diff options
Diffstat (limited to 'indra/newview/app_settings/shaders/class1/deferred/materialF.glsl')
-rw-r--r-- | indra/newview/app_settings/shaders/class1/deferred/materialF.glsl | 545 |
1 files changed, 541 insertions, 4 deletions
diff --git a/indra/newview/app_settings/shaders/class1/deferred/materialF.glsl b/indra/newview/app_settings/shaders/class1/deferred/materialF.glsl index 35b176b457..5e75cc3ce6 100644 --- a/indra/newview/app_settings/shaders/class1/deferred/materialF.glsl +++ b/indra/newview/app_settings/shaders/class1/deferred/materialF.glsl @@ -29,11 +29,360 @@ #define DIFFUSE_ALPHA_MODE_EMISSIVE 3 +#if DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_BLEND +#ifdef DEFINE_GL_FRAGCOLOR +out vec4 frag_color; +#else +#define frag_color gl_FragColor +#endif + + +#if HAS_SUN_SHADOW + +uniform sampler2DShadow shadowMap0; +uniform sampler2DShadow shadowMap1; +uniform sampler2DShadow shadowMap2; +uniform sampler2DShadow shadowMap3; + +uniform mat4 shadow_matrix[6]; +uniform vec4 shadow_clip; +uniform vec2 shadow_res; +uniform float shadow_bias; + +float pcfShadow(sampler2DShadow shadowMap, vec4 stc) +{ + stc.xyz /= stc.w; + stc.z += shadow_bias; + + stc.x = floor(stc.x*shadow_res.x + fract(stc.y*shadow_res.y*12345))/shadow_res.x; // add some chaotic jitter to X sample pos according to Y to disguise the snapping going on here + + float cs = shadow2D(shadowMap, stc.xyz).x; + float shadow = cs; + + shadow += shadow2D(shadowMap, stc.xyz+vec3(2.0/shadow_res.x, 1.5/shadow_res.y, 0.0)).x; + shadow += shadow2D(shadowMap, stc.xyz+vec3(1.0/shadow_res.x, -1.5/shadow_res.y, 0.0)).x; + shadow += shadow2D(shadowMap, stc.xyz+vec3(-1.0/shadow_res.x, 1.5/shadow_res.y, 0.0)).x; + shadow += shadow2D(shadowMap, stc.xyz+vec3(-2.0/shadow_res.x, -1.5/shadow_res.y, 0.0)).x; + + return shadow*0.2; +} + +#endif + +uniform samplerCube environmentMap; +uniform sampler2D lightFunc; + +// Inputs +uniform vec4 morphFactor; +uniform vec3 camPosLocal; +//uniform vec4 camPosWorld; +uniform vec4 gamma; +uniform vec4 lightnorm; +uniform vec4 sunlight_color; +uniform vec4 ambient; +uniform vec4 blue_horizon; +uniform vec4 blue_density; +uniform float haze_horizon; +uniform float haze_density; +uniform float cloud_shadow; +uniform float density_multiplier; +uniform float distance_multiplier; +uniform float max_y; +uniform vec4 glow; +uniform float scene_light_strength; +uniform mat3 env_mat; +uniform mat3 ssao_effect_mat; + +uniform vec3 sun_dir; +VARYING vec2 vary_fragcoord; + +VARYING vec3 vary_position; + +vec3 vary_PositionEye; + +vec3 vary_SunlitColor; +vec3 vary_AmblitColor; +vec3 vary_AdditiveColor; +vec3 vary_AtmosAttenuation; + +uniform mat4 inv_proj; +uniform vec2 screen_res; + +uniform vec4 light_position[8]; +uniform vec3 light_direction[8]; +uniform vec3 light_attenuation[8]; +uniform vec3 light_diffuse[8]; + +vec3 calcDirectionalLight(vec3 n, vec3 l) +{ + float a = max(dot(n,l),0.0); + return vec3(a,a,a); +} + + +vec3 calcPointLightOrSpotLight(vec3 light_col, vec3 npos, vec3 diffuse, vec4 spec, vec3 v, vec3 n, vec4 lp, vec3 ln, float la, float fa, float is_pointlight) +{ + //get light vector + vec3 lv = lp.xyz-v; + + //get distance + float d = dot(lv,lv); + + float da = 1.0; + + vec3 col = vec3(0,0,0); + + if (d > 0.0 && la > 0.0 && fa > 0.0) + { + //normalize light vector + lv = normalize(lv); + + //distance attenuation + float dist2 = d/la; + float dist_atten = clamp(1.0-(dist2-1.0*(1.0-fa))/fa, 0.0, 1.0); + + // spotlight coefficient. + float spot = max(dot(-ln, lv), is_pointlight); + da *= spot*spot; // GL_SPOT_EXPONENT=2 + + //angular attenuation + da *= max(dot(n, lv), 0.0); + + float lit = max(da * dist_atten, 0.0); + + col = light_col*lit*diffuse; + + if (spec.a > 0.0) + { + //vec3 ref = dot(pos+lv, norm); + vec3 h = normalize(lv+npos); + float nh = dot(n, h); + float nv = dot(n, npos); + float vh = dot(npos, h); + float sa = nh; + float fres = pow(1 - dot(h, npos), 5)*0.4+0.5; + + float gtdenom = 2 * nh; + float gt = max(0, min(gtdenom * nv / vh, gtdenom * da / vh)); + + if (nh > 0.0) + { + float scol = fres*texture2D(lightFunc, vec2(nh, spec.a)).r*gt/(nh*da); + col += lit*scol*light_col.rgb*spec.rgb; + //col += spec.rgb; + } + } + } + + return max(col, vec3(0.0,0.0,0.0)); + +} + +vec3 decode_normal (vec2 enc) +{ + vec2 fenc = enc*4-2; + float f = dot(fenc,fenc); + float g = sqrt(1-f/4); + vec3 n; + n.xy = fenc*g; + n.z = 1-f/2; + return n; +} + +vec4 getPosition_d(vec2 pos_screen, float depth) +{ + vec2 sc = pos_screen.xy*2.0; + sc /= screen_res; + sc -= vec2(1.0,1.0); + vec4 ndc = vec4(sc.x, sc.y, 2.0*depth-1.0, 1.0); + vec4 pos = inv_proj * ndc; + pos /= pos.w; + pos.w = 1.0; + return pos; +} + +vec3 getPositionEye() +{ + return vary_PositionEye; +} +vec3 getSunlitColor() +{ + return vary_SunlitColor; +} +vec3 getAmblitColor() +{ + return vary_AmblitColor; +} +vec3 getAdditiveColor() +{ + return vary_AdditiveColor; +} +vec3 getAtmosAttenuation() +{ + return vary_AtmosAttenuation; +} + +void setPositionEye(vec3 v) +{ + vary_PositionEye = v; +} + +void setSunlitColor(vec3 v) +{ + vary_SunlitColor = v; +} + +void setAmblitColor(vec3 v) +{ + vary_AmblitColor = v; +} + +void setAdditiveColor(vec3 v) +{ + vary_AdditiveColor = v; +} + +void setAtmosAttenuation(vec3 v) +{ + vary_AtmosAttenuation = v; +} + +void calcAtmospherics(vec3 inPositionEye, float ambFactor) { + + vec3 P = inPositionEye; + setPositionEye(P); + + vec3 tmpLightnorm = lightnorm.xyz; + + vec3 Pn = normalize(P); + float Plen = length(P); + + vec4 temp1 = vec4(0); + vec3 temp2 = vec3(0); + vec4 blue_weight; + vec4 haze_weight; + vec4 sunlight = sunlight_color; + vec4 light_atten; + + //sunlight attenuation effect (hue and brightness) due to atmosphere + //this is used later for sunlight modulation at various altitudes + light_atten = (blue_density + vec4(haze_density * 0.25)) * (density_multiplier * max_y); + //I had thought blue_density and haze_density should have equal weighting, + //but attenuation due to haze_density tends to seem too strong + + temp1 = blue_density + vec4(haze_density); + blue_weight = blue_density / temp1; + haze_weight = vec4(haze_density) / temp1; + + //(TERRAIN) compute sunlight from lightnorm only (for short rays like terrain) + temp2.y = max(0.0, tmpLightnorm.y); + temp2.y = 1. / temp2.y; + sunlight *= exp( - light_atten * temp2.y); + + // main atmospheric scattering line integral + temp2.z = Plen * density_multiplier; + + // Transparency (-> temp1) + // ATI Bugfix -- can't store temp1*temp2.z*distance_multiplier in a variable because the ati + // compiler gets confused. + temp1 = exp(-temp1 * temp2.z * distance_multiplier); + + //final atmosphere attenuation factor + setAtmosAttenuation(temp1.rgb); + + //compute haze glow + //(can use temp2.x as temp because we haven't used it yet) + temp2.x = dot(Pn, tmpLightnorm.xyz); + temp2.x = 1. - temp2.x; + //temp2.x is 0 at the sun and increases away from sun + temp2.x = max(temp2.x, .03); //was glow.y + //set a minimum "angle" (smaller glow.y allows tighter, brighter hotspot) + temp2.x *= glow.x; + //higher glow.x gives dimmer glow (because next step is 1 / "angle") + temp2.x = pow(temp2.x, glow.z); + //glow.z should be negative, so we're doing