diff options
Diffstat (limited to 'indra/newview/app_settings/shaders/class1')
-rw-r--r-- | indra/newview/app_settings/shaders/class1/deferred/multiSpotLightF.glsl | 102 | ||||
-rw-r--r-- | indra/newview/app_settings/shaders/class1/deferred/sunLightF.glsl | 82 |
2 files changed, 120 insertions, 64 deletions
diff --git a/indra/newview/app_settings/shaders/class1/deferred/multiSpotLightF.glsl b/indra/newview/app_settings/shaders/class1/deferred/multiSpotLightF.glsl index 28bcd720c0..2c8d90d1a6 100644 --- a/indra/newview/app_settings/shaders/class1/deferred/multiSpotLightF.glsl +++ b/indra/newview/app_settings/shaders/class1/deferred/multiSpotLightF.glsl @@ -5,7 +5,6 @@ * $License$ */ - #version 120 #extension GL_ARB_texture_rectangle : enable @@ -15,6 +14,7 @@ uniform sampler2DRect specularRect; uniform sampler2DRect depthMap; uniform sampler2DRect normalMap; uniform samplerCube environmentMap; +uniform sampler2DRect lightMap; uniform sampler2D noiseMap; uniform sampler2D lightFunc; uniform sampler2D projectionMap; @@ -26,12 +26,15 @@ uniform vec3 proj_n; uniform float proj_focus; //distance from plane to begin blurring uniform float proj_lod; //(number of mips in proj map) uniform float proj_range; //range between near clip and far clip plane of projection +uniform float proj_ambient_lod; uniform float proj_ambiance; uniform float near_clip; uniform float far_clip; uniform vec3 proj_origin; //origin of projection to be used for angular attenuation uniform float sun_wash; +uniform int proj_shadow_idx; +uniform float shadow_fade; varying vec4 vary_light; @@ -40,6 +43,52 @@ uniform vec2 screen_res; uniform mat4 inv_proj; +vec4 texture2DLodSpecular(sampler2D projectionMap, vec2 tc, float lod) +{ + vec4 ret = texture2DLod(projectionMap, tc, lod); + + vec2 dist = tc-vec2(0.5); + + float det = max(1.0-lod/(proj_lod*0.5), 0.0); + + float d = dot(dist,dist); + + ret *= min(clamp((0.25-d)/0.25, 0.0, 1.0)+det, 1.0); + + return ret; +} + +vec4 texture2DLodDiffuse(sampler2D projectionMap, vec2 tc, float lod) +{ + vec4 ret = texture2DLod(projectionMap, tc, lod); + + vec2 dist = vec2(0.5) - abs(tc-vec2(0.5)); + + float det = min(lod/(proj_lod*0.5), 1.0); + + float d = min(dist.x, dist.y); + + float edge = 0.25*det; + + ret *= clamp(d/edge, 0.0, 1.0); + + return ret; +} + +vec4 texture2DLodAmbient(sampler2D projectionMap, vec2 tc, float lod) +{ + vec4 ret = texture2DLod(projectionMap, tc, lod); + + vec2 dist = tc-vec2(0.5); + + float d = dot(dist,dist); + + ret *= min(clamp((0.25-d)/0.25, 0.0, 1.0), 1.0); + + return ret; +} + + vec4 getPosition(vec2 pos_screen) { float depth = texture2DRect(depthMap, pos_screen.xy).a; @@ -68,7 +117,7 @@ void main() { discard; } - + vec3 norm = texture2DRect(normalMap, frag.xy).xyz*2.0-1.0; norm = normalize(norm); @@ -83,7 +132,11 @@ void main() proj_tc.xyz /= proj_tc.w; float fa = gl_Color.a+1.0; - float dist_atten = clamp(1.0-(dist2-1.0*(1.0-fa))/fa, 0.0, 1.0); + float dist_atten = min(1.0-(dist2-1.0*(1.0-fa))/fa, 1.0); + if (dist_atten <= 0.0) + { + discard; + } lv = proj_origin-pos.xyz; lv = normalize(lv); @@ -101,32 +154,32 @@ void main() proj_tc.y > 0.0) { float lit = 0.0; + float amb_da = proj_ambiance; + if (da > 0.0) { float diff = clamp((l_dist-proj_focus)/proj_range, 0.0, 1.0); float lod = diff * proj_lod; - vec4 plcol = texture2DLod(projectionMap, proj_tc.xy, lod); + vec4 