summaryrefslogtreecommitdiff
path: root/indra/newview/app_settings/shaders/class1/deferred/sunLightSSAOF.glsl
diff options
context:
space:
mode:
Diffstat (limited to 'indra/newview/app_settings/shaders/class1/deferred/sunLightSSAOF.glsl')
-rwxr-xr-x[-rw-r--r--]indra/newview/app_settings/shaders/class1/deferred/sunLightSSAOF.glsl141
1 files changed, 83 insertions, 58 deletions
diff --git a/indra/newview/app_settings/shaders/class1/deferred/sunLightSSAOF.glsl b/indra/newview/app_settings/shaders/class1/deferred/sunLightSSAOF.glsl
index cdbed4b791..c0a5865bef 100644..100755
--- a/indra/newview/app_settings/shaders/class1/deferred/sunLightSSAOF.glsl
+++ b/indra/newview/app_settings/shaders/class1/deferred/sunLightSSAOF.glsl
@@ -1,41 +1,74 @@
/**
* @file sunLightSSAOF.glsl
- *
- * Copyright (c) 2007-$CurrentYear$, Linden Research, Inc.
- * $License$
+ * $LicenseInfo:firstyear=2007&license=viewerlgpl$
+ * Second Life Viewer Source Code
+ * Copyright (C) 2007, Linden Research, Inc.
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation;
+ * version 2.1 of the License only.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ *
+ * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
+ * $/LicenseInfo$
*/
+
#extension GL_ARB_texture_rectangle : enable
+#ifdef DEFINE_GL_FRAGCOLOR
+out vec4 frag_color;
+#else
+#define frag_color gl_FragColor
+#endif
+
//class 1 -- no shadow, SSAO only
uniform sampler2DRect depthMap;
uniform sampler2DRect normalMap;
uniform sampler2D noiseMap;
-uniform sampler2D lightFunc;
-
// Inputs
-uniform mat4 shadow_matrix[6];
-uniform vec4 shadow_clip;
uniform float ssao_radius;
uniform float ssao_max_radius;
uniform float ssao_factor;
uniform float ssao_factor_inv;
-varying vec2 vary_fragcoord;
-varying vec4 vary_light;
+VARYING vec2 vary_fragcoord;
uniform mat4 inv_proj;
uniform vec2 screen_res;
-uniform float shadow_bias;
-uniform float shadow_offset;
+vec2 encode_normal(vec3 n)
+{
+ float f = sqrt(8 * n.z + 8);
+ return n.xy / f + 0.5;
+}
+
+vec3 decode_normal (vec2 enc)
+{
+ vec2 fenc = enc*4-2;
+ float f = dot(fenc,fenc);
+ float g = sqrt(1-f/4);
+ vec3 n;
+ n.xy = fenc*g;
+ n.z = 1-f/2;
+ return n;
+}
vec4 getPosition(vec2 pos_screen)
{
- float depth = texture2DRect(depthMap, pos_screen.xy).a;
+ float depth = texture2DRect(depthMap, pos_screen.xy).r;
vec2 sc = pos_screen.xy*2.0;
sc /= screen_res;
sc -= vec2(1.0,1.0);
@@ -51,57 +84,49 @@ float calcAmbientOcclusion(vec4 pos, vec3 norm)
{
float ret = 1.0;
- float dist = dot(pos.xyz,pos.xyz);
-
- if (dist < 64.0*64.0)
- {
- vec2 kern[8];
- // exponentially (^2) distant occlusion samples spread around origin
- kern[0] = vec2(-1.0, 0.0) * 0.125*0.125;
- kern[1] = vec2(1.0, 0.0) * 0.250*0.250;
- kern[2] = vec2(0.0, 1.0) * 0.375*0.375;
- kern[3] = vec2(0.0, -1.0) * 0.500*0.500;
- kern[4] = vec2(0.7071, 0.7071) * 0.625*0.625;
- kern[5] = vec2(-0.7071, -0.7071) * 0.750*0.750;
- kern[6] = vec2(-0.7071, 0.7071) * 0.875*0.875;
- kern[7] = vec2(0.7071, -0.7071) * 1.000*1.000;
+ vec2 kern[8];
+ // exponentially (^2) distant occlusion samples spread around origin
+ kern[0] = vec2(-1.0, 0.0) * 0.125*0.125;
+ kern[1] = vec2(1.0, 0.0) * 0.250*0.250;
+ kern[2] = vec2(0.0, 1.0) * 0.375*0.375;
+ kern[3] = vec2(0.0, -1.0) * 0.500*0.500;
+ kern[4] = vec2(0.7071, 0.7071) * 0.625*0.625;
+ kern[5] = vec2(-0.7071, -0.7071) * 0.750*0.750;
+ kern[6] = vec2(-0.7071, 0.7071) * 0.875*0.875;
+ kern[7] = vec2(0.7071, -0.7071) * 1.000*1.000;
- vec2 pos_screen = vary_fragcoord.xy;
- vec3 pos_world = pos.xyz;
- vec2 noise_reflect = texture2D(noiseMap, vary_fragcoord.xy/128.0).xy;
+ vec2 pos_screen = vary_fragcoord.xy;
+ vec3 pos_world = pos.xyz;
+ vec2 noise_reflect = texture2D(noiseMap, vary_fragcoord.xy/128.0).xy;
- float angle_hidden = 0.0;
- int points = 0;
+ float angle_hidden = 0.0;
+ int points = 0;
- float scale = min(ssao_radius / -pos_world.z, ssao_max_radius);
+ float scale = min(ssao_radius / -pos_world.z, ssao_max_radius);
- // it was found that keeping # of samples a constant was the fastest, probably due to compiler optimizations (unrolling?)