a sort of (1 / "angle") function + + //add "minimum anti-solar illumination" + temp2.x += .25; + + //increase ambient when there are more clouds + vec4 tmpAmbient = ambient + (vec4(1.) - ambient) * cloud_shadow * 0.5; + + /* decrease value and saturation (that in HSV, not HSL) for occluded areas + * // for HSV color/geometry used here, see http://gimp-savvy.com/BOOK/index.html?node52.html + * // The following line of code performs the equivalent of: + * float ambAlpha = tmpAmbient.a; + * float ambValue = dot(vec3(tmpAmbient), vec3(0.577)); // projection onto <1/rt(3), 1/rt(3), 1/rt(3)>, the neutral white-black axis + * vec3 ambHueSat = vec3(tmpAmbient) - vec3(ambValue); + * tmpAmbient = vec4(RenderSSAOEffect.valueFactor * vec3(ambValue) + RenderSSAOEffect.saturationFactor *(1.0 - ambFactor) * ambHueSat, ambAlpha); + */ + tmpAmbient = vec4(mix(ssao_effect_mat * tmpAmbient.rgb, tmpAmbient.rgb, ambFactor), tmpAmbient.a); + + //haze color + setAdditiveColor( + vec3(blue_horizon * blue_weight * (sunlight*(1.-cloud_shadow) + tmpAmbient) + + (haze_horizon * haze_weight) * (sunlight*(1.-cloud_shadow) * temp2.x + + tmpAmbient))); + + //brightness of surface both sunlight and ambient + setSunlitColor(vec3(sunlight * .5)); + setAmblitColor(vec3(tmpAmbient * .25)); + setAdditiveColor(getAdditiveColor() * vec3(1.0 - temp1)); +} + +vec3 atmosLighting(vec3 light) +{ + light *= getAtmosAttenuation().r; + light += getAdditiveColor(); + return (2.0 * light); +} + +vec3 atmosTransport(vec3 light) { + light *= getAtmosAttenuation().r; + light += getAdditiveColor() * 2.0; + return light; +} +vec3 atmosGetDiffuseSunlightColor() +{ + return getSunlitColor(); +} + +vec3 scaleDownLight(vec3 light) +{ + return (light / scene_light_strength ); +} + +vec3 scaleUpLight(vec3 light) +{ + return (light * scene_light_strength); +} + +vec3 atmosAmbient(vec3 light) +{ + return getAmblitColor() + light / 2.0; +} + +vec3 atmosAffectDirectionalLight(float lightIntensity) +{ + return getSunlitColor() * lightIntensity; +} + +vec3 scaleSoftClip(vec3 light) +{ + //soft clip effect: + light = 1. - clamp(light, vec3(0.), vec3(1.)); + light = 1. - pow(light, gamma.xxx); + + return light; +} + +#else #ifdef DEFINE_GL_FRAGCOLOR out vec4 frag_data[3]; #else #define frag_data gl_FragData #endif +#endif uniform sampler2D diffuseMap; @@ -74,16 +423,20 @@ vec2 encode_normal(vec3 n) void main() { - vec4 col = texture2D(diffuseMap, vary_texcoord0.xy); - col.rgb *= vertex_color.rgb; + vec4 diffcol = texture2D(diffuseMap, vary_texcoord0.xy); + diffcol.rgb *= vertex_color.rgb; #if DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_MASK - if (col.a < minimum_alpha) + if (diffcol.a < minimum_alpha) { discard; } #endif +#if DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_BLEND + diffcol.rgb = pow(diffcol.rgb, vec3(2.2)); +#endif + #if HAS_SPECULAR_MAP vec4 spec = texture2D(specularMap, vary_texcoord2.xy); #else @@ -103,7 +456,7 @@ void main() vec3 tnorm = vary_normal; #endif - vec4 final_color = col; + vec4 final_color = diffcol; #if DIFFUSE_ALPHA_MODE != DIFFUSE_ALPHA_MODE_EMISSIVE final_color.a = 0; @@ -121,7 +474,191 @@ void main() final_specular.a = specular_color.a; #endif + +#if DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_BLEND + { + //forward rendering, output just lit RGBA + vec3 pos = vary_position; + +#if HAS_SUN_SHADOW + float shadow = 0.0; + + vec4 spos = vec4(pos,1.0); + + if (spos.z > -shadow_clip.w) + { + vec4 lpos; + + vec4 near_split = shadow_clip*-0.75; + vec4 far_split = shadow_clip*-1.25; + vec4 transition_domain = near_split-far_split; + float weight = 