diff options
Diffstat (limited to 'indra/newview/app_settings/shaders')
| -rw-r--r-- | indra/newview/app_settings/shaders/class1/deferred/sunLightSSAOF.glsl | 123 | ||||
| -rw-r--r-- | indra/newview/app_settings/shaders/class2/deferred/sunLightSSAOF.glsl | 248 | 
2 files changed, 371 insertions, 0 deletions
| diff --git a/indra/newview/app_settings/shaders/class1/deferred/sunLightSSAOF.glsl b/indra/newview/app_settings/shaders/class1/deferred/sunLightSSAOF.glsl new file mode 100644 index 0000000000..7450817ea7 --- /dev/null +++ b/indra/newview/app_settings/shaders/class1/deferred/sunLightSSAOF.glsl @@ -0,0 +1,123 @@ +/**  + * @file sunLightSSAOF.glsl + * + * Copyright (c) 2007-$CurrentYear$, Linden Research, Inc. + * $License$ + */ + +#extension GL_ARB_texture_rectangle : enable + +//class 1 -- no shadow, SSAO only + +uniform sampler2DRect depthMap; +uniform sampler2DRect normalMap; +uniform sampler2D noiseMap; + +uniform sampler2D		lightFunc; + + +// Inputs +uniform mat4 shadow_matrix[6]; +uniform vec4 shadow_clip; +uniform float ssao_radius; +uniform float ssao_max_radius; +uniform float ssao_factor; +uniform float ssao_factor_inv; + +varying vec2 vary_fragcoord; +varying vec4 vary_light; + +uniform mat4 inv_proj; +uniform vec2 screen_res; + +uniform float shadow_bias; +uniform float shadow_offset; + +vec4 getPosition(vec2 pos_screen) +{ +	float depth = texture2DRect(depthMap, pos_screen.xy).a; +	vec2 sc = pos_screen.xy*2.0; +	sc /= screen_res; +	sc -= vec2(1.0,1.0); +	vec4 ndc = vec4(sc.x, sc.y, 2.0*depth-1.0, 1.0); +	vec4 pos = inv_proj * ndc; +	pos /= pos.w; +	pos.w = 1.0; +	return pos; +} + +//calculate decreases in ambient lighting when crowded out (SSAO) +float calcAmbientOcclusion(vec4 pos, vec3 norm) +{ +	float ret = 1.0; +	 +	float dist = dot(pos.xyz,pos.xyz); +	 +	if (dist < 64.0*64.0) +	{ +		vec2 kern[8]; +		// exponentially (^2) distant occlusion samples spread around origin +		kern[0] = vec2(-1.0, 0.0) * 0.125*0.125; +		kern[1] = vec2(1.0, 0.0) * 0.250*0.250; +		kern[2] = vec2(0.0, 1.0) * 0.375*0.375; +		kern[3] = vec2(0.0, -1.0) * 0.500*0.500; +		kern[4] = vec2(0.7071, 0.7071) * 0.625*0.625; +		kern[5] = vec2(-0.7071, -0.7071) * 0.750*0.750; +		kern[6] = vec2(-0.7071, 0.7071) * 0.875*0.875; +		kern[7] = vec2(0.7071, -0.7071) * 1.000*1.000; + +		vec2 pos_screen = vary_fragcoord.xy; +		vec3 pos_world = pos.xyz; +		vec2 noise_reflect = texture2D(noiseMap, vary_fragcoord.xy/128.0).xy; +		 +		float angle_hidden = 0.0; +		int points = 0; +		 +		float scale = min(ssao_radius / -pos_world.z, ssao_max_radius); +		 +		// it was found that keeping # of samples a constant was the fastest, probably due to compiler optimizations (unrolling?) +		for (int i = 0; i < 8; i++) +		{ +			vec2 samppos_screen = pos_screen + scale * reflect(kern[i], noise_reflect); +			vec3 samppos_world = getPosition(samppos_screen).xyz;  +			 +			vec3 diff = pos_world - samppos_world; +			float dist2 = dot(diff, diff); +			 +			// assume each sample corresponds to an occluding sphere with constant radius, constant