diff options
Diffstat (limited to 'indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl')
-rw-r--r-- | indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl | 551 |
1 files changed, 538 insertions, 13 deletions
diff --git a/indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl b/indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl index e27bbce094..c8eaba6418 100644 --- a/indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl +++ b/indra/newview/app_settings/shaders/class1/deferred/deferredUtil.glsl @@ -23,25 +23,128 @@ * $/LicenseInfo$ */ -uniform sampler2DRect normalMap; -uniform sampler2DRect depthMap; + +/* Parts of this file are taken from Sascha Willem's Vulkan GLTF refernce implementation +MIT License + +Copyright (c) 2018 Sascha Willems + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. +*/ + +uniform sampler2D normalMap; +uniform sampler2D depthMap; +uniform sampler2D projectionMap; // rgba +uniform sampler2D brdfLut; + +// projected lighted params +uniform mat4 proj_mat; //screen space to light space projector +uniform vec3 proj_n; // projector normal +uniform vec3 proj_p; //plane projection is emitting from (in screen space) +uniform float proj_focus; // distance from plane to begin blurring +uniform float proj_lod ; // (number of mips in proj map) +uniform float proj_range; // range between near clip and far clip plane of projection +uniform float proj_ambiance; + +// light params +uniform vec3 color; // light_color +uniform float size; // light_size uniform mat4 inv_proj; uniform vec2 screen_res; -vec2 getScreenCoordinate(vec2 screenpos) +const float M_PI = 3.14159265; +const float ONE_OVER_PI = 0.3183098861; + +vec3 srgb_to_linear(vec3 cs); +vec3 atmosFragLightingLinear(vec3 light, vec3 additive, vec3 atten); + +float calcLegacyDistanceAttenuation(float distance, float falloff) { - vec2 sc = screenpos.xy * 2.0; - if (screen_res.x > 0 && screen_res.y > 0) + float dist_atten = 1.0 - clamp((distance + falloff)/(1.0 + falloff), 0.0, 1.0); + dist_atten *= dist_atten; + + // Tweak falloff slightly to match pre-EEP attenuation + // NOTE: this magic number also shows up in a great many other places, search for dist_atten *= to audit + dist_atten *= 2.0; + return dist_atten; +} + +// In: +// lv unnormalized surface to light vector +// n normal of the surface +// pos unnormalized camera to surface vector +// Out: +// l normalized surace to light vector +// nl diffuse angle +// nh specular angle +void calcHalfVectors(vec3 lv, vec3 n, vec3 v, + out vec3 h, out vec3 l, out float nh, out float nl, out float nv, out float vh, out float lightDist) +{ + l = normalize(lv); + h = normalize(l + v); + nh = clamp(dot(n, h), 0.0, 1.0); + nl = clamp(dot(n, l), 0.0, 1.0); + nv = clamp(dot(n, v), 0.0, 1.0); + vh = clamp(dot(v, h), 0.0, 1.0); + + lightDist = length(lv); +} + +// In: +// light_center +// pos +// Out: +// dist +// l_dist +// lv +// proj_tc Projector Textue Coordinates +bool clipProjectedLightVars(vec3 light_center, vec3 pos, out float dist, out float l_dist, out vec3 lv, out vec4 proj_tc ) +{ + lv = light_center - pos.xyz; + dist = length(lv); + bool clipped = (dist >= size); + if ( !clipped ) { - sc /= screen_res; + dist /= size; + + l_dist = -dot(lv, proj_n); + vec4 projected_point = (proj_mat * vec4(pos.xyz, 1.0)); + clipped = (projected_point.z < 0.0); + projected_point.xyz /= projected_point.w; + proj_tc = projected_point; } + + return clipped; +} + +vec2 getScreenCoordinate(vec2 screenpos) +{ + vec2 sc = screenpos.xy * 2.0; return sc - vec2(1.0, 1.0); } +// See: https://aras-p.info/texts/CompactNormalStorage.html +// Method #4: Spheremap Transform, Lambert Azimuthal