0.0; + + if (spos.z < near_split.z) + { + lpos = shadow_matrix[3]*spos; + + float w = 1.0; + w -= max(spos.z-far_split.z, 0.0)/transition_domain.z; + shadow += pcfShadow(shadowMap3, lpos)*w; + weight += w; + shadow += max((pos.z+shadow_clip.z)/(shadow_clip.z-shadow_clip.w)*2.0-1.0, 0.0); + } + + if (spos.z < near_split.y && spos.z > far_split.z) + { + lpos = shadow_matrix[2]*spos; + + float w = 1.0; + w -= max(spos.z-far_split.y, 0.0)/transition_domain.y; + w -= max(near_split.z-spos.z, 0.0)/transition_domain.z; + shadow += pcfShadow(shadowMap2, lpos)*w; + weight += w; + } + + if (spos.z < near_split.x && spos.z > far_split.y) + { + lpos = shadow_matrix[1]*spos; + + float w = 1.0; + w -= max(spos.z-far_split.x, 0.0)/transition_domain.x; + w -= max(near_split.y-spos.z, 0.0)/transition_domain.y; + shadow += pcfShadow(shadowMap1, lpos)*w; + weight += w; + } + + if (spos.z > far_split.x) + { + lpos = shadow_matrix[0]*spos; + + float w = 1.0; + w -= max(near_split.x-spos.z, 0.0)/transition_domain.x; + + shadow += pcfShadow(shadowMap0, lpos)*w; + weight += w; + } + + + shadow /= weight; + } + else + { + shadow = 1.0; + } +#else + float shadow = 1.0; +#endif + + vec4 diffuse = final_color; + vec3 norm = normalize(tnorm); + vec4 spec = final_specular; + float envIntensity = final_normal.z; + + vec3 col; + float bloom = 0.0; + { + calcAtmospherics(pos.xyz, 1.0); + + float da = max(dot(norm.xyz, sun_dir.xyz), 0.0); + + da = pow(da, 0.7); + + col = atmosAmbient(vec3(0)); + col += atmosAffectDirectionalLight(max(min(da, shadow), diffuse.a)); + + col *= diffuse.rgb; + + vec3 refnormpersp = normalize(reflect(pos.xyz, norm.xyz)); + + if (spec.a > 0.0) // specular reflection + { + // the old infinite-sky shiny reflection + // + + float sa = dot(refnormpersp, sun_dir.xyz); + vec3 dumbshiny = vary_SunlitColor*shadow*(texture2D(lightFunc, vec2(sa, spec.a)).r); + + // add the two types of shiny together + vec3 spec_contrib = dumbshiny * spec.rgb; + bloom = dot(spec_contrib, spec_contrib) / 6; + col += spec_contrib; + } + + if (envIntensity > 0.0) + { + //add environmentmap + vec3 env_vec = env_mat * refnormpersp; + col = mix(col.rgb, textureCube(environmentMap, env_vec).rgb, + max(envIntensity-diffuse.a*2.0, 0.0)); + } + + col = atmosLighting(col); + col = scaleSoftClip(col); + + //col = mix(col.rgb, diffuse.rgb, diffuse.a); + } + + vec3 light_col = vec3(0,0,0); + + vec3 npos = normalize(-pos.xyz); + + + /*vec3 calcPointLightOrSpotLight( + vec3 light_col, + vec3 npos, + vec3 diffuse, + vec4 spec, + vec3 v, + vec3 n, + vec4 lp, + vec3 ln, + float la, + float fa, + float is_pointlight) + + */ + + /* +#ifdef MAC_GEFORCE_HACK + #define LIGHT_LOOP(i) \ + light_col += calcPointLightOrSpotLight(light_diffuse[i].rgb, npos, diffuse.rgb, final_specular, pos.xyz, norm, light_position[i], light_direction[i], light_attenuation[i].x, light_attenuation[i].y, light_attenuation[i].z); + + LIGHT_LOOP(1) + LIGHT_LOOP(2) + LIGHT_LOOP(3) + LIGHT_LOOP(4) + LIGHT_LOOP(5) + LIGHT_LOOP(6) + LIGHT_LOOP(7) +#else*/ + for (int i = 2; i < 8; i++) + { + light_col += calcPointLightOrSpotLight( + light_diffuse[i].rgb, + npos, + diffuse.rgb, + final_specular, + pos.xyz, + norm, + light_position[i], + light_direction[i], + light_attenuation[i].x, + light_attenuation[i].y, + light_attenuation[i].z); + } +//#endif + + col += light_col; + frag_color.rgb = col; + + } + + + frag_color.a = diffcol.a*vertex_color.a; + +#else frag_data[0] = final_color; frag_data[1] = final_specular; // XYZ = Specular color. W = Specular exponent. frag_data[2] = final_normal; // XY = Normal. Z = Env. intensity. +#endif } |