrorClip(vec3 pos); +vec4 encodeNormal(vec3 norm, float gbuffer_flag); void main() { @@ -51,6 +52,6 @@ void main() frag_data[0] = vec4(col.rgb, 0.0); frag_data[1] = vec4(0,0,0,0); vec3 nvn = normalize(vary_normal); - frag_data[2] = vec4(nvn.xyz, GBUFFER_FLAG_HAS_ATMOS); + frag_data[2] = encodeNormal(nvn.xyz, GBUFFER_FLAG_HAS_ATMOS); frag_data[3] = vec4(0); } diff --git a/indra/newview/app_settings/shaders/class1/deferred/diffuseAlphaMaskNoColorF.glsl b/indra/newview/app_settings/shaders/class1/deferred/diffuseAlphaMaskNoColorF.glsl index 89ea0c1710..f7c8fc9596 100644 --- a/indra/newview/app_settings/shaders/class1/deferred/diffuseAlphaMaskNoColorF.glsl +++ b/indra/newview/app_settings/shaders/class1/deferred/diffuseAlphaMaskNoColorF.glsl @@ -33,6 +33,7 @@ uniform sampler2D diffuseMap; in vec3 vary_normal; in vec2 vary_texcoord0; +vec4 encodeNormal(vec3 norm, float gbuffer_flag); void main() { @@ -46,7 +47,7 @@ void main() frag_data[0] = vec4(col.rgb, 0.0); frag_data[1] = vec4(0,0,0,0); // spec vec3 nvn = normalize(vary_normal); - frag_data[2] = vec4(nvn.xyz, GBUFFER_FLAG_HAS_ATMOS); + frag_data[2] = encodeNormal(nvn.xyz, GBUFFER_FLAG_HAS_ATMOS); frag_data[3] = vec4(0); } diff --git a/indra/newview/app_settings/shaders/class1/deferred/diffuseF.glsl b/indra/newview/app_settings/shaders/class1/deferred/diffuseF.glsl index 7f056a51e8..d83f5a3145 100644 --- a/indra/newview/app_settings/shaders/class1/deferred/diffuseF.glsl +++ b/indra/newview/app_settings/shaders/class1/deferred/diffuseF.glsl @@ -35,6 +35,7 @@ in vec2 vary_texcoord0; in vec3 vary_position; void mirrorClip(vec3 pos); +vec4 encodeNormal(vec3 norm, float gbuffer_flag); void main() { @@ -42,9 +43,8 @@ void main() vec3 col = vertex_color.rgb * texture(diffuseMap, vary_texcoord0.xy).rgb; frag_data[0] = vec4(col, 0.0); frag_data[1] = vertex_color.aaaa; // spec - //frag_data[1] = vec4(vec3(vertex_color.a), vertex_color.a+(1.0-vertex_color.a)*vertex_color.a); // spec - from former class3 - maybe better, but not so well tested vec3 nvn = normalize(vary_normal); - frag_data[2] = vec4(nvn.xyz, GBUFFER_FLAG_HAS_ATMOS); + frag_data[2] = encodeNormal(nvn.xyz, GBUFFER_FLAG_HAS_ATMOS); frag_data[3] = vec4(vertex_color.a, 0, 0, 0); } diff --git a/indra/newview/app_settings/shaders/class1/deferred/diffuseIndexedF.glsl b/indra/newview/app_settings/shaders/class1/deferred/diffuseIndexedF.glsl index 5c73878ba9..6d8943e7ae 100644 --- a/indra/newview/app_settings/shaders/class1/deferred/diffuseIndexedF.glsl +++ b/indra/newview/app_settings/shaders/class1/deferred/diffuseIndexedF.glsl @@ -33,6 +33,8 @@ in vec2 vary_texcoord0; in vec3 vary_position; void mirrorClip(vec3 pos); +vec4 encodeNormal(vec3 norm, float gbuffer_flag); + vec3 linear_to_srgb(vec3 c); void main() @@ -46,6 +48,6 @@ void main() frag_data[0] = vec4(col, 0.0); frag_data[1] = vec4(spec, vertex_color.a); // spec vec3 nvn = normalize(vary_normal); - frag_data[2] = vec4(nvn.xyz, GBUFFER_FLAG_HAS_ATMOS); + frag_data[2] = encodeNormal(nvn.xyz, GBUFFER_FLAG_HAS_ATMOS); frag_data[3] = vec4(vertex_color.a, 0, 0, 0); } diff --git a/indra/newview/app_settings/shaders/class1/deferred/fxaaF.glsl