Equal-Area projection vec3 getNorm(vec2 screenpos) { - vec2 enc = texture2DRect(normalMap, screenpos.xy).xy; + vec2 enc = texture(normalMap, screenpos.xy).xy; vec2 fenc = enc*4-2; float f = dot(fenc,fenc); float g = sqrt(1-f/4); @@ -51,12 +154,160 @@ vec3 getNorm(vec2 screenpos) return n; } +vec3 getNormalFromPacked(vec4 packedNormalEnvIntensityFlags) +{ + vec2 enc = packedNormalEnvIntensityFlags.xy; + vec2 fenc = enc*4-2; + float f = dot(fenc,fenc); + float g = sqrt(1-f/4); + vec3 n; + n.xy = fenc*g; + n.z = 1-f/2; + return normalize(n); // TODO: Is this normalize redundant? +} + +// return packedNormalEnvIntensityFlags since GBUFFER_FLAG_HAS_PBR needs .w +// See: C++: addDeferredAttachments(), GLSL: softenLightF +vec4 getNormalEnvIntensityFlags(vec2 screenpos, out vec3 n, out float envIntensity) +{ + vec4 packedNormalEnvIntensityFlags = texture(normalMap, screenpos.xy); + n = getNormalFromPacked( packedNormalEnvIntensityFlags ); + envIntensity = packedNormalEnvIntensityFlags.z; + return packedNormalEnvIntensityFlags; +} + +// get linear depth value given a depth buffer sample d and znear and zfar values +float linearDepth(float d, float znear, float zfar) +{ + d = d * 2.0 - 1.0; + return znear * 2.0 * zfar / (zfar + znear - d * (zfar - znear)); +} + +float linearDepth01(float d, float znear, float zfar) +{ + return linearDepth(d, znear, zfar) / zfar; +} + float getDepth(vec2 pos_screen) { - float depth = texture2DRect(depthMap, pos_screen).r; + float depth = texture(depthMap, pos_screen).r; return depth; } +vec4 getTexture2DLodAmbient(vec2 tc, float lod) +{ +#ifndef FXAA_GLSL_120 + vec4 ret = textureLod(projectionMap, tc, lod); +#else + vec4 ret = texture(projectionMap, tc); +#endif + ret.rgb = srgb_to_linear(ret.rgb); + + vec2 dist = tc-vec2(0.5); + float d = dot(dist,dist); + ret *= min(clamp((0.25-d)/0.25, 0.0, 1.0), 1.0); + + return ret; +} + +vec4 getTexture2DLodDiffuse(vec2 tc, float lod) +{ +#ifndef FXAA_GLSL_120 + vec4 ret = textureLod(projectionMap, tc, lod); +#else + vec4 ret = texture(projectionMap, tc); +#endif + ret.rgb = srgb_to_linear(ret.rgb); + + vec2 dist = vec2(0.5) - abs(tc-vec2(0.5)); + float det = min(lod/(proj_lod*0.5), 1.0); + float d = min(dist.x, dist.y); + float edge = 0.25*det; + ret *= clamp(d/edge, 0.0, 1.0); + + return ret; +} + +// lit This is set by the caller: if (nl > 0.0) { lit = attenuation * nl * noise; } +// Uses: +// color Projected spotlight color +vec3 getProjectedLightAmbiance(float amb_da, float attenuation, float lit, float nl, float noise, vec2 projected_uv) +{ + vec4 amb_plcol = getTexture2DLodAmbient(projected_uv, proj_lod); + vec3 amb_rgb = amb_plcol.rgb * amb_plcol.a; + + amb_da += proj_ambiance; + amb_da += (nl*nl*0.5+0.5) * proj_ambiance; + amb_da *= attenuation * noise; + amb_da = min(amb_da, 1.0-lit); + + return (amb_da * color.rgb * amb_rgb); +} + +// Returns projected light in Linear +// Uses global spotlight color: +// color +// NOTE: projected.a will be pre-multiplied with projected.rgb +vec3 getProjectedLightDiffuseColor(float light_distance, vec2 projected_uv) +{ + float diff = clamp((light_distance - proj_focus)/proj_range, 0.0, 1.0); + float lod = diff * proj_lod; + vec4 plcol = getTexture2DLodDiffuse(projected_uv.xy, lod); + + return color.rgb * plcol.rgb * plcol.a; +} + +vec4 texture2DLodSpecular(vec2 tc, float lod) +{ +#ifndef FXAA_GLSL_120 + vec4 ret = textureLod(projectionMap, tc, lod); +#else + vec4 ret = texture(projectionMap, tc); +#endif + ret.rgb = srgb_to_linear(ret.rgb); + + vec2 dist = vec2(0.5) - abs(tc-vec2(0.5)); + float det = min(lod/(proj_lod*0.5), 1.0); + float d = min(dist.x, dist.y); + d *= min(1, d * (proj_lod - lod)); // BUG? extra factor compared to diffuse causes N repeats + float edge = 0.25*det; + ret *= clamp(d/edge, 0.0, 1.0); + + return ret; +} + +// See: clipProjectedLightVars() +vec3 getProjectedLightSpecularColor(vec3 pos, vec3 n ) +{ + vec3 slit = vec3(0); + vec3 ref = reflect(normalize(pos), n); + + //project from point pos in direction ref to plane proj_p, proj_n + vec3 pdelta = proj_p-pos; + float l_dist = length(pdelta); + float ds = dot(ref, proj_n); + if (ds < 0.0) + { + vec3 pfinal = pos + ref * dot(pdelta, proj_n)/ds; + vec4 stc = (proj_mat * vec4(pfinal.xyz, 1.0)); + if (stc.z > 0.0) + { + stc /= stc.w; + slit = getProjectedLightDiffuseColor( l_dist, stc.xy ); // NOTE: Using diffuse due to texture2DLodSpecular() has extra: d *= min(1, d * (proj_lod - lod)); + } + } + return slit; // specular light +} + +vec3 getProjectedLightSpecularColor(float light_distance, vec2 projected_uv) +{ + float diff = clamp((light_distance - proj_focus)/proj_range, 0.0, 1.0); + float lod = diff * proj_lod; + vec4 plcol = getTexture2DLodDiffuse(projected_uv.xy, lod); // NOTE: Using diffuse due to texture2DLodSpecular() has extra: d *= min(1, d * (proj_lod - lod)); + + return color.rgb * plcol.rgb * plcol.a; +} + vec4 getPosition(vec2 pos_screen) { float depth = getDepth(pos_screen); @@ -68,12 +319,286 @@ vec4 getPosition(vec2 pos_screen) return pos; } +// get position given a normalized device coordinate +vec3 getPositionWithNDC(vec3 ndc) +{ + vec4 pos = inv_proj * vec4(ndc, 1.0); + return pos.xyz / pos.w; +} + vec4 getPositionWithDepth(vec2 pos_screen, float depth) { vec2 sc = getScreenCoordinate(pos_screen); - vec4 ndc = vec4(sc.x, sc.y, 2.0*depth-1.0, 1.0); - vec4 pos = inv_proj * ndc; - pos /= pos.w; - pos.w = 1.0; - return pos; + vec3 ndc = vec3(sc.x, sc.y, 2.0*depth-1.0); + return vec4(getPositionWithNDC(ndc), 1.0); +} + +vec2 getScreenCoord(vec4 clip) +{ + vec4 ndc = clip; + ndc.xyz /= clip.w; + vec2 screen = vec2( ndc.xy * 0.5 ); + screen += 0.5; + return screen; +} + +vec2 getScreenXY(vec4 clip) +{ + vec4 ndc = clip; + ndc.xyz /= clip.w; + vec2 screen = vec2( ndc.xy * 0.5 ); + screen += 0.5; + screen *= screen_res; + return screen; +} + +// Color utils + +vec3 colorize_dot(float x) +{ + if (x > 0.0) return vec3( 0, x, 0 ); + if (x < 0.0) return vec3(-x, 0, 0 ); + return vec3( 0, 0, 1 ); +} + +vec3 hue_to_rgb(float hue) +{ + if (hue > 1.0) return vec3(0.5); + vec3 rgb = abs(hue * 6. - vec3(3, 2, 4)) * vec3(1, -1, -1) + vec3(-1, 2, 2); + return clamp(rgb, 0.0, 1.0); +} + +// PBR Utils + +vec2 BRDF(float NoV, float roughness) +{ + return texture(brdfLut, vec2(NoV, roughness)).rg; +} + +// set colorDiffuse and colorSpec to the results of GLTF PBR style IBL +vec3 pbrIbl(vec3 diffuseColor, + vec3 specularColor, + vec3 radiance, // radiance map sample + vec3 irradiance, // irradiance map sample + float ao, // ambient occlusion factor + float nv, // normal dot view vector + float perceptualRough, + out vec3 specContrib) +{ + // retrieve a scale and bias to F0. See [1], Figure 3 + vec2 brdf = BRDF(clamp(nv, 0, 1), 1.0-perceptualRough); + vec3 diffuseLight = irradiance; + vec3 specularLight = radiance; + + vec3 diffuse = diffuseLight * diffuseColor; + vec3 specular = specularLight * (specularColor * brdf.x + brdf.y); + + specContrib = specular * ao; + + return (diffuse + specular) * ao; +} + +vec3 pbrIbl(vec3 diffuseColor, + vec3 specularColor, + vec3 radiance, // radiance map sample + vec3 irradiance, // irradiance map sample + float ao, // ambient occlusion factor + float nv, // normal dot view vector + float perceptualRough) +{ + vec3 specContrib; + return