- for (int i = 0; i < 8; i++)
- {
- vec2 samppos_screen = pos_screen + scale * reflect(kern[i], noise_reflect);
- vec3 samppos_world = getPosition(samppos_screen).xyz;
+ // it was found that keeping # of samples a constant was the fastest, probably due to compiler optimizations unrolling?)
+ for (int i = 0; i < 8; i++)
+ {
+ vec2 samppos_screen = pos_screen + scale * reflect(kern[i], noise_reflect);
+ vec3 samppos_world = getPosition(samppos_screen).xyz;
- vec3 diff = pos_world - samppos_world;
- float dist2 = dot(diff, diff);
+ vec3 diff = pos_world - samppos_world;
+ float dist2 = dot(diff, diff);
- // assume each sample corresponds to an occluding sphere with constant radius, constant x-sectional area
- // --> solid angle shrinking by the square of distance
- //radius is somewhat arbitrary, can approx with just some constant k * 1 / dist^2
- //(k should vary inversely with # of samples, but this is taken care of later)
+ // assume each sample corresponds to an occluding sphere with constant radius, constant x-sectional area
+ // --> solid angle shrinking by the square of distance
+ //radius is somewhat arbitrary, can approx with just some constant k * 1 / dist^2
+ //(k should vary inversely with # of samples, but this is taken care of later)
- //if (dot((samppos_world - 0.05*norm - pos_world), norm) > 0.0) // -0.05*norm to shift sample point back slightly for flat surfaces
- // angle_hidden += min(1.0/dist2, ssao_factor_inv); // dist != 0 follows from conditional. max of 1.0 (= ssao_factor_inv * ssao_factor)
- angle_hidden = angle_hidden + float(dot((samppos_world - 0.05*norm - pos_world), norm) > 0.0) * min(1.0/dist2, ssao_factor_inv);
+ angle_hidden = angle_hidden + float(dot((samppos_world - 0.05*norm - pos_world), norm) > 0.0) * min(1.0/dist2, ssao_factor_inv);
- // 'blocked' samples (significantly closer to camera relative to pos_world) are "no data", not "no occlusion"
- points = points + int(diff.z > -1.0);
- }
+ // 'blocked' samples (significantly closer to camera relative to pos_world) are "no data", not "no occlusion"
+ points = points + int(diff.z > -1.0);
+ }
- angle_hidden = min(ssao_factor*angle_hidden/float(points), 1.0);
+ angle_hidden = min(ssao_factor*angle_hidden/float(points), 1.0);
- ret = (1.0 - (float(points != 0) * angle_hidden));
- ret += max((dist-32.0*32.0)/(32.0*32.0), 0.0);
- }
+ ret = (1.0 - (float(points != 0) * angle_hidden));
return min(ret, 1.0);
}
@@ -115,10 +140,10 @@ void main()
vec4 pos = getPosition(pos_screen);
vec3 norm = texture2DRect(normalMap, pos_screen).xyz;
- norm = vec3((norm.xy-0.5)*2.0,norm.z); // unpack norm
+ norm = decode_normal(norm.xy);
- gl_FragColor[0] = 1.0;
- gl_FragColor[1] = calcAmbientOcclusion(pos, norm);
- gl_FragColor[2] = 1.0;
- gl_FragColor[3] = 1.0;
+ frag_color[0] = 1.0;
+ frag_color[1] = calcAmbientOcclusion(pos, norm);
+ frag_color[2] = 1.0;
+ frag_color[3] = 1.0;
}