diff options
Diffstat (limited to 'indra/newview/app_settings/shaders/class1/deferred/materialF.glsl')
-rw-r--r-- | indra/newview/app_settings/shaders/class1/deferred/materialF.glsl | 834 |
1 files changed, 220 insertions, 614 deletions
diff --git a/indra/newview/app_settings/shaders/class1/deferred/materialF.glsl b/indra/newview/app_settings/shaders/class1/deferred/materialF.glsl index 07d28ed4cd..dd691fb36b 100644 --- a/indra/newview/app_settings/shaders/class1/deferred/materialF.glsl +++ b/indra/newview/app_settings/shaders/class1/deferred/materialF.glsl @@ -23,50 +23,28 @@ * $/LicenseInfo$ */ -#define DIFFUSE_ALPHA_MODE_IGNORE 0 -#define DIFFUSE_ALPHA_MODE_BLEND 1 -#define DIFFUSE_ALPHA_MODE_MASK 2 +/*[EXTRA_CODE_HERE]*/ + +#define DIFFUSE_ALPHA_MODE_IGNORE 0 +#define DIFFUSE_ALPHA_MODE_BLEND 1 +#define DIFFUSE_ALPHA_MODE_MASK 2 #define DIFFUSE_ALPHA_MODE_EMISSIVE 3 uniform float emissive_brightness; uniform float display_gamma; +uniform int sun_up_factor; -vec3 srgb_to_linear(vec3 cs) -{ - vec3 low_range = cs / vec3(12.92); - vec3 high_range = pow((cs+vec3(0.055))/vec3(1.055), vec3(2.4)); - bvec3 lte = lessThanEqual(cs,vec3(0.04045)); - -#ifdef OLD_SELECT - vec3 result; - result.r = lte.r ? low_range.r : high_range.r; - result.g = lte.g ? low_range.g : high_range.g; - result.b = lte.b ? low_range.b : high_range.b; - return result; -#else - return mix(high_range, low_range, lte); +#ifdef WATER_FOG +vec4 applyWaterFogView(vec3 pos, vec4 color); #endif -} +vec3 atmosFragLighting(vec3 l, vec3 additive, vec3 atten); +vec3 scaleSoftClipFrag(vec3 l); -vec3 linear_to_srgb(vec3 cl) -{ - cl = clamp(cl, vec3(0), vec3(1)); - vec3 low_range = cl * 12.92; - vec3 high_range = 1.055 * pow(cl, vec3(0.41666)) - 0.055; - bvec3 lt = lessThan(cl,vec3(0.0031308)); - -#ifdef OLD_SELECT - vec3 result; - result.r = lt.r ? low_range.r : high_range.r; - result.g = lt.g ? low_range.g : high_range.g; - result.b = lt.b ? low_range.b : high_range.b; - return result; -#else - return mix(high_range, low_range, lt); -#endif +void calcFragAtmospherics(vec3 inPositionEye, float ambFactor, out vec3 sunlit, out vec3 amblit, out vec3 additive, out vec3 atten); -} +vec3 srgb_to_linear(vec3 cs); +vec3 linear_to_srgb(vec3 cs); #if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_BLEND) @@ -76,404 +54,107 @@ out vec4 frag_color; #define frag_color gl_FragColor #endif -#if HAS_SUN_SHADOW - -uniform sampler2DShadow shadowMap0; -uniform sampler2DShadow shadowMap1; -uniform sampler2DShadow shadowMap2; -uniform sampler2DShadow shadowMap3; - -uniform mat4 shadow_matrix[6]; -uniform vec4 shadow_clip; -uniform vec2 shadow_res; -uniform float shadow_bias; - -float pcfShadow(sampler2DShadow shadowMap, vec4 stc) -{ - stc.xyz /= stc.w; - stc.z += shadow_bias; - - stc.x = floor(stc.x*shadow_res.x + fract(stc.y*shadow_res.y*12345))/shadow_res.x; // add some chaotic jitter to X sample pos according to Y to disguise the snapping going on here - - float cs = shadow2D(shadowMap, stc.xyz).x; - float shadow = cs; - - shadow += shadow2D(shadowMap, stc.xyz+vec3(2.0/shadow_res.x, 1.5/shadow_res.y, 0.0)).x; - shadow += shadow2D(shadowMap, stc.xyz+vec3(1.0/shadow_res.x, -1.5/shadow_res.y, 