diff options
Diffstat (limited to 'indra/newview/app_settings/shaders/class1/deferred/sunLightSSAOF.glsl')
-rw-r--r-- | indra/newview/app_settings/shaders/class1/deferred/sunLightSSAOF.glsl | 92 |
1 files changed, 84 insertions, 8 deletions
diff --git a/indra/newview/app_settings/shaders/class1/deferred/sunLightSSAOF.glsl b/indra/newview/app_settings/shaders/class1/deferred/sunLightSSAOF.glsl index 006a49d9a0..403df87853 100644 --- a/indra/newview/app_settings/shaders/class1/deferred/sunLightSSAOF.glsl +++ b/indra/newview/app_settings/shaders/class1/deferred/sunLightSSAOF.glsl @@ -35,26 +35,102 @@ out vec4 frag_color; //class 1 -- no shadow, SSAO only +uniform sampler2DRect depthMap; uniform sampler2DRect normalMap; +uniform sampler2D noiseMap; + // Inputs +uniform float ssao_radius; +uniform float ssao_max_radius; +uniform float ssao_factor; +uniform float ssao_factor_inv; + VARYING vec2 vary_fragcoord; +uniform mat4 inv_proj; +uniform vec2 screen_res; + vec3 decode_normal (vec2 enc); -vec3 getNorm(vec2 pos_screen); -vec4 getPosition(vec2 pos_screen); + +vec4 getPosition(vec2 pos_screen) +{ + float depth = texture2DRect(depthMap, pos_screen.xy).r; + vec2 sc = pos_screen.xy*2.0; + sc /= screen_res; + sc -= vec2(1.0,1.0); + vec4 ndc = vec4(sc.x, sc.y, 2.0*depth-1.0, 1.0); + vec4 pos = inv_proj * ndc; + pos /= pos.w; + pos.w = 1.0; + return pos; +} //calculate decreases in ambient lighting when crowded out (SSAO) -float calcAmbientOcclusion(vec4 pos, vec3 norm, vec2 pos_screen); +float calcAmbientOcclusion(vec4 pos, vec3 norm) +{ + float ret = 1.0; + + vec2 kern[8]; + // exponentially (^2) distant occlusion samples spread around origin + kern[0] = vec2(-1.0, 0.0) * 0.125*0.125; + kern[1] = vec2(1.0, 0.0) * 0.250*0.250; + kern[2] = vec2(0.0, 1.0) * 0.375*0.375; + kern[3] = vec2(0.0, -1.0) * 0.500*0.500; + kern[4] = vec2(0.7071, 0.7071) * 0.625*0.625; + kern[5] = vec2(-0.7071, -0.7071) * 0.750*0.750; + kern[6] = vec2(-0.7071, 0.7071) * 0.875*0.875; + kern[7] = vec2(0.7071, -0.7071) * 1.000*1.000; + + vec2 pos_screen = vary_fragcoord.xy; + vec3 pos_world = pos.xyz; + vec2 noise_reflect = texture2D(noiseMap, vary_fragcoord.xy/128.0).xy; + + float angle_hidden = 0.0; + int points = 0; + + float scale = min(ssao_radius / -pos_world.z, ssao_max_radius); + + // it was found that keeping # of samples a constant was the fastest, probably due to compiler optimizations unrolling?) + for (int i = 0; i < 8; i++) + { + vec2 samppos_screen = pos_screen + scale * reflect(kern[i], noise_reflect); + vec3 samppos_world = getPosition(samppos_screen).xyz; + + vec3 diff = pos_world - samppos_world; + float dist2 = dot(diff, diff); + + // assume each sample corresponds to an occluding sphere with constant radius, constant x-sectional area + // --> solid angle shrinking by the square of distance + //radius is somewhat arbitrary, can approx with just some constant k * 1 / dist^2 + //(k should vary inversely with # of samples, but this is taken care of later) + + angle_hidden = angle_hidden + float(dot((samppos_world - 0.05*norm - pos_world), norm) > 0.0) * min(1.0/dist2, ssao_factor_inv); + + // 'blocked' samples (significantly closer to camera relative to pos_world) are "no data", not "no occlusion" + points = points + int(diff.z > -1.0); + } + + angle_hidden = min(ssao_factor*angle_hidden/float(points), 1.0); + + ret = (1.0 - (float(points != 0) * angle_hidden)); + + return min(ret, 1.0); +} void main() { - vec2 pos_screen = vary_fragcoord.xy; - vec4 pos = getPosition(pos_screen); - vec3 norm = getNorm(pos_screen); - + vec2 pos_screen = vary_fragcoord.xy; + + //try doing an unproject here + + vec4 pos = getPosition(pos_screen); + + vec3 norm = texture2DRect(normalMap, pos_screen).xyz; + norm = decode_normal(norm.xy); + frag_color[0] = 1.0; - frag_color[1] = calcAmbientOcclusion(pos, norm, pos_screen); + frag_color[1] = calcAmbientOcclusion(pos, norm); frag_color[2] = 1.0; frag_color[3] = 1.0; } |