b/indra/newview/app_settings/shaders/class1/deferred/fxaaF.glsl index 94dac7e5a9..655cb1ea97 100644 --- a/indra/newview/app_settings/shaders/class1/deferred/fxaaF.glsl +++ b/indra/newview/app_settings/shaders/class1/deferred/fxaaF.glsl @@ -32,7 +32,7 @@ out vec4 frag_color; #define FXAA_PC 1 //#define FXAA_GLSL_130 1 -#define FXAA_QUALITY__PRESET 12 +//#define FXAA_QUALITY__PRESET 12 /*============================================================================ @@ -256,6 +256,10 @@ A. Or use FXAA_GREEN_AS_LUMA. #define FXAA_GLSL_130 0 #endif /*--------------------------------------------------------------------------*/ +#ifndef FXAA_GLSL_400 + #define FXAA_GLSL_400 0 +#endif +/*--------------------------------------------------------------------------*/ #ifndef FXAA_HLSL_3 #define FXAA_HLSL_3 0 #endif @@ -342,8 +346,8 @@ A. Or use FXAA_GREEN_AS_LUMA. // 1 = API supports gather4 on alpha channel. // 0 = API does not support gather4 on alpha channel. // - #if (FXAA_GLSL_130 == 0) - #define FXAA_GATHER4_ALPHA 0 + #if (FXAA_GLSL_400 == 1) + #define FXAA_GATHER4_ALPHA 1 #endif #if (FXAA_HLSL_5 == 1) #define FXAA_GATHER4_ALPHA 1 @@ -652,7 +656,7 @@ NOTE the other tuning knobs are now in the shader function inputs! API PORTING ============================================================================*/ -#if (FXAA_GLSL_120 == 1) || (FXAA_GLSL_130 == 1) +#if (FXAA_GLSL_120 == 1) || (FXAA_GLSL_130 == 1) || (FXAA_GLSL_400 == 1) #define FxaaBool bool #define FxaaDiscard discard #define FxaaFloat float @@ -714,6 +718,16 @@ NOTE the other tuning knobs are now in the shader function inputs! #endif #endif /*--------------------------------------------------------------------------*/ +#if (FXAA_GLSL_400 == 1) + // Requires "#version 400" or better + #define FxaaTexTop(t, p) textureLod(t, p, 0.0) + #define FxaaTexOff(t, p, o, r) textureLodOffset(t, p, 0.0, o) + #define FxaaTexAlpha4(t, p) textureGather(t, p, 3) + #define FxaaTexOffAlpha4(t, p, o) textureGatherOffset(t, p, o, 3) + #define FxaaTexGreen4(t, p) textureGather(t, p, 1) + #define FxaaTexOffGreen4(t, p, o) textureGatherOffset(t, p, o, 1) +#endif +/*--------------------------------------------------------------------------*/ #if (FXAA_HLSL_3 == 1) || (FXAA_360 == 1) || (FXAA_PS3 == 1) #define FxaaInt2 float2 #define FxaaTex sampler2D diff --git a/indra/newview/app_settings/shaders/class1/deferred/globalF.glsl b/indra/newview/app_settings/shaders/class1/deferred/globalF.glsl index d493976eba..16120508d5 100644 --- a/indra/newview/app_settings/shaders/class1/deferred/globalF.glsl +++ b/indra/newview/app_settings/shaders/class1/deferred/globalF.glsl @@ -43,3 +43,15 @@ void mirrorClip(vec3 pos) } } +vec4 encodeNormal(vec3 norm, float gbuffer_flag) +{ + return vec4(norm * 0.5 + 0.5, gbuffer_flag); +} + +vec4 decodeNormal(vec4 norm) +{ + norm.xyz = norm.xyz * 2.0 - 1.0; + return norm; +} + + diff --git a/indra/newview/app_settings/shaders/class1/deferred/impostorF.glsl b/indra/newview/app_settings/shaders/class1/deferred/impostorF.glsl index 99cb23839a..a6bca68cb0 100644 --- a/indra/newview/app_settings/shaders/class1/deferred/impostorF.glsl +++ b/indra/newview/app_settings/shaders/class1/deferred/impostorF.glsl @@ -38,6 +38,8 @@ in vec2 vary_texcoord0; vec3 linear_to_srgb(vec3 c); +vec4 encodeNormal(vec3 norm, float gbuffer_flag); + void main() { vec4 col = texture(diffuseMap, vary_texcoord0.xy); diff --git a/indra/newview/app_settings/shaders/class1/deferred/pbropaqueF.glsl b/indra/newview/app_settings/shaders/class1/deferred/pbropaqueF.glsl index b521081af9..c0d4c387af 100644 --- a/indra/newview/app_settings/shaders/class1/deferred/pbropaqueF.glsl +++ b/indra/newview/app_settings/shaders/class1/deferred/pbropaqueF.glsl @@ -61,6 +61,7 @@ uniform vec4 clipPlane; uniform float clipSign; void mirrorClip(vec3 pos); +vec4 encodeNormal(vec3 norm, float gbuffer_flag); uniform mat3 normal_matrix; @@ -113,7 +114,7 @@ void main() // See: C++: addDeferredAttachments(), GLSL: softenLightF frag_data[0] = max(vec4(col, 0.0), vec4(0)); // Diffuse frag_data[1] = max(vec4(spec.rgb,0.0), vec4(0)); // PBR linear packed Occlusion, Roughness, Metal. - frag_data[2] = vec4(tnorm, GBUFFER_FLAG_HAS_PBR); // normal, environment intensity, flags + frag_data[2] = encodeNormal(tnorm, GBUFFER_FLAG_HAS_PBR); // normal, environment intensity, flags frag_data[3] = max(vec4(emissive,0), vec4(0)); // PBR sRGB Emissive } diff --git a/indra/newview/app_settings/shaders/class1/deferred/pbrterrainF.glsl b/indra/newview/app_settings/shaders/class1/deferred/pbrterrainF.glsl index 410c447c64..b434479511 100644 --- a/indra/newview/app_settings/shaders/class1/deferred/pbrterrainF.glsl +++ b/indra/newview/app_settings/shaders/class1/deferred/pbrterrainF.glsl @@ -162,6 +162,7 @@ in vec4[2] vary_coords; #endif void mirrorClip(vec3 position); +vec4 encodeNormal(vec3 norm, float gbuffer_flag); float terrain_mix(TerrainMix tm, vec4 tms4); @@ -429,7 +430,7 @@ void main() #endif frag_data[0] = max(vec4(pbr_mix.col.xyz, 0.0), vec4(0)); // Diffuse frag_data[1] = max(vec4(mix_orm.rgb, base_color_factor_alpha), vec4(0)); // PBR linear packed Occlusion, Roughness, Metal. - frag_data[2] = vec4(tnorm, GBUFFER_FLAG_HAS_PBR); // normal, flags + frag_data[2] = encodeNormal(tnorm, GBUFFER_FLAG_HAS_PBR); // normal, flags frag_data[3] = max(vec4(mix_emissive,0), vec4(0)); // PBR sRGB Emissive } diff --git a/indra/newview/app_settings/shaders/class1/deferred/postDeferredGammaCorrect.glsl b/indra/newview/app_settings/shaders/class1/deferred/postDeferredGammaCorrect.glsl index a0eb6cfbb8..befd2ae6da 100644 --- a/indra/newview/app_settings/shaders/class1/deferred/postDeferredGammaCorrect.glsl +++ b/indra/newview/app_settings/shaders/class1/deferred/postDeferredGammaCorrect.glsl @@ -28,141 +28,13 @@ out vec4 frag_color; uniform sampler2D diffuseRect; -uniform sampler2D exposureMap; +uniform float gamma; uniform vec2 screen_res; in vec2 vary_fragcoord; vec3 linear_to_srgb(vec3 cl); -//=============================================================== -// tone mapping taken from Khronos sample implementation -//=============================================================== - -// sRGB => XYZ => D65_2_D60 => AP1 => RRT_SAT -const mat3 ACESInputMat = mat3 -( - 