pbrIbl(diffuseColor, specularColor, radiance, irradiance, ao, nv, perceptualRough, specContrib); +} + + +// Encapsulate the various inputs used by the various functions in the shading equation +// We store values in this struct to simplify the integration of alternative implementations +// of the shading terms, outlined in the Readme.MD Appendix. +struct PBRInfo +{ + float NdotL; // cos angle between normal and light direction + float NdotV; // cos angle between normal and view direction + float NdotH; // cos angle between normal and half vector + float LdotH; // cos angle between light direction and half vector + float VdotH; // cos angle between view direction and half vector + float perceptualRoughness; // roughness value, as authored by the model creator (input to shader) + float metalness; // metallic value at the surface + vec3 reflectance0; // full reflectance color (normal incidence angle) + vec3 reflectance90; // reflectance color at grazing angle + float alphaRoughness; // roughness mapped to a more linear change in the roughness (proposed by [2]) + vec3 diffuseColor; // color contribution from diffuse lighting + vec3 specularColor; // color contribution from specular lighting +}; + +// Basic Lambertian diffuse +// Implementation from Lambert's Photometria https://archive.org/details/lambertsphotome00lambgoog +// See also [1], Equation 1 +vec3 diffuse(PBRInfo pbrInputs) +{ + return pbrInputs.diffuseColor / M_PI; +} + +// The following equation models the Fresnel reflectance term of the spec equation (aka F()) +// Implementation of fresnel from [4], Equation 15 +vec3 specularReflection(PBRInfo pbrInputs) +{ + return pbrInputs.reflectance0 + (pbrInputs.reflectance90 - pbrInputs.reflectance0) * pow(clamp(1.0 - pbrInputs.VdotH, 0.0, 1.0), 5.0); +} + +// This calculates the specular geometric attenuation (aka G()), +// where rougher material will reflect less light back to the viewer. +// This implementation is based on [1] Equation 4, and we adopt their modifications to +// alphaRoughness as input as originally proposed in [2]. +float geometricOcclusion(PBRInfo pbrInputs) +{ + float NdotL = pbrInputs.NdotL; + float NdotV = pbrInputs.NdotV; + float r = pbrInputs.alphaRoughness; + + float attenuationL = 2.0 * NdotL / (NdotL + sqrt(r * r + (1.0 - r * r) * (NdotL * NdotL))); + float attenuationV = 2.0 * NdotV / (NdotV + sqrt(r * r + (1.0 - r * r) * (NdotV * NdotV))); + return attenuationL * attenuationV; } + +// The following equation(s) model the distribution of microfacet normals across the area being drawn (aka D()) +// Implementation from "Average Irregularity Representation of a Roughened Surface for Ray Reflection" by T. S. Trowbridge, and K. P. Reitz +// Follows the distribution function recommended in the SIGGRAPH 2013 course notes from EPIC Games [1], Equation 3. +float microfacetDistribution(PBRInfo pbrInputs) +{ + float roughnessSq = pbrInputs.alphaRoughness * pbrInputs.alphaRoughness; + float f = (pbrInputs.NdotH * roughnessSq - pbrInputs.NdotH) * pbrInputs.NdotH + 1.0; + return roughnessSq / (M_PI * f * f); +} + +vec3 pbrPunctual(vec3 diffuseColor, vec3 specularColor, + float perceptualRoughness, + float metallic, + vec3 n, // normal + vec3 v, // surface point to camera + vec3 l, //surface point to light + out vec3 specContrib) //specular contribution (exposed to alpha shaders to calculate "glare") +{ + // make sure specular highlights from punctual lights don't fall off of polished surfaces + perceptualRoughness = max(perceptualRoughness, 8.0/255.0); + + float alphaRoughness = perceptualRoughness * perceptualRoughness; + + // Compute reflectance. + float reflectance = max(max(specularColor.r, specularColor.g), specularColor.b); + + // For