0.0)).x; - shadow += shadow2D(shadowMap, stc.xyz+vec3(-1.0/shadow_res.x, 1.5/shadow_res.y, 0.0)).x; - shadow += shadow2D(shadowMap, stc.xyz+vec3(-2.0/shadow_res.x, -1.5/shadow_res.y, 0.0)).x; - - return shadow*0.2; -} - +#ifdef HAS_SUN_SHADOW +float sampleDirectionalShadow(vec3 pos, vec3 norm, vec2 pos_screen); #endif uniform samplerCube environmentMap; -uniform sampler2D lightFunc; +uniform sampler2D lightFunc; // Inputs uniform vec4 morphFactor; uniform vec3 camPosLocal; //uniform vec4 camPosWorld; uniform vec4 gamma; -uniform vec4 lightnorm; -uniform vec4 sunlight_color; -uniform vec4 ambient; -uniform vec4 blue_horizon; -uniform vec4 blue_density; -uniform float haze_horizon; -uniform float haze_density; -uniform float cloud_shadow; -uniform float density_multiplier; -uniform float distance_multiplier; -uniform float max_y; -uniform vec4 glow; -uniform float scene_light_strength; uniform mat3 env_mat; uniform mat3 ssao_effect_mat; uniform vec3 sun_dir; +uniform vec3 moon_dir; VARYING vec2 vary_fragcoord; VARYING vec3 vary_position; -vec3 vary_PositionEye; - -vec3 vary_SunlitColor; -vec3 vary_AmblitColor; -vec3 vary_AdditiveColor; -vec3 vary_AtmosAttenuation; - uniform mat4 inv_proj; uniform vec2 screen_res; uniform vec4 light_position[8]; uniform vec3 light_direction[8]; -uniform vec3 light_attenuation[8]; +uniform vec4 light_attenuation[8]; uniform vec3 light_diffuse[8]; -#ifdef WATER_FOG -uniform vec4 waterPlane; -uniform vec4 waterFogColor; -uniform float waterFogDensity; -uniform float waterFogKS; - -vec4 applyWaterFogDeferred(vec3 pos, vec4 color) -{ - //normalize view vector - vec3 view = normalize(pos); - float es = -(dot(view, waterPlane.xyz)); - - //find intersection point with water plane and eye vector - - //get eye depth - float e0 = max(-waterPlane.w, 0.0); - - vec3 int_v = waterPlane.w > 0.0 ? view * waterPlane.w/es : vec3(0.0, 0.0, 0.0); - - //get object depth - float depth = length(pos - int_v); - - //get "thickness" of water - float l = max(depth, 0.1); - - float kd = waterFogDensity; - float ks = waterFogKS; - vec4 kc = waterFogColor; - - float F = 0.98; - - float t1 = -kd * pow(F, ks * e0); - float t2 = kd + ks * es; - float t3 = pow(F, t2*l) - 1.0; - - float L = min(t1/t2*t3, 1.0); - - float D = pow(0.98, l*kd); - - color.rgb = color.rgb * D + kc.rgb * L; - color.a = kc.a + color.a; - - return color; -} -#endif - -vec3 calcDirectionalLight(vec3 n, vec3 l) -{ - float a = max(dot(n,l),0.0); - return vec3(a,a,a); -} - - -vec3 calcPointLightOrSpotLight(vec3 light_col, vec3 npos, vec3 diffuse, vec4 spec, vec3 v, vec3 n, vec4 lp, vec3 ln, float la, float fa, float is_pointlight, inout float glare) -{ - //get light vector - vec3 lv = lp.xyz-v; - - //get distance - float d = length(lv); - - float da = 1.0; - - vec3 col = vec3(0,0,0); - - if (d > 0.0 && la > 0.0 && fa > 0.0) - { - //normalize light vector - lv = normalize(lv); - - //distance attenuation - float dist = d/la; - float dist_atten = clamp(1.0-(dist-1.0*(1.0-fa))/fa, 0.0, 1.0); - dist_atten *= dist_atten; - dist_atten *= 2.0; - - // spotlight coefficient. - float spot = max(dot(-ln, lv), is_pointlight); - da *= spot*spot; // GL_SPOT_EXPONENT=2 - - //angular