0.59719, 0.07600, 0.02840, - 0.35458, 0.90834, 0.13383, - 0.04823, 0.01566, 0.83777 -); - - -// ODT_SAT => XYZ => D60_2_D65 => sRGB -const mat3 ACESOutputMat = mat3 -( - 1.60475, -0.10208, -0.00327, - -0.53108, 1.10813, -0.07276, - -0.07367, -0.00605, 1.07602 -); - -// ACES tone map (faster approximation) -// see: https://knarkowicz.wordpress.com/2016/01/06/aces-filmic-tone-mapping-curve/ -vec3 toneMapACES_Narkowicz(vec3 color) -{ - const float A = 2.51; - const float B = 0.03; - const float C = 2.43; - const float D = 0.59; - const float E = 0.14; - return clamp((color * (A * color + B)) / (color * (C * color + D) + E), 0.0, 1.0); -} - - -// ACES filmic tone map approximation -// see https://github.com/TheRealMJP/BakingLab/blob/master/BakingLab/ACES.hlsl -vec3 RRTAndODTFit(vec3 color) -{ - vec3 a = color * (color + 0.0245786) - 0.000090537; - vec3 b = color * (0.983729 * color + 0.4329510) + 0.238081; - return a / b; -} - - -// tone mapping -vec3 toneMapACES_Hill(vec3 color) -{ - color = ACESInputMat * color; - - // Apply RRT and ODT - color = RRTAndODTFit(color); - - color = ACESOutputMat * color; - - // Clamp to [0, 1] - color = clamp(color, 0.0, 1.0); - - return color; -} - -uniform float exposure; -uniform float gamma; -uniform float aces_mix; - -vec3 toneMap(vec3 color) -{ -#ifndef NO_POST - float exp_scale = texture(exposureMap, vec2(0.5,0.5)).r; - - color *= exposure * exp_scale; - - // mix ACES and Linear here as a compromise to avoid over-darkening legacy content - color = mix(toneMapACES_Hill(color), color, aces_mix); -#endif - - return color; -} - -//=============================================================== - -//================================= -// borrowed noise from: -// <https://www.shadertoy.com/view/4dS3Wd> -// By Morgan McGuire @morgan3d, http://graphicscodex.com -// -float hash(float n) { return fract(sin(n) * 1e4); } -float hash(vec2 p) { return fract(1e4 * sin(17.0 * p.x + p.y * 0.1) * (0.1 + abs(sin(p.y * 13.0 + p.x)))); } - -float noise(float x) { - float i = floor(x); - float f = fract(x); - float u = f * f * (3.0 - 2.0 * f); - return mix(hash(i), hash(i + 1.0), u); -} - -float noise(vec2 x) { - vec2 i = floor(x); - vec2 f = fract(x); - - // Four corners in 2D of a tile - float a = hash(i); - float b = hash(i + vec2(1.0, 0.0)); - float c = hash(i + vec2(0.0, 1.0)); - float d = hash(i + vec2(1.0, 1.0)); - - // Simple 2D lerp using smoothstep envelope between the values. - // return vec3(mix(mix(a, b, smoothstep(0.0, 1.0, f.x)), - // mix(c, d, smoothstep(0.0, 1.0, f.x)), - // smoothstep(0.0, 1.0, f.y))); - - // Same code, with the clamps in smoothstep and common subexpressions - // optimized away. - vec2 u = f * f * (3.0 - 2.0 * f); - return mix(a, b, u.x) + (c - a) * u.y * (1.0 - u.x) + (d - b) * u.x * u.y; -} - -//============================= - -void debugExposure(inout vec3 color) -{ - float exp_scale = texture(exposureMap, vec2(0.5,0.5)).r; - exp_scale *= 0.5; - if (abs(vary_fragcoord.y-exp_scale) < 0.01 && vary_fragcoord.x < 0.1) - { - color = vec3(1,0,0); - } -} - vec3 legacyGamma(vec3 color) { vec3 c = 1. - clamp(color, vec3(0.), vec3(1.)); @@ -175,23 +47,12 @@ void main() { //this is the one of the rare spots where diffuseRect contains linear color values (not sRGB) vec4 diff = texture(diffuseRect, vary_fragcoord); + diff.rgb = linear_to_srgb(diff.rgb); #ifdef LEGACY_GAMMA - diff.rgb = linear_to_srgb(diff.rgb); diff.rgb = legacyGamma(diff.rgb); -#else -#ifndef NO_POST - diff.rgb = toneMap(diff.rgb); #endif - diff.rgb = linear_to_srgb(diff.rgb); -#endif - - vec2 tc = vary_fragcoord.xy*screen_res*4.0; - vec3 seed = (diff.rgb+vec3(1.0))*vec3(tc.xy, tc.x+tc.y); - vec3 nz = vec3(noise(seed.rg), noise(seed.gb), noise(seed.rb)); - diff.rgb += nz*0.003; - //debugExposure(diff.rgb); frag_color = max(diff, vec4(0)); } diff --git a/indra/newview/app_settings/shaders/class1/deferred/postDeferredNoDoFF.glsl b/indra/newview/app_settings/shaders/class1/deferred/postDeferredNoDoFF.glsl index 07384ebe9b..32b0a1ac8e 100644 --- a/indra/newview/app_settings/shaders/class1/deferred/postDeferredNoDoFF.glsl +++ b/indra/newview/app_settings/shaders/class1/deferred/postDeferredNoDoFF.glsl @@ -33,10 +33,57 @@ uniform sampler2D depthMap; uniform vec2 screen_res; in vec2 vary_fragcoord; +//================================= +// borrowed noise from: +// <https://www.shadertoy.com/view/4dS3Wd> +// By Morgan McGuire @morgan3d, http://graphicscodex.com +// +float hash(float n) { return fract(sin(n) * 1e4); } +float hash(vec2 p) { return fract(1e4 * sin(17.0 * p.x + p.y * 0.1) * (0.1 + abs(sin(p.y * 13.0 + p.x)))); } + +float noise(float x) { + float i = floor(x); + float f = fract(x); + float u = f * f * (3.0 - 2.0 * f); + return mix(hash(i), hash(i + 1.0), u); +} + +float noise(vec2 x) { + vec2 i = floor(x); + vec2 f = fract(x); + + // Four corners in 2D of a tile + float a = hash(i); + float b = hash(i + vec2(1.0, 0.0)); + float c = hash(i + vec2(0.0, 1.0)); + float d = hash(i + vec2(1.0, 1.0)); + + // Simple 2D lerp using smoothstep envelope between the values. + // return vec3(mix(mix(a, b, smoothstep(0.0, 1.0, f.x)), + // mix(c, d, smoothstep(0.0, 1.0, f.x)), + // smoothstep(0.0, 1.0, f.y))); + + // Same code, with the clamps in smoothstep and common subexpressions + // optimized away. + vec2 u = f * f * (3.0 - 2.0 * f); + return mix(a, b, u.x) + (c - a) * u.y * (1.0 - u.x) + (d - b) * u.x * u.y; +} + +//============================= + + + void main() { vec4 diff = texture(diffuseRect, vary_fragcoord.xy); +#ifdef HAS_NOISE + vec2 tc = vary_fragcoord.xy*screen_res*4.0; + vec3 seed = (diff.rgb+vec3(1.0))*vec3(tc.xy, tc.x+tc.y); + vec3 nz = vec3(noise(seed.rg), noise(seed.gb), noise(seed.rb)); + diff.rgb += nz*0.003; +#endif + frag_color = diff; gl_FragDepth = texture(depthMap, vary_fragcoord.xy).r; diff --git a/indra/newview/app_settings/shaders/class1/deferred/postDeferredTonemap.glsl b/indra/newview/app_settings/shaders/class1/deferred/postDeferredTonemap.glsl new file mode 100644 index 0000000000..fc6d4d7727 --- /dev/null +++ b/indra/newview/app_settings/shaders/class1/deferred/postDeferredTonemap.glsl @@ -0,0 +1,178 @@ +/** + * @file postDeferredTonemap.glsl + * + * $LicenseInfo:firstyear=2024&license=viewerlgpl$ + * Second Life Viewer Source Code + * Copyright (C) 2024, Linden Research, Inc. + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; + * version 2.1 of the License only. