diff options
Diffstat (limited to 'indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl')
-rw-r--r-- | indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl | 207 |
1 files changed, 94 insertions, 113 deletions
diff --git a/indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl b/indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl index 5ef3d63eb2..f6696e270c 100644 --- a/indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl +++ b/indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl @@ -1,24 +1,24 @@ -/** +/** * @file class1/deferred/deferredUtil.glsl * * $LicenseInfo:firstyear=2007&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2007, Linden Research, Inc. - * + * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. - * + * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. - * + * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - * + * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ @@ -50,6 +50,7 @@ SOFTWARE. uniform sampler2D normalMap; uniform sampler2D depthMap; +uniform sampler2D emissiveRect; uniform sampler2D projectionMap; // rgba uniform sampler2D brdfLut; @@ -140,40 +141,20 @@ vec2 getScreenCoordinate(vec2 screenpos) return sc - vec2(1.0, 1.0); } -// See: https://aras-p.info/texts/CompactNormalStorage.html -// Method #4: Spheremap Transform, Lambert Azimuthal Equal-Area projection -vec3 getNorm(vec2 screenpos) -{ - vec2 enc = texture(normalMap, screenpos.xy).xy; - vec2 fenc = enc*4-2; - float f = dot(fenc,fenc); - float g = sqrt(1-f/4); - vec3 n; - n.xy = fenc*g; - n.z = 1-f/2; - return n; -} - -vec3 getNormalFromPacked(vec4 packedNormalEnvIntensityFlags) +vec4 getNorm(vec2 screenpos) { - vec2 enc = packedNormalEnvIntensityFlags.xy; - vec2 fenc = enc*4-2; - float f = dot(fenc,fenc); - float g = sqrt(1-f/4); - vec3 n; - n.xy = fenc*g; - n.z = 1-f/2; - return normalize(n); // TODO: Is this normalize redundant? + return texture(normalMap, screenpos.xy); } // return packedNormalEnvIntensityFlags since GBUFFER_FLAG_HAS_PBR needs .w // See: C++: addDeferredAttachments(), GLSL: softenLightF vec4 getNormalEnvIntensityFlags(vec2 screenpos, out vec3 n, out float envIntensity) { - vec4 packedNormalEnvIntensityFlags = texture(normalMap, screenpos.xy); - n = getNormalFromPacked( packedNormalEnvIntensityFlags ); - envIntensity = packedNormalEnvIntensityFlags.z; - return packedNormalEnvIntensityFlags; + vec4 norm = texture(normalMap, screenpos.xy); + n = norm.xyz; + envIntensity = texture(emissiveRect, screenpos.xy).r; + + return norm; } // get linear depth value given a depth buffer sample d and znear and zfar values @@ -385,14 +366,14 @@ vec3 pbrIbl(vec3 diffuseColor, float perceptualRough) { // retrieve a scale and bias to F0. See [1], Figure 3 - vec2 brdf = BRDF(clamp(nv, 0, 1), 1.0-perceptualRough); - vec3 diffuseLight = irradiance; - vec3 specularLight = radiance; - - vec3 diffuse = diffuseLight * diffuseColor; - vec3 specular = specularLight * (specularColor * brdf.x + brdf.y); + vec2 brdf = BRDF(clamp(nv, 0, 1), 1.0-perceptualRough); + vec3 diffuseLight = irradiance; + vec3 specularLight = radiance; + + vec3 diffuse = diffuseLight * diffuseColor; + vec3 specular = specularLight * (specularColor * brdf.x + brdf.y); - return (diffuse + specular) * ao; + return (diffuse + specular) * ao; } @@ -401,18 +382,18 @@ vec3 pbrIbl(vec3 diffuseColor, // of the shading terms, outlined in the Readme.MD Appendix. struct PBRInfo { - float NdotL; // cos angle between normal and light direction - float NdotV; // cos angle between normal and view direction - float NdotH; // cos angle between normal and half vector - float LdotH; // cos angle between light direction and half vector - float VdotH; // cos angle between view direction and half vector - float perceptualRoughness; // roughness value, as authored by the model creator (input to shader) - float metalness; // metallic value at the surface - vec3 reflectance0; // full reflectance color (normal incidence