attenuation - da *= max(dot(n, lv), 0.0); - - float lit = max(da * dist_atten, 0.0); - - col = light_col*lit*diffuse; - - if (spec.a > 0.0) - { - //vec3 ref = dot(pos+lv, norm); - vec3 h = normalize(lv+npos); - float nh = dot(n, h); - float nv = dot(n, npos); - float vh = dot(npos, h); - float sa = nh; - float fres = pow(1 - dot(h, npos), 5)*0.4+0.5; - - float gtdenom = 2 * nh; - float gt = max(0, min(gtdenom * nv / vh, gtdenom * da / vh)); - - if (nh > 0.0) - { - float scol = fres*texture2D(lightFunc, vec2(nh, spec.a)).r*gt/(nh*da); - vec3 speccol = lit*scol*light_col.rgb*spec.rgb; - col += speccol; - - float cur_glare = max(speccol.r, speccol.g); - cur_glare = max(cur_glare, speccol.b); - glare = max(glare, speccol.r); - glare += max(cur_glare, 0.0); - //col += spec.rgb; - } - } - } - - return max(col, vec3(0.0,0.0,0.0)); - -} - -vec4 getPosition_d(vec2 pos_screen, float depth) -{ - vec2 sc = pos_screen.xy*2.0; - sc /= screen_res; - sc -= vec2(1.0,1.0); - vec4 ndc = vec4(sc.x, sc.y, 2.0*depth-1.0, 1.0); - vec4 pos = inv_proj * ndc; - pos /= pos.w; - pos.w = 1.0; - return pos; -} - -#ifndef WATER_FOG -vec3 getPositionEye() -{ - return vary_PositionEye; -} -#endif - -vec3 getSunlitColor() -{ - return vary_SunlitColor; -} -vec3 getAmblitColor() -{ - return vary_AmblitColor; -} -vec3 getAdditiveColor() +vec3 calcPointLightOrSpotLight(vec3 light_col, vec3 npos, vec3 diffuse, vec4 spec, vec3 v, vec3 n, vec4 lp, vec3 ln, float la, float fa, float is_pointlight, inout float glare, float ambiance, float shadow) { - return vary_AdditiveColor; -} -vec3 getAtmosAttenuation() -{ - return vary_AtmosAttenuation; -} + //get light vector + vec3 lv = lp.xyz-v; + + //get distance + float d = length(lv); + + float da = 1.0; + + vec3 col = vec3(0,0,0); + + if (d > 0.0 && la > 0.0 && fa > 0.0) + { + //normalize light vector + lv = normalize(lv); + + //distance attenuation + float dist = d/la; + float dist_atten = clamp(1.0-(dist-1.0*(1.0-fa))/fa, 0.0, 1.0); + dist_atten *= dist_atten; + + // spotlight coefficient. + float spot = max(dot(-ln, lv), is_pointlight); + da *= spot*spot; // GL_SPOT_EXPONENT=2 + + //angular attenuation + da = dot(n, lv); + da *= clamp(da, 0.0, 1.0); + da *= pow(da, 1.0 / 1.3); + + float lit = max(da * dist_atten, 0.0); + + col = light_col*lit*diffuse; + + float amb_da = ambiance; + amb_da *= dist_atten; + amb_da += (da*0.5) * ambiance; + amb_da += (da*da*0.5 + 0.25) * ambiance; + amb_da = min(amb_da, 1.0f - lit); + + col.rgb += amb_da * light_col * diffuse; + + if (spec.a > 0.0) + { + //vec3 ref = dot(pos+lv, norm); + vec3 h = normalize(lv+npos); + float nh = dot(n, h); + float nv = dot(n, npos); + float vh = dot(npos, h); + float sa = nh; + float fres = pow(1 - dot(h, npos), 5)*0.4+0.5; + + float gtdenom = 2 * nh; + float gt = max(0, min(gtdenom * nv / vh, gtdenom * da / vh)); + + if (nh > 0.0) + { + float scol = fres*texture2D(lightFunc, vec2(nh, spec.a)).r*gt/(nh*da); + vec3 speccol = lit*scol*light_col.rgb*spec.rgb; + col += speccol; + + float cur_glare = max(speccol.r, speccol.g); + cur_glare = max(cur_glare, speccol.b); + glare = max(glare, speccol.r); + glare += max(cur_glare, 0.0); + } + } + } + + return max(col, vec3(0.0,0.0,0.0)); -void