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA + * $/LicenseInfo$ + */ + +/*[EXTRA_CODE_HERE]*/ + +out vec4 frag_color; + +uniform sampler2D diffuseRect; +uniform sampler2D exposureMap; + +uniform vec2 screen_res; +in vec2 vary_fragcoord; + +vec3 linear_to_srgb(vec3 cl); + +//=============================================================== +// tone mapping taken from Khronos sample implementation +//=============================================================== + +// sRGB => XYZ => D65_2_D60 => AP1 => RRT_SAT +const mat3 ACESInputMat = mat3 +( + 0.59719, 0.07600, 0.02840, + 0.35458, 0.90834, 0.13383, + 0.04823, 0.01566, 0.83777 +); + + +// ODT_SAT => XYZ => D60_2_D65 => sRGB +const mat3 ACESOutputMat = mat3 +( + 1.60475, -0.10208, -0.00327, + -0.53108, 1.10813, -0.07276, + -0.07367, -0.00605, 1.07602 +); + +// ACES tone map (faster approximation) +// see: https://knarkowicz.wordpress.com/2016/01/06/aces-filmic-tone-mapping-curve/ +vec3 toneMapACES_Narkowicz(vec3 color) +{ + const float A = 2.51; + const float B = 0.03; + const float C = 2.43; + const float D = 0.59; + const float E = 0.14; + return clamp((color * (A * color + B)) / (color * (C * color + D) + E), 0.0, 1.0); +} + + +// ACES filmic tone map approximation +// see https://github.com/TheRealMJP/BakingLab/blob/master/BakingLab/ACES.hlsl +vec3 RRTAndODTFit(vec3 color) +{ + vec3 a = color * (color + 0.0245786) - 0.000090537; + vec3 b = color * (0.983729 * color + 0.4329510) + 0.238081; + return a / b; +} + + +// tone mapping +vec3 toneMapACES_Hill(vec3 color) +{ + color = ACESInputMat * color; + + // Apply RRT and ODT + color = RRTAndODTFit(color); + + color = ACESOutputMat * color; + + // Clamp to [0, 1] + color = clamp(color, 0.0, 1.0); + + return color; +} + +// Khronos Neutral tonemapping +// https://github.com/KhronosGroup/ToneMapping/tree/main +// Input color is non-negative and resides in the Linear Rec. 709 color space. +// Output color is also Linear Rec. 709, but in the [0, 1] range. +vec3 PBRNeutralToneMapping( vec3 color ) +{ + const float startCompression = 0.8 - 0.04; + const float desaturation = 0.15; + + float x = min(color.r, min(color.g, color.b)); + float offset = x < 0.08 ? x - 6.25 * x * x : 0.04; + color -= offset; + + float peak = max(color.r, max(color.g, color.b)); + if (peak < startCompression) return color; + + const float d = 1. - startCompression; + float newPeak = 1. - d * d / (peak + d - startCompression); + color *= newPeak / peak; + + float g = 1. - 1. / (desaturation * (peak - newPeak) + 1.); + return mix(color, newPeak * vec3(1, 1, 1), g); +} + +uniform float exposure; +uniform float tonemap_mix; +uniform int tonemap_type; + +vec3 toneMap(vec3 color) +{ +#ifndef NO_POST + float exp_scale = texture(exposureMap, vec2(0.5,0.5)).r; + + color *= exposure * exp_scale; + + vec3 clamped_color = clamp(color.rgb, vec3(0.0), vec3(1.0)); + + switch(tonemap_type) + { + case 0: + color = PBRNeutralToneMapping(color); + break; + case 1: + color = toneMapACES_Hill(color); + break; + } + + // mix tonemapped and linear here to provide adjustment + color = mix(clamped_color, color, tonemap_mix); +#endif + + return color; +} + +//=============================================================== + +void debugExposure(inout vec3 color) +{ + float exp_scale = texture(exposureMap, vec2(0.5,0.5)).r; + exp_scale *= 0.5; + if (abs(vary_fragcoord.y-exp_scale) < 0.01 && vary_fragcoord.x < 0.1) + { + color = vec3(1,0,0); + } +} + +void main() +{ + //this is the one of the rare spots where diffuseRect contains linear color values (not sRGB) + vec4 diff = texture(diffuseRect, vary_fragcoord); + +#ifndef NO_POST + diff.rgb = toneMap(diff.rgb); +#else + diff.rgb = clamp(diff.rgb, vec3(0.0), vec3(1.0)); +#endif + + //debugExposure(diff.rgb); + frag_color = max(diff, vec4(0)); +} + diff --git a/indra/newview/app_settings/shaders/class1/deferred/terrainF.glsl b/indra/newview/app_settings/shaders/class1/deferred/terrainF.glsl index 1fd31e0546..5ff84b5937 100644 --- a/indra/newview/app_settings/shaders/class1/deferred/terrainF.glsl +++ b/indra/newview/app_settings/shaders/class1/deferred/terrainF.glsl @@ -39,6 +39,7 @@ in vec4 vary_texcoord0; in vec4 vary_texcoord1; void mirrorClip(vec3 position); +vec4 encodeNormal(vec3 norm, float gbuffer_flag); void main() { @@ -60,7 +61,7 @@ void main() frag_data[0] = max(outColor, vec4(0)); frag_data[1] = vec4(0.0,0.0,0.0,-1.0); vec3 nvn = normalize(vary_normal); - frag_data[2] = vec4(nvn.xyz, GBUFFER_FLAG_HAS_ATMOS); + frag_data[2] = encodeNormal(nvn.xyz, GBUFFER_FLAG_HAS_ATMOS); frag_data[3] = vec4(0); } diff --git a/indra/newview/app_settings/shaders/class1/deferred/treeF.glsl b/indra/newview/app_settings/shaders/class1/deferred/treeF.glsl index 05922ecb1a..0894eff660 100644 --- a/indra/newview/app_settings/shaders/class1/deferred/treeF.glsl +++ b/indra/newview/app_settings/shaders/class1/deferred/treeF.glsl @@ -37,6 +37,8 @@ in vec3 vary_position; uniform float minimum_alpha; void mirrorClip(vec3 pos); +vec4 encodeNormal(vec3 norm, float gbuffer_flag); + void main() { mirrorClip(vary_position); @@ -49,6 +51,6 @@ void main() frag_data[0] = vec4(vertex_color.rgb*col.rgb, 0.0); frag_data[1] = vec4(0,0,0,0); vec3 nvn = normalize(vary_normal); - frag_data[2] = vec4(nvn.xyz, GBUFFER_FLAG_HAS_ATMOS); + frag_data[2] = encodeNormal(nvn.xyz, GBUFFER_FLAG_HAS_ATMOS); frag_data[3] = vec4(0); } diff --git a/indra/newview/app_settings/shaders/class1/gltf/pbrmetallicroughnessF.glsl b/indra/newview/app_settings/shaders/class1/gltf/pbrmetallicroughnessF.glsl index ac4ff50552..1d8a92bac7 100644 --- a/indra/newview/app_settings/shaders/class1/gltf/pbrmetallicroughnessF.glsl +++ b/indra/newview/app_settings/shaders/class1/gltf/pbrmetallicroughnessF.glsl @@ -64,6 +64,8 @@ in vec2 base_color_uv; in vec2 emissive_uv; void mirrorClip(vec3 pos); +vec4 encodeNormal(vec3 norm, float gbuffer_flag); + vec3 linear_to_srgb(vec3 c); vec3 srgb_to_linear(vec3 c); // ================================== @@ -241,7 +243,7 @@ void main() #else frag_data[0] = max(vec4(basecolor.rgb, 