plcol = texture2DLodDiffuse(projectionMap, proj_tc.xy, lod); vec3 lcol = gl_Color.rgb * plcol.rgb * plcol.a; lit = da * dist_atten * noise; col = lcol*lit*diff_tex; + amb_da += (da*0.5)*proj_ambiance; } - float diff = clamp((proj_range-proj_focus)/proj_range, 0.0, 1.0); - float lod = diff * proj_lod; - vec4 amb_plcol = texture2DLod(projectionMap, proj_tc.xy, lod); - //float amb_da = mix(proj_ambiance, proj_ambiance*max(-da, 0.0), max(da, 0.0)); - float amb_da = proj_ambiance; - + //float diff = clamp((proj_range-proj_focus)/proj_range, 0.0, 1.0); + vec4 amb_plcol = texture2DLodAmbient(projectionMap, proj_tc.xy, proj_lod); + amb_da += (da*da*0.5+0.5)*proj_ambiance; - + amb_da *= dist_atten * noise; - + amb_da = min(amb_da, 1.0-lit); - + col += amb_da*gl_Color.rgb*diff_tex.rgb*amb_plcol.rgb*amb_plcol.a; } @@ -144,35 +197,28 @@ void main() { vec3 pfinal = pos + ref * dot(pdelta, proj_n)/ds; - vec3 stc = (proj_mat * vec4(pfinal.xyz, 1.0)).xyz; + vec4 stc = (proj_mat * vec4(pfinal.xyz, 1.0)); if (stc.z > 0.0) { - stc.xy /= stc.z+proj_near; - + stc.xy /= stc.w; + + float fatten = clamp(spec.a*spec.a+spec.a*0.5, 0.25, 1.0); + + stc.xy = (stc.xy - vec2(0.5)) * fatten + vec2(0.5); + if (stc.x < 1.0 && stc.y < 1.0 && stc.x > 0.0 && stc.y > 0.0) { - vec4 scol = texture2DLod(projectionMap, stc.xy, proj_lod-spec.a*proj_lod); + vec4 scol = texture2DLodSpecular(projectionMap, stc.xy, proj_lod-spec.a*proj_lod); col += dist_atten*scol.rgb*gl_Color.rgb*scol.a*spec.rgb; } } } } - /*if (spec.a > 0.0) - { - //vec3 ref = reflect(normalize(pos), norm); - float sa = dot(normalize(lv-normalize(pos)),norm);; - //sa = max(sa, 0.0); - //sa = pow(sa, 128.0 * spec.a*spec.a/dist_atten)*min(dist_atten*4.0, 1.0); - sa = texture2D(lightFunc, vec2(sa, spec.a)).a * min(dist_atten*4.0, 1.0); - sa *= noise; - col += da*sa*lcol*spec.rgb; - }*/ - gl_FragColor.rgb = col; gl_FragColor.a = 0.0; } diff --git a/indra/newview/app_settings/shaders/class1/deferred/sunLightF.glsl b/indra/newview/app_settings/shaders/class1/deferred/sunLightF.glsl index 22bdd2c7f3..fafc2ae3cc 100644 --- a/indra/newview/app_settings/shaders/class1/deferred/sunLightF.glsl +++ b/indra/newview/app_settings/shaders/class1/deferred/sunLightF.glsl @@ -53,51 +53,61 @@ vec4 getPosition(vec2 pos_screen) //calculate decreases in ambient lighting when crowded out (SSAO) float calcAmbientOcclusion(vec4 pos, vec3 norm) { - vec2 kern[8]; - // exponentially (^2) distant occlusion samples spread around origin - kern[0] = vec2(-1.0, 0.0) * 0.125*0.125; - kern[1] = vec2(1.0, 0.0) * 0.250*0.250; - kern[2] = vec2(0.0, 1.0) * 0.375*0.375; - kern[3] = vec2(0.0, -1.0) * 0.500*0.500; - kern[4] = vec2(0.7071, 0.7071) * 0.625*0.625; - kern[5] = vec2(-0.7071, -0.7071) * 0.750*0.750; - kern[6] = vec2(-0.7071, 0.7071) * 0.875*0.875; - kern[7] = vec2(0.7071, -0.7071) * 1.000*1.000; - - vec2 pos_screen = vary_fragcoord.xy; - vec3 pos_world = pos.xyz; - vec2 noise_reflect = texture2D(noiseMap, vary_fragcoord.xy/128.0).xy; + float ret = 1.0; - float angle_hidden = 0.0; - int points = 0; + float dist = dot(pos.xyz,pos.xyz); - float scale = min(ssao_radius / -pos_world.z, ssao_max_radius); - - // it was found that keeping # of samples a constant was the fastest, probably due to compiler optimizations (unrolling?) - for (int i = 0; i < 8; i++) + if (dist < 64.0*64.0) { - vec2 samppos_screen = pos_screen + scale * reflect(kern[i], noise_reflect); - vec3 samppos_world = getPosition(samppos_screen).xyz; + vec2 kern[8]; + // exponentially (^2) distant occlusion samples spread around origin + kern[0] = vec2(-1.0, 0.0) * 0.125*0.125; + kern[1] = vec2(1.0, 0.0) * 0.250*0.250; + kern[2] = vec2(0.0, 1.0) * 0.375*0.375; + kern[3] = vec2(0.0, -1.0) * 0.500*0.500; + kern[4] = vec2(0.7071, 0.7071) * 0.625*0.625; + kern[5] = vec2(-0.7071, -0.7071) * 0.750*0.750; + kern[6] = vec2(-0.7071, 0.7071) * 0.875*0.875; + kern[7] = vec2(0.7071, -0.7071) * 1.000*1.000; + + vec2 pos_screen = vary_fragcoord.xy; + vec3 pos_world = pos.xyz; + vec2 noise_reflect = texture2D(noiseMap, vary_fragcoord.xy/128.0).xy; - vec3 diff = pos_world - samppos_world; - float dist2 = dot(diff, diff); + float angle_hidden = 0.0; + int points = 0; - // assume each sample corresponds to an occluding sphere with constant radius, constant x-sectional area - // --> solid angle shrinking by the square of distance - //radius is somewhat arbitrary, can approx with just some constant k * 1 / dist^2 - //(k should vary inversely with # of samples, but this is taken care of later) + float scale = min(ssao_radius / -pos_world.z, ssao_max_radius); - //if (dot((samppos_world - 0.05*norm - pos_world), norm) > 0.0) // -0.05*norm to shift sample point back slightly for flat surfaces - // angle_hidden += min(1.0/dist2, ssao_factor_inv); // dist != 0 follows from conditional. max of 1.0 (= ssao_factor_inv * ssao_factor) - angle_hidden = angle_hidden + float(dot((samppos_world - 0.05*norm - pos_world), norm) > 0.0) * min(1.0/dist2, ssao_factor_inv); + // it was found that keeping # of samples a constant was the fastest, probably due to compiler optimizations (unrolling?) + for (int i = 0; i < 8; i++) + { + vec2 samppos_screen = pos_screen + scale * reflect(kern[i], noise_reflect); + vec3 samppos_world = getPosition(samppos_screen).xyz; + + vec3 diff = pos_world - samppos_world; + float dist2 = dot(diff, diff); + + // assume each sample corresponds to an occluding sphere with constant radius, constant x-sectional area + // --> solid angle shrinking by the square of distance + //radius is somewhat arbitrary, can approx with just some constant k * 1 / dist^2 + //(k should vary inversely with # of samples, but this is taken care of later) + + //if (dot((samppos_world - 0.05*norm - pos_world), norm) > 0.0) // -0.05*norm to shift sample point back slightly for flat surfaces + // angle_hidden += min(1.0/dist2, ssao_factor_inv); // dist != 0 follows from conditional. max of 1.0 (= ssao_factor_inv * ssao_factor) + angle_hidden = angle_hidden + float(dot((samppos_world - 0.05*norm - pos_world), norm) > 0.0) * min(1.0/dist2, ssao_factor_inv); + + // 'blocked' samples (significantly closer to camera relative to pos_world) are "no data", not "no occlusion" + points = points + int(diff.z > -1.0); + } - // 'blocked' samples (significantly closer to camera relative to pos_world) are "no data", not "no occlusion" - points = points + int(diff.z > -1.0); + angle_hidden = min(ssao_factor*angle_hidden/float(points), 1.0); + + ret = (1.0 - (float(points != 0) * angle_hidden)); + ret += max((dist-32.0*32.0)/(32.0*32.0), 0.0); } - angle_hidden = min(ssao_factor*angle_hidden/float(points), 1.0); - - return (1.0 - (float(points != 0) * angle_hidden)); + return min(ret, 1.0); } void main() |