angle) - vec3 reflectance90; // reflectance color at grazing angle - float alphaRoughness; // roughness mapped to a more linear change in the roughness (proposed by [2]) - vec3 diffuseColor; // color contribution from diffuse lighting - vec3 specularColor; // color contribution from specular lighting + float NdotL; // cos angle between normal and light direction + float NdotV; // cos angle between normal and view direction + float NdotH; // cos angle between normal and half vector + float LdotH; // cos angle between light direction and half vector + float VdotH; // cos angle between view direction and half vector + float perceptualRoughness; // roughness value, as authored by the model creator (input to shader) + float metalness; // metallic value at the surface + vec3 reflectance0; // full reflectance color (normal incidence angle) + vec3 reflectance90; // reflectance color at grazing angle + float alphaRoughness; // roughness mapped to a more linear change in the roughness (proposed by [2]) + vec3 diffuseColor; // color contribution from diffuse lighting + vec3 specularColor; // color contribution from specular lighting }; // Basic Lambertian diffuse @@ -420,14 +401,14 @@ struct PBRInfo // See also [1], Equation 1 vec3 diffuse(PBRInfo pbrInputs) { - return pbrInputs.diffuseColor / M_PI; + return pbrInputs.diffuseColor / M_PI; } // The following equation models the Fresnel reflectance term of the spec equation (aka F()) // Implementation of fresnel from [4], Equation 15 vec3 specularReflection(PBRInfo pbrInputs) { - return pbrInputs.reflectance0 + (pbrInputs.reflectance90 - pbrInputs.reflectance0) * pow(clamp(1.0 - pbrInputs.VdotH, 0.0, 1.0), 5.0); + return pbrInputs.reflectance0 + (pbrInputs.reflectance90 - pbrInputs.reflectance0) * pow(clamp(1.0 - pbrInputs.VdotH, 0.0, 1.0), 5.0); } // This calculates the specular geometric attenuation (aka G()), @@ -436,13 +417,13 @@ vec3 specularReflection(PBRInfo pbrInputs) // alphaRoughness as input as originally proposed in [2]. float geometricOcclusion(PBRInfo pbrInputs) { - float NdotL = pbrInputs.NdotL; - float NdotV = pbrInputs.NdotV; - float r = pbrInputs.alphaRoughness; + float NdotL = pbrInputs.NdotL; + float NdotV = pbrInputs.NdotV; + float r = pbrInputs.alphaRoughness; - float attenuationL = 2.0 * NdotL / (NdotL + sqrt(r * r + (1.0 - r * r) * (NdotL * NdotL))); - float attenuationV = 2.0 * NdotV / (NdotV + sqrt(r * r + (1.0 - r * r) * (NdotV * NdotV))); - return attenuationL * attenuationV; + float attenuationL = 2.0 * NdotL / (NdotL + sqrt(r * r + (1.0 - r * r) * (NdotL * NdotL))); + float attenuationV = 2.0 * NdotV / (NdotV + sqrt(r * r + (1.0 - r * r) * (NdotV * NdotV))); + return attenuationL * attenuationV; } // The following equation(s) model the distribution of microfacet normals across the area being drawn (aka D()) @@ -450,13 +431,13 @@ float geometricOcclusion(PBRInfo pbrInputs) // Follows the distribution function recommended in the SIGGRAPH 2013 course notes from EPIC Games [1], Equation 3. float microfacetDistribution(PBRInfo pbrInputs) { - float roughnessSq = pbrInputs.alphaRoughness * pbrInputs.alphaRoughness; - float f = (pbrInputs.NdotH * roughnessSq - pbrInputs.NdotH) * pbrInputs.NdotH + 1.0; - return roughnessSq / (M_PI * f * f); + float roughnessSq = pbrInputs.alphaRoughness * pbrInputs.alphaRoughness; + float f = (pbrInputs.NdotH * roughnessSq - pbrInputs.NdotH) * pbrInputs.NdotH + 1.0; + return roughnessSq / (M_PI * f * f); } -vec3 pbrPunctual(vec3 diffuseColor, vec3 specularColor, - float perceptualRoughness, +vec3 pbrPunctual(vec3 diffuseColor, vec3 specularColor, + float perceptualRoughness, float metallic, vec3 n, // normal vec3 v, // surface point to camera @@ -464,53 +445,53 @@ vec3 pbrPunctual(vec3 diffuseColor, vec3 specularColor, { // make sure specular highlights from punctual lights don't fall off of polished surfaces perceptualRoughness = max(perceptualRoughness, 8.0/255.0); - - float alphaRoughness = perceptualRoughness * perceptualRoughness; - - // Compute reflectance. - float reflectance = max(max(specularColor.r, specularColor.g), specularColor.b); - - // For typical incident reflectance range (between 4% to 100%) set the grazing reflectance to 100% for typical fresnel effect. - // For very low reflectance range on highly diffuse objects (below 4%), incrementally reduce grazing reflecance to 0%. - float reflectance90 = clamp(reflectance * 25.0, 0.0, 1.0); - vec3 specularEnvironmentR0 = specularColor.rgb; - vec3 specularEnvironmentR90 = vec3(1.0, 1.0, 1.0) * reflectance90; - - vec3 h = normalize(l+v); // Half vector between both l and v - vec3 reflection = -normalize(reflect(v, n)); - reflection.y *= -1.0f; - - float NdotL = clamp(dot(n, l), 0.001, 1.0); - float NdotV = clamp(abs(dot(n, v)), 0.001, 1.0); - float NdotH = clamp(dot(n, h), 0.0, 1.0); - float LdotH = clamp(dot(l, h), 0.0, 1.0); - float VdotH = clamp(dot(v, h), 0.0, 1.0); - - PBRInfo pbrInputs = PBRInfo( - NdotL, - NdotV, - NdotH, - LdotH, - VdotH, - perceptualRoughness, - metallic, - specularEnvironmentR0, - specularEnvironmentR90, - alphaRoughness, - diffuseColor, - specularColor - ); - - // Calculate the shading terms for the microfacet specular shading model - vec3 F = specularReflection(pbrInputs); - float G = geometricOcclusion(pbrInputs); - float D = microfacetDistribution(pbrInputs); - - // Calculation of analytical lighting contribution - vec3 diffuseContrib = (1.0 - F) * diffuse(pbrInputs); - vec3 specContrib = F * G * D / (4.0 * NdotL * NdotV); - // Obtain final intensity as reflectance (BRDF) scaled by the energy of the light (cosine law) - vec3 color = NdotL * (diffuseContrib + specContrib); + + float alphaRoughness = perceptualRoughness * perceptualRoughness; + + // Compute reflectance. + float reflectance = max(max(specularColor.r, specularColor.g), specularColor.b); + + // For typical incident reflectance range (between 4% to 100%) set the grazing reflectance to 100% for typical fresnel effect. + // For very low reflectance range on highly diffuse objects (below 4%), incrementally reduce grazing reflecance to 0%. + float reflectance90 = clamp(reflectance * 25.0, 0.0, 1.0); + vec3 specularEnvironmentR0 = specularColor.rgb; + vec3 specularEnvironmentR90 = vec3(1.0, 1.0, 1.0) * reflectance90; + + vec3 h = normalize(l+v); // Half vector between both l and v + vec3 reflection = -normalize(reflect(v, n)); + reflection.y *= -1.0f; + + float NdotL = clamp(dot(n, l), 0.001, 1.0); + float NdotV = clamp(abs(dot(n, v)), 0.001, 1.0); + float NdotH = clamp(dot(n, h), 0.0, 1.0); + float LdotH = clamp(dot(l, h), 0.0, 1.0); + float VdotH = clamp(dot(v, h), 0.0, 1.0); + + PBRInfo pbrInputs = PBRInfo( + NdotL, + NdotV, + NdotH, + LdotH, + VdotH, + perceptualRoughness, + metallic, + specularEnvironmentR0, + specularEnvironmentR90, + alphaRoughness, + diffuseColor, + specularColor + ); + + // Calculate the shading terms for the microfacet specular shading model + vec3 F = specularReflection(pbrInputs); + float G = geometricOcclusion(pbrInputs); + float D = microfacetDistribution(pbrInputs); + + // Calculation of analytical lighting contribution + vec3 diffuseContrib = (1.0 - F) * diffuse(pbrInputs); + vec3 specContrib = F * G * D / (4.0 * NdotL * NdotV); + // Obtain final intensity as reflectance (BRDF) scaled by the energy of the light (cosine law) + vec3 color = NdotL * (diffuseContrib + specContrib); return clamp(color, vec3(0), vec3(10)); } @@ -528,9 +509,9 @@ vec3 pbrBaseLight(vec3 diffuseColor, vec3 specularColor, float metallic, vec3 v, vec3 color = vec3(0); float NdotV = clamp(abs(dot(norm, v)), 0.001, 1.0); - + color += pbrIbl(diffuseColor, specularColor, radiance, irradiance, ao, NdotV, perceptualRoughness); - + color += pbrPunctual(diffuseColor, specularColor, perceptualRoughness, metallic, norm, v, normalize(light_dir)) * sunlit * 3.0 * scol; //magic number to balance with legacy materials color += colorEmissive; |