0.0), vec4(0)); frag_data[1] = max(vec4(orm.rgb,0.0), vec4(0)); - frag_data[2] = vec4(norm, GBUFFER_FLAG_HAS_PBR); + frag_data[2] = encodeNormal(norm, GBUFFER_FLAG_HAS_PBR); frag_data[3] = max(vec4(emissive,0), vec4(0)); #endif #endif diff --git a/indra/newview/app_settings/shaders/class1/interface/radianceGenF.glsl b/indra/newview/app_settings/shaders/class1/interface/radianceGenF.glsl index feb0947649..b3964c9215 100644 --- a/indra/newview/app_settings/shaders/class1/interface/radianceGenF.glsl +++ b/indra/newview/app_settings/shaders/class1/interface/radianceGenF.glsl @@ -130,7 +130,7 @@ vec4 prefilterEnvMap(vec3 R) float totalWeight = 0.0; float envMapDim = float(textureSize(reflectionProbes, 0).s); float roughness = mipLevel/max_probe_lod; - int numSamples = max(int(PROBE_FILTER_SAMPLES*roughness), 1); + uint numSamples = uint(max(PROBE_FILTER_SAMPLES*roughness, 1)); float numMips = max_probe_lod+1; diff --git a/indra/newview/app_settings/shaders/class3/deferred/materialF.glsl b/indra/newview/app_settings/shaders/class3/deferred/materialF.glsl index 5ee9aea09d..fb541ab51d 100644 --- a/indra/newview/app_settings/shaders/class3/deferred/materialF.glsl +++ b/indra/newview/app_settings/shaders/class3/deferred/materialF.glsl @@ -51,6 +51,7 @@ uniform mat3 normal_matrix; in vec3 vary_position; void mirrorClip(vec3 pos); +vec4 encodeNormal(vec3 norm, float gbuffer_flag); #if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_BLEND) @@ -414,7 +415,7 @@ void main() frag_data[0] = max(vec4(diffcol.rgb, emissive), vec4(0)); // gbuffer is sRGB for legacy materials frag_data[1] = max(vec4(spec.rgb, glossiness), vec4(0)); // XYZ = Specular color. W = Specular exponent. - frag_data[2] = vec4(norm, flag); // XY = Normal. Z = Env. intensity. W = 1 skip atmos (mask off fog) + frag_data[2] = encodeNormal(norm, flag); // XY = Normal. Z = Env. intensity. W = 1 skip atmos (mask off fog) frag_data[3] = vec4(env, 0, 0, 0); #endif diff --git a/indra/newview/app_settings/shaders/class3/deferred/screenSpaceReflPostF.glsl b/indra/newview/app_settings/shaders/class3/deferred/screenSpaceReflPostF.glsl index 9ac389f926..dc135243a6 100644 --- a/indra/newview/app_settings/shaders/class3/deferred/screenSpaceReflPostF.glsl +++ b/indra/newview/app_settings/shaders/class3/deferred/screenSpaceReflPostF.glsl @@ -81,7 +81,7 @@ void main() vec4 collectedColor = vec4(0); - float w = tapScreenSpaceReflection(4, tc, pos, norm.xyz, collectedColor, diffuseMap, 0); + float w = tapScreenSpaceReflection(4, tc, pos, norm.xyz, collectedColor, diffuseMap, 0.f); collectedColor.rgb *= specCol.rgb; diff --git a/indra/newview/app_settings/shaders/class3/deferred/softenLightF.glsl b/indra/newview/app_settings/shaders/class3/deferred/softenLightF.glsl index 4231d8580e..802d049e74 100644 --- a/indra/newview/app_settings/shaders/class3/deferred/softenLightF.glsl +++ b/indra/newview/app_settings/shaders/class3/deferred/softenLightF.glsl @@ -27,6 +27,8 @@ out vec4 frag_color; +vec4 decodeNormal(vec4 norm); + uniform sampler2D diffuseRect; uniform sampler2D specularRect; uniform sampler2D emissiveRect; // PBR linear packed Occlusion, Roughness, Metal. See: pbropaqueF.glsl |