setPositionEye(vec3 v) -{ - vary_PositionEye = v; -} - -void setSunlitColor(vec3 v) -{ - vary_SunlitColor = v; -} - -void setAmblitColor(vec3 v) -{ - vary_AmblitColor = v; -} - -void setAdditiveColor(vec3 v) -{ - vary_AdditiveColor = v; -} - -void setAtmosAttenuation(vec3 v) -{ - vary_AtmosAttenuation = v; -} - -void calcAtmospherics(vec3 inPositionEye, float ambFactor) { - - vec3 P = inPositionEye; - setPositionEye(P); - - vec3 tmpLightnorm = lightnorm.xyz; - - vec3 Pn = normalize(P); - float Plen = length(P); - - vec4 temp1 = vec4(0); - vec3 temp2 = vec3(0); - vec4 blue_weight; - vec4 haze_weight; - vec4 sunlight = sunlight_color; - vec4 light_atten; - - //sunlight attenuation effect (hue and brightness) due to atmosphere - //this is used later for sunlight modulation at various altitudes - light_atten = (blue_density + vec4(haze_density * 0.25)) * (density_multiplier * max_y); - //I had thought blue_density and haze_density should have equal weighting, - //but attenuation due to haze_density tends to seem too strong - - temp1 = blue_density + vec4(haze_density); - blue_weight = blue_density / temp1; - haze_weight = vec4(haze_density) / temp1; - - //(TERRAIN) compute sunlight from lightnorm only (for short rays like terrain) - temp2.y = max(0.0, tmpLightnorm.y); - temp2.y = 1. / temp2.y; - sunlight *= exp( - light_atten * temp2.y); - - // main atmospheric scattering line integral - temp2.z = Plen * density_multiplier; - - // Transparency (-> temp1) - // ATI Bugfix -- can't store temp1*temp2.z*distance_multiplier in a variable because the ati - // compiler gets confused. - temp1 = exp(-temp1 * temp2.z * distance_multiplier); - - //final atmosphere attenuation factor - setAtmosAttenuation(temp1.rgb); - - //compute haze glow - //(can use temp2.x as temp because we haven't used it yet) - temp2.x = dot(Pn, tmpLightnorm.xyz); - temp2.x = 1. - temp2.x; - //temp2.x is 0 at the sun and increases away from sun - temp2.x = max(temp2.x, .03); //was glow.y - //set a minimum "angle" (smaller glow.y allows tighter, brighter hotspot) - temp2.x *= glow.x; - //higher glow.x gives dimmer glow (because next step is 1 / "angle") - temp2.x = pow(temp2.x, glow.z); - //glow.z should be negative, so we're doing a sort of (1 / "angle") function - - //add "minimum anti-solar illumination" - temp2.x += .25; - - //increase ambient when there are more clouds - vec4 tmpAmbient = ambient + (vec4(1.) - ambient) * cloud_shadow * 0.5; - - /* decrease value and saturation (that in HSV, not HSL) for occluded areas - * // for HSV color/geometry used here, see http://gimp-savvy.com/BOOK/index.html?node52.html - * // The following line of code performs the equivalent of: - * float ambAlpha = tmpAmbient.a; - * float ambValue = dot(vec3(tmpAmbient), vec3(0.577)); // projection onto <1/rt(3), 1/rt(3), 1/rt(3)>, the neutral white-black axis - * vec3 ambHueSat = vec3(tmpAmbient) - vec3(ambValue); - * tmpAmbient = vec4(RenderSSAOEffect.valueFactor * vec3(ambValue) + RenderSSAOEffect.saturationFactor *(1.0 - ambFactor) * ambHueSat, ambAlpha); - */ - tmpAmbient = vec4(mix(ssao_effect_mat * tmpAmbient.rgb, tmpAmbient.rgb, ambFactor), tmpAmbient.a); - - //haze color - setAdditiveColor( - vec3(blue_horizon * blue_weight * (sunlight*(1.