x-sectional area +			// --> solid angle shrinking by the square of distance +			//radius is somewhat arbitrary, can approx with just some constant k * 1 / dist^2 +			//(k should vary inversely with # of samples, but this is taken care of later) +			 +			//if (dot((samppos_world - 0.05*norm - pos_world), norm) > 0.0)  // -0.05*norm to shift sample point back slightly for flat surfaces +			//	angle_hidden += min(1.0/dist2, ssao_factor_inv); // dist != 0 follows from conditional.  max of 1.0 (= ssao_factor_inv * ssao_factor) +			angle_hidden = angle_hidden + float(dot((samppos_world - 0.05*norm - pos_world), norm) > 0.0) * min(1.0/dist2, ssao_factor_inv); +			 +			// 'blocked' samples (significantly closer to camera relative to pos_world) are "no data", not "no occlusion"  +			points = points + int(diff.z > -1.0); +		} +		 +		angle_hidden = min(ssao_factor*angle_hidden/float(points), 1.0); +		 +		ret = (1.0 - (float(points != 0) * angle_hidden)); +		ret += max((dist-32.0*32.0)/(32.0*32.0), 0.0); +	} +	 +	return min(ret, 1.0); +} + +void main()  +{ +	vec2 pos_screen = vary_fragcoord.xy; +	 +	//try doing an unproject here +	 +	vec4 pos = getPosition(pos_screen); +	 +    vec3 norm = texture2DRect(normalMap, pos_screen).xyz*2.0-1.0; +		 +	gl_FragColor[0] = 1.0; +	gl_FragColor[1] = calcAmbientOcclusion(pos, norm); +	gl_FragColor[2] = 1.0;  +	gl_FragColor[3] = 1.0; +} diff --git a/indra/newview/app_settings/shaders/class2/deferred/sunLightSSAOF.glsl b/indra/newview/app_settings/shaders/class2/deferred/sunLightSSAOF.glsl new file mode 100644 index 0000000000..d77d17942a --- /dev/null +++ b/indra/newview/app_settings/shaders/class2/deferred/sunLightSSAOF.glsl @@ -0,0 +1,248 @@ +/**  + * @file sunLightSSAOF.glsl + * + * Copyright (c) 2007-$CurrentYear$, Linden Research, Inc. + * $License$ + */ + +#extension GL_ARB_texture_rectangle : enable + +//class 2 -- shadows and SSAO + +uniform sampler2DRect depthMap; +uniform sampler2DRect normalMap; +uniform sampler2DRectShadow shadowMap0; +uniform sampler2DRectShadow shadowMap1; +uniform sampler2DRectShadow shadowMap2; +uniform sampler2DRectShadow shadowMap3; +uniform sampler2DShadow shadowMap4; +uniform sampler2DShadow shadowMap5; +uniform sampler2D noiseMap; + +uniform sampler2D		lightFunc; + +// Inputs +uniform mat4 shadow_matrix[6]; +uniform vec4 shadow_clip; +uniform float ssao_radius; +uniform float ssao_max_radius; +uniform float ssao_factor; +uniform float ssao_factor_inv; + +varying vec2 vary_fragcoord; +varying vec4 vary_light; + +uniform mat4 inv_proj; +uniform vec2 screen_res; +uniform vec2 shadow_res; +uniform vec2 proj_shadow_res; + +uniform float shadow_bias; +uniform float shadow_offset; + +vec4 getPosition(vec2 pos_screen) +{ +	float depth = texture2DRect(depthMap, pos_screen.xy).a; +	vec2 sc = pos_screen.xy*2.0; +	sc /= screen_res; +	sc -= vec2(1.0,1.0); +	vec4 ndc = vec4(sc.x, sc.y, 2.0*depth-1.0, 1.0); +	vec4 pos = inv_proj * ndc; +	pos /= pos.w; +	pos.w = 1.0; +	return pos; +} + +//calculate decreases in ambient lighting when crowded out (SSAO) +float calcAmbientOcclusion(vec4 pos, vec3 norm) +{ +	float ret = 1.0; +	 +	float dist = dot(pos.xyz,pos.xyz); +	 +	if (dist < 64.0*64.0) +	{ +		vec2 kern[8]; +		// exponentially (^2) distant occlusion samples spread around origin +		kern[0] = vec2(-1.0, 0.0) * 0.125*0.125; +		kern[1] = vec2(1.0, 0.0) * 0.250*0.250; +		kern[2] = vec2(0.0, 1.0) * 0.375*0.375; +		kern[3] = vec2(0.0, -1.0) * 0.500*0.500; +		kern[4] = vec2(0.7071, 0.7071) * 0.625*0.625; +		kern[5] = vec2(-0.7071, -0.7071) * 0.750*0.750; +		kern[6] = vec2(-0.7071, 0.7071) * 0.875*0.875; +		kern[7] = vec2(0.7071, -0.7071) * 1.000*1.000; + +		vec2 pos_screen = vary_fragcoord.xy; +		vec3 pos_world = pos.xyz; +		vec2 noise_reflect = texture2D(noiseMap, vary_fragcoord.xy/128.0).xy; +		 +		float angle_hidden = 0.0; +		int points = 0; +		 +		float scale = min(ssao_radius / -pos_world.z, ssao_max_radius); +		 +		// it was found that keeping # of samples a constant was the fastest, probably due to compiler optimizations (unrolling?) +		for (int i = 0; i < 8; i++) +		{ +			vec2 samppos_screen = pos_screen + scale * reflect(kern[i], noise_reflect); +			vec3 samppos_world = getPosition(samppos_screen).xyz;  +			 +			vec3 diff = pos_world - samppos_world; +			float dist2 = dot(diff, diff); +			 +			// assume each sample corresponds to an occluding sphere with constant radius, constant x-sectional area +			// --> solid angle shrinking by the square of distance +			//radius is somewhat arbitrary, can approx with just some constant k * 1 / dist^2 +			//(k should vary inversely with # of samples, but this is taken care of later) +			 +			//if (dot((samppos_world - 0.05*norm - pos_world), norm) > 0.0)  // -0.05*norm to shift sample point back slightly for flat surfaces +			//	angle_hidden += min(1.0/dist2, ssao_factor_inv); // dist != 0 follows from conditional.  max of 1.0 (= ssao_factor_inv * ssao_factor) +			angle_hidden = angle_hidden + float(dot((samppos_world - 0.05*norm - pos_world), norm) > 0.0) * min(1.0/dist2, ssao_factor_inv); +			 +			// 'blocked' samples (significantly closer to camera relative to pos_world) are "no data", not "no occlusion"  +			points = points + int(diff.z > -1.0); +		} +		 +		angle_hidden = min(ssao_factor*angle_hidden/float(points), 1.0); +		 +		ret = (1.0 - (float(points != 0) * angle_hidden)); +		ret += max((dist-32.0*32.0)/(32.0*32.0), 0.0); +	} +	 +	return min(ret, 1.0); +} + +float pcfShadow(sampler2DRectShadow shadowMap, vec4 stc, float scl) +{ +	stc.xyz /= stc.w; +	stc.z += shadow_bias*scl; +	 +	float cs = shadow2DRect(shadowMap, stc.xyz).x; +	float shadow = cs; + +	shadow += max(shadow2DRect(shadowMap, stc.xyz+vec3(1.5, 1.5, 0.0)).x, cs); +	shadow += max(shadow2DRect(shadowMap, stc.xyz+vec3(1.5, -1.5, 0.0)).x, cs); +	shadow += max(shadow2DRect(shadowMap, stc.xyz+vec3(-1.5, 1.5, 0.0)).x, cs); +	shadow += max(shadow2DRect(shadowMap, stc.xyz+vec3(-1.5, -1.5, 0.0)).x, cs); +			 +	return shadow/5.0; +	 +	//return shadow; +} + +float pcfShadow(sampler2DShadow shadowMap, vec4 stc, float scl) +{ +	stc.xyz /= stc.w; +	