-cloud_shadow) + tmpAmbient) - + (haze_horizon * haze_weight) * (sunlight*(1.-cloud_shadow) * temp2.x - + tmpAmbient))); - - //brightness of surface both sunlight and ambient - setSunlitColor(vec3(sunlight * .5)); - setAmblitColor(vec3(tmpAmbient * .25)); - setAdditiveColor(getAdditiveColor() * vec3(1.0 - temp1)); -} - -vec3 atmosLighting(vec3 light) -{ - light *= getAtmosAttenuation().r; - light += getAdditiveColor(); - return (2.0 * light); -} - -vec3 atmosTransport(vec3 light) { - light *= getAtmosAttenuation().r; - light += getAdditiveColor() * 2.0; - return light; -} -vec3 atmosGetDiffuseSunlightColor() -{ - return getSunlitColor(); -} - -vec3 scaleDownLight(vec3 light) -{ - return (light / vec3(scene_light_strength, scene_light_strength, scene_light_strength)); -} - -vec3 scaleUpLight(vec3 light) -{ - return (light * vec3(scene_light_strength, scene_light_strength, scene_light_strength)); -} - -vec3 atmosAmbient(vec3 light) -{ - return getAmblitColor() + (light * vec3(0.5f, 0.5f, 0.5f)); -} - -vec3 atmosAffectDirectionalLight(float lightIntensity) -{ - return getSunlitColor() * vec3(lightIntensity, lightIntensity, lightIntensity); -} - -vec3 scaleSoftClip(vec3 light) -{ - //soft clip effect: - vec3 zeroes = vec3(0.0f, 0.0f, 0.0f); - vec3 ones = vec3(1.0f, 1.0f, 1.0f); - - light = ones - clamp(light, zeroes, ones); - light = ones - pow(light, gamma.xxx); - - return light; -} - -vec3 fullbrightAtmosTransport(vec3 light) { - float brightness = dot(light.rgb, vec3(0.33333)); - - return mix(atmosTransport(light.rgb), light.rgb + getAdditiveColor().rgb, brightness * brightness); -} - -vec3 fullbrightScaleSoftClip(vec3 light) -{ - //soft clip effect: - return light; } #else @@ -486,11 +167,11 @@ out vec4 frag_data[3]; uniform sampler2D diffuseMap; -#if HAS_NORMAL_MAP +#ifdef HAS_NORMAL_MAP uniform sampler2D bumpMap; #endif -#if HAS_SPECULAR_MAP +#ifdef HAS_SPECULAR_MAP uniform sampler2D specularMap; VARYING vec2 vary_texcoord2; @@ -503,7 +184,7 @@ uniform vec4 specular_color; // specular color RGB and specular exponent (gloss uniform float minimum_alpha; #endif -#if HAS_NORMAL_MAP +#ifdef HAS_NORMAL_MAP VARYING vec3 vary_mat0; VARYING vec3 vary_mat1; VARYING vec3 vary_mat2; @@ -515,274 +196,199 @@ VARYING vec3 vary_normal; VARYING vec4 vertex_color; VARYING vec2 vary_texcoord0; -vec2 encode_normal(vec3 n) -{ - float f = sqrt(8 * n.z + 8); - return n.xy / f + 0.5; -} - -vec3 decode_normal (vec2 enc) -{ - vec2 fenc = enc*4-2; - float f = dot(fenc,fenc); - float g = sqrt(1-f/4); - vec3 n; - n.xy = fenc*g; - n.z = 1-f/2; - return n; -} +vec2 encode_normal(vec3 n); void main() { - vec4 diffcol = texture2D(diffuseMap, vary_texcoord0.xy); - diffcol.rgb *= vertex_color.rgb; + vec2 pos_screen = vary_texcoord0.xy; + + vec4 diffcol = texture2D(diffuseMap, vary_texcoord0.xy); + diffcol.rgb *= vertex_color.rgb; #if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_MASK) - if (diffcol.a < minimum_alpha) - { - discard; - } + if (diffcol.a < minimum_alpha) + { + discard; + } #endif #if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_BLEND) - vec3 gamma_diff = diffcol.rgb; - diffcol.rgb = srgb_to_linear(diffcol.rgb); + vec3 gamma_diff = diffcol.rgb; #endif -#if HAS_SPECULAR_MAP - vec4 spec = texture2D(specularMap, vary_texcoord2.xy); - spec.rgb *= specular_color.rgb; +#ifdef HAS_SPECULAR_MAP + vec4 spec = texture2D(specularMap, vary_texcoord2.xy); + spec.rgb *= specular_color.rgb; #else - vec4 spec = vec4(specular_color.rgb, 1.0); + vec4 spec = vec4(specular_color.rgb, 1.0); #endif -#if HAS_NORMAL_MAP - vec4 norm = texture2D(bumpMap, vary_texcoord1.xy); +#ifdef HAS_NORMAL_MAP + vec4 norm = texture2D(bumpMap, vary_texcoord1.xy); - norm.xyz = norm.xyz * 2 - 1; + norm.xyz = norm.xyz * 2 - 1; - vec3 tnorm = vec3(dot(norm.xyz,vary_mat0), - dot(norm.xyz,vary_mat1), - dot(norm.xyz,vary_mat2)); + vec3 tnorm = vec3(dot(norm.xyz,vary_mat0), + dot(norm.xyz,vary_mat1), + dot(norm.xyz,vary_mat2)); #else - vec4 norm = vec4(0,0,0,1.0); - vec3 tnorm = vary_normal; + vec4 norm = vec4(0,0,0,1.0); + vec3 tnorm = vary_normal; #endif norm.xyz = tnorm; norm.xyz = normalize(norm.xyz); - vec2 abnormal = encode_normal(norm.xyz); - norm.xyz = decode_normal(abnormal.xy); + vec2 abnormal = encode_normal(norm.xyz); - vec4 final_color = diffcol; - + vec4 final_color = diffcol; + #if (DIFFUSE_ALPHA_MODE != DIFFUSE_ALPHA_MODE_EMISSIVE) - final_color.a = emissive_brightness; + final_color.a = emissive_brightness; #else - final_color.a = max(final_color.a, emissive_brightness); + final_color.a = max(final_color.a, emissive_brightness); #endif - vec4 final_specular = spec; -#if HAS_SPECULAR_MAP - vec4 final_normal = vec4(encode_normal(normalize(tnorm)), env_intensity * spec.a, 0.0); - final_specular.a = specular_color.a * norm.a; + vec4 final_specular = spec; +#ifdef HAS_SPECULAR_MAP + vec4 final_normal = vec4(encode_normal(normalize(tnorm)), env_intensity * spec.a, 0.0); + final_specular.a = specular_color.a * norm.a; #else - vec4 final_normal = vec4(encode_normal(normalize(tnorm)), env_intensity, 0.0); - final_specular.a = specular_color.a; + vec4 final_normal = vec4(encode_normal(normalize(tnorm)), env_intensity, 0.0); + final_specular.a = specular_color.a; #endif - + #if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_BLEND) - //forward rendering, output just lit RGBA - vec3 pos = vary_position; - -#if HAS_SUN_SHADOW - float shadow = 0.0; - - vec4 spos = vec4(pos,1.0); - - if (spos.z > -shadow_clip.w) - { - vec4 lpos; - - vec4 near_split = shadow_clip*-0.75; - vec4 far_split = shadow_clip*-1.25; - vec4 transition_domain = near_split-far_split; - float weight = 0.0; - - if (spos.z < near_split.z) - { - lpos = shadow_matrix[3]*spos; - - float w = 1.0; - w -= max(spos.z-far_split.z, 0.0)/transition_domain.z; - shadow += pcfShadow(shadowMap3, lpos)*w; - weight += w; - shadow += max((pos.z+shadow_clip.z)/(shadow_clip.z-shadow_clip.w)*2.0-1.0, 0.0); - } - - if (spos.z < near_split.y && spos.z > far_split.z) - { - lpos = shadow_matrix[2]*spos; - - float w = 1.0; - w -= max(spos.z-far_split.y, 0.0)/transition_domain.y; - w -= max(near_split.z-spos.z, 0.0)/transition_domain.z; - shadow += pcfShadow(shadowMap2, lpos)*w; - weight += w; - } - - if (spos.z < near_split.x && spos.z > far_split.y) - { - lpos = shadow_matrix[1]*spos; - - float w = 1.0; - w -= max(spos.z-far_split.x, 0.0)/transition_domain.x; - w -= max(near_split.y-spos.z, 0.0)/transition_domain.y; - shadow += pcfShadow(shadowMap1, lpos)*w; - weight += w; - } - - if (spos.z > far_split.x) - { - lpos = shadow_matrix[0]*spos; - - float w = 1.0; - w -= max(near_split.x-spos.z, 0.0)/transition_domain.x; - - shadow += pcfShadow(shadowMap0, lpos)*w; - weight += w; - } - - - shadow /= weight; - } - else - { - shadow = 1.0; - } -#else - float shadow = 1.0; + //forward rendering, output just lit RGBA + vec3 pos = vary_position; + + float shadow = 1.0f; + +#ifdef HAS_SUN_SHADOW + shadow = sampleDirectionalShadow(pos.xyz, norm.xyz, pos_screen); #endif + + spec = final_specular; + vec4 diffuse = final_color; - spec = final_specular; - vec4 diffuse = final_color; - float envIntensity = final_normal.z; + diffuse.rgb = srgb_to_linear(diffuse.rgb); - vec3 col = vec3(0.0f,0.0f,0.0f); + float envIntensity = final_normal.z; - float bloom = 0.0; - calcAtmospherics(pos.xyz, 1.0); - - vec3 refnormpersp = normalize(reflect(pos.xyz, norm.xyz)); + vec3 col = vec3(0.0f,0.0f,0.0f); - float da =dot(norm.xyz, sun_dir.xyz); + float bloom = 0.0; + vec3 sunlit; + vec3 amblit; + vec3 additive; + vec3 atten; - float final_da = da; - final_da = min(final_da, shadow); - //final_da = max(final_da, diffuse.a); - final_da = max(final_da, 0.0f); - final_da = min(final_da, 1.0f); - final_da = pow(final_da, 1.0/1.3); + calcFragAtmospherics(pos.xyz, 1.0, sunlit, amblit, additive, atten); - col.rgb = atmosAmbient(col); - - float ambient = min(abs(da), 1.0); - ambient *= 0.5; - ambient *= ambient; - ambient = (1.0-ambient); + vec3 refnormpersp = normalize(reflect(pos.xyz, norm.xyz)); - col.rgb *= ambient; + vec3 light_dir = (sun_up_factor == 1) ? sun_dir : moon_dir; - col.rgb = col.rgb + atmosAffectDirectionalLight(final_da); + float da = dot(norm.xyz, light_dir.xyz); + da = clamp(da, 0.0, 1.0); + da = pow(da, 1.0 / 1.3); - col.rgb *= gamma_diff.rgb; - + col.rgb = amblit; + + float ambient = abs(da); + ambient *= 0.5; + ambient *= ambient; + ambient = 1.0 - ambient * smoothstep(0.0, 0.3, shadow); - float glare = 0.0; + vec3 sun_contrib = min(da, shadow) * sunlit; + + col.rgb *= ambient; + col.rgb += sun_contrib; + col.rgb *= diffuse.rgb; + + float glare = 0.0; - if (spec.a > 0.0) // specular reflection - { - // the old infinite-sky shiny reflection - // - - float sa = dot(refnormpersp, sun_dir.xyz); - vec3 dumbshiny = vary_SunlitColor*shadow*(texture2D(lightFunc, vec2(sa, spec.a)).r); - - // add the two types of shiny together - vec3 spec_contrib = dumbshiny * spec.rgb; - bloom = dot(spec_contrib, spec_contrib) / 6; + if (spec.a > 0.0) // specular reflection + { + // the old infinite-sky shiny reflection + // + + float sa = dot(refnormpersp, sun_dir.xyz); - glare = max(spec_contrib.r, spec_contrib.g); - glare = max(glare, spec_contrib.b); + vec3 dumbshiny = sunlit*shadow*(texture2D(lightFunc, vec2(sa, spec.a)).r); + + // add the two types of shiny together + vec3 spec_contrib = dumbshiny * spec.rgb; + bloom = dot(spec_contrib, spec_contrib) / 6; - col += spec_contrib; - } + glare = max(spec_contrib.r, spec_contrib.g); + glare = max(glare, spec_contrib.b); + col += spec_contrib; + } - col = mix(col.rgb, diffcol.rgb, diffuse.a); +vec3 post_spec = col.rgb; - if (envIntensity > 0.0) - { - //add environmentmap - vec3 env_vec = env_mat * refnormpersp; - - vec3 refcol = textureCube(environmentMap, env_vec).rgb; + col = mix(col.rgb, diffuse.rgb, diffuse.a); - col = mix(col.rgb, refcol, - envIntensity); + if (envIntensity > 0.0) + { + //add environmentmap + vec3 env_vec = env_mat * refnormpersp; + + vec3 refcol = textureCube(environmentMap, env_vec).rgb; - float cur_glare = max(refcol.r, refcol.g); - cur_glare = max(cur_glare, refcol.b); - cur_glare *= envIntensity*4.0; - glare += cur_glare; - } + col = mix(col.rgb, refcol, + envIntensity); - //col = mix(atmosLighting(col), fullbrightAtmosTransport(col), diffuse.a); - //col = mix(scaleSoftClip(col), fullbrightScaleSoftClip(col), diffuse.a); + float cur_glare = max(refcol.r, refcol.g); + cur_glare = max(cur_glare, refcol.b); + cur_glare *= envIntensity*4.0; + glare += cur_glare; + } - col = atmosLighting(col); - col = scaleSoftClip(col); + col = atmosFragLighting(col, additive, atten); + col = scaleSoftClipFrag(col); - //convert to linear space before adding local lights - col = srgb_to_linear(col); +vec3 post_atmo= col.rgb; - vec3 npos = normalize(-pos.xyz); - - vec3 light = vec3(0,0,0); + vec3 npos = normalize(-pos.xyz); + + vec3 light = vec3(0,0,0); - #define LIGHT_LOOP(i) light.rgb += calcPointLightOrSpotLight(light_diffuse[i].rgb, npos, diffuse.rgb, final_specular, pos.xyz, norm.xyz, light_position[i], light_direction[i].xyz, light_attenuation[i].x, light_attenuation[i].y, light_attenuation[i].z, glare); + #define LIGHT_LOOP(i) light.rgb += calcPointLightOrSpotLight(light_diffuse[i].rgb, npos, diffuse.rgb, final_specular, pos.xyz, norm.xyz, light_position[i], light_direction[i].xyz, light_attenuation[i].x, light_attenuation[i].y, light_attenuation[i].z, glare, light_attenuation[i].w, shadow); - LIGHT_LOOP(1) - LIGHT_LOOP(2) - LIGHT_LOOP(3) - LIGHT_LOOP(4) - LIGHT_LOOP(5) - LIGHT_LOOP(6) - LIGHT_LOOP(7) + LIGHT_LOOP(1) + LIGHT_LOOP(2) + LIGHT_LOOP(3) + LIGHT_LOOP(4) + LIGHT_LOOP(5) + LIGHT_LOOP(6) + LIGHT_LOOP(7) - col.rgb += light.rgb; + col.rgb += light.rgb; - glare = min(glare, 1.0); - float al = max(diffcol.a,glare)*vertex_color.a; +vec3 post_lighting = col.rgb; - //convert to gamma space for display on screen - col.rgb = linear_to_srgb(col.rgb); + glare = min(glare, 1.0); + float al = max(diffcol.a,glare)*vertex_color.a; #ifdef WATER_FOG - vec4 temp = applyWaterFogDeferred(pos, vec4(col.rgb, al)); - col.rgb = temp.rgb; - al = temp.a; + vec4 temp = applyWaterFogView(pos, vec4(col.rgb, al)); + col.rgb = temp.rgb; + al = temp.a; #endif - frag_color.rgb = col.rgb; - frag_color.a = al; + col.rgb = linear_to_srgb(col.rgb); + + frag_color.rgb = col.rgb; + frag_color.a = al; #else - frag_data[0] = final_color; - frag_data[1] = final_specular; // XYZ = Specular color. W = Specular exponent. - frag_data[2] = final_normal; // XY = Normal. Z = Env. intensity. + frag_data[0] = final_color; + frag_data[1] = final_specular; // XYZ = Specular color. W = Specular exponent. + frag_data[2] = final_normal; // XY = Normal. Z = Env. intensity. #endif } |