stc.z += shadow_bias*scl; +	 +	float cs = shadow2D(shadowMap, stc.xyz).x; +	float shadow = cs; + +	vec2 off = 1.5/proj_shadow_res; +	 +	shadow += max(shadow2D(shadowMap, stc.xyz+vec3(off.x, off.y, 0.0)).x, cs); +	shadow += max(shadow2D(shadowMap, stc.xyz+vec3(off.x, -off.y, 0.0)).x, cs); +	shadow += max(shadow2D(shadowMap, stc.xyz+vec3(-off.x, off.y, 0.0)).x, cs); +	shadow += max(shadow2D(shadowMap, stc.xyz+vec3(-off.x, -off.y, 0.0)).x, cs); +	 +			 +	return shadow/5.0; +	 +	//return shadow; +} + +void main()  +{ +	vec2 pos_screen = vary_fragcoord.xy; +	 +	//try doing an unproject here +	 +	vec4 pos = getPosition(pos_screen); +	 +	vec4 nmap4 = texture2DRect(normalMap, pos_screen); +	float displace = nmap4.w; +	vec3 norm = nmap4.xyz*2.0-1.0; +	 +	/*if (pos.z == 0.0) // do nothing for sky *FIX: REMOVE THIS IF/WHEN THE POSITION MAP IS BEING USED AS A STENCIL +	{ +		gl_FragColor = vec4(0.0); // doesn't matter +		return; +	}*/ +	 +	float shadow = 1.0; +	float dp_directional_light = max(0.0, dot(norm, vary_light.xyz)); + +	vec4 spos = vec4(pos.xyz + displace*norm + vary_light.xyz * (1.0-dp_directional_light)*shadow_offset, 1.0); +	 +	if (spos.z > -shadow_clip.w) +	{	 +		if (dp_directional_light == 0.0) +		{ +			// if we know this point is facing away from the sun then we know it's in shadow without having to do a squirrelly shadow-map lookup +			shadow = 0.0; +		} +		else +		{ +			vec4 lpos; +			 +			if (spos.z < -shadow_clip.z) +			{ +				lpos = shadow_matrix[3]*spos; +				lpos.xy *= shadow_res; +				shadow = pcfShadow(shadowMap3, lpos, 0.25); +				shadow += max((pos.z+shadow_clip.z)/(shadow_clip.z-shadow_clip.w)*2.0-1.0, 0.0); +			} +			else if (spos.z < -shadow_clip.y) +			{ +				lpos = shadow_matrix[2]*spos; +				lpos.xy *= shadow_res; +				shadow = pcfShadow(shadowMap2, lpos, 0.5); +			} +			else if (spos.z < -shadow_clip.x) +			{ +				lpos = shadow_matrix[1]*spos; +				lpos.xy *= shadow_res; +				shadow = pcfShadow(shadowMap1, lpos, 0.75); +			} +			else +			{ +				lpos = shadow_matrix[0]*spos; +				lpos.xy *= shadow_res; +				shadow = pcfShadow(shadowMap0, lpos, 1.0); +			} +		 +			// take the most-shadowed value out of these two: +			//  * the blurred sun shadow in the light (shadow) map +			//  * an unblurred dot product between the sun and this norm +			// the goal is to err on the side of most-shadow to fill-in shadow holes and reduce artifacting +			shadow = min(shadow, dp_directional_light); +			 +			//lpos.xy /= lpos.w*32.0; +			//if (fract(lpos.x) < 0.1 || fract(lpos.y) < 0.1) +			//{ +			//	shadow = 0.0; +			//} +			 +		} +	} +	else +	{ +		// more distant than the shadow map covers +		shadow = 1.0; +	} +	 +	gl_FragColor[0] = shadow; +	gl_FragColor[1] = calcAmbientOcclusion(pos, norm); +	 +	//spotlight shadow 1 +	vec4 lpos = shadow_matrix[4]*spos; +	gl_FragColor[2] = pcfShadow(shadowMap4, lpos, 0.8).x;  +	 +	//spotlight shadow 2 +	lpos = shadow_matrix[5]*spos; +	gl_FragColor[3] = pcfShadow(shadowMap5, lpos, 0.8).x;  + +	//gl_FragColor.rgb = pos.xyz; +	//gl_FragColor.b = shadow; +} | 