typical incident reflectance range (between 4% to 100%) set the grazing reflectance to 100% for typical fresnel effect. + // For very low reflectance range on highly diffuse objects (below 4%), incrementally reduce grazing reflecance to 0%. + float reflectance90 = clamp(reflectance * 25.0, 0.0, 1.0); + vec3 specularEnvironmentR0 = specularColor.rgb; + vec3 specularEnvironmentR90 = vec3(1.0, 1.0, 1.0) * reflectance90; + + vec3 h = normalize(l+v); // Half vector between both l and v + vec3 reflection = -normalize(reflect(v, n)); + reflection.y *= -1.0f; + + float NdotL = clamp(dot(n, l), 0.001, 1.0); + float NdotV = clamp(abs(dot(n, v)), 0.001, 1.0); + float NdotH = clamp(dot(n, h), 0.0, 1.0); + float LdotH = clamp(dot(l, h), 0.0, 1.0); + float VdotH = clamp(dot(v, h), 0.0, 1.0); + + PBRInfo pbrInputs = PBRInfo( + NdotL, + NdotV, + NdotH, + LdotH, + VdotH, + perceptualRoughness, + metallic, + specularEnvironmentR0, + specularEnvironmentR90, + alphaRoughness, + diffuseColor, + specularColor + ); + + // Calculate the shading terms for the microfacet specular shading model + vec3 F = specularReflection(pbrInputs); + float G = geometricOcclusion(pbrInputs); + float D = microfacetDistribution(pbrInputs); + + // Calculation of analytical lighting contribution + vec3 diffuseContrib = (1.0 - F) * diffuse(pbrInputs); + specContrib = F * G * D / (4.0 * NdotL * NdotV); + // Obtain final intensity as reflectance (BRDF) scaled by the energy of the light (cosine law) + vec3 color = NdotL * (diffuseContrib + specContrib); + + specContrib *= NdotL; + specContrib = max(specContrib, vec3(0)); + + return clamp(color, vec3(0), vec3(10)); +} + +vec3 pbrPunctual(vec3 diffuseColor, vec3 specularColor, + float perceptualRoughness, + float metallic, + vec3 n, // normal + vec3 v, // surface point to camera + vec3 l) //surface point to light +{ + vec3 specContrib; + + return pbrPunctual(diffuseColor, specularColor, perceptualRoughness, metallic, n, v, l, specContrib); +} + +void calcDiffuseSpecular(vec3 baseColor, float metallic, inout vec3 diffuseColor, inout vec3 specularColor) +{ + vec3 f0 = vec3(0.04); + diffuseColor = baseColor*(vec3(1.0)-f0); + diffuseColor *= 1.0 - metallic; + specularColor = mix(f0, baseColor, metallic); +} + +vec3 pbrBaseLight(vec3 diffuseColor, vec3 specularColor, float metallic, vec3 v, vec3 norm, float perceptualRoughness, vec3 light_dir, vec3 sunlit, float scol, vec3 radiance, vec3 irradiance, vec3 colorEmissive, float ao, vec3 additive, vec3 atten, out vec3 specContrib) +{ + vec3 color = vec3(0); + + float NdotV = clamp(abs(dot(norm, v)), 0.001, 1.0); + + vec3 ibl_spec; + color += pbrIbl(diffuseColor, specularColor, radiance, irradiance, ao, NdotV, perceptualRoughness, ibl_spec); + + color += pbrPunctual(diffuseColor, specularColor, perceptualRoughness, metallic, norm, v, normalize(light_dir), specContrib) * sunlit * 3.0 * scol; //magic number to balance with legacy materials + specContrib *= sunlit * 2.75 * scol; + specContrib += ibl_spec; + + color += colorEmissive; + + return color; +} + +vec3 pbrBaseLight(vec3 diffuseColor, vec3 specularColor, float metallic, vec3 v, vec3 norm, float perceptualRoughness, vec3 light_dir, vec3 sunlit, float scol, vec3 radiance, vec3 irradiance, vec3 colorEmissive, float ao, vec3 additive, vec3 atten) +{ + vec3 specContrib; + return pbrBaseLight(diffuseColor, specularColor, metallic, v, norm, perceptualRoughness, light_dir, sunlit, scol, radiance, irradiance, colorEmissive, ao, additive, atten, specContrib); +} + +uniform vec4 waterPlane; +uniform float waterSign; + +// discard if given position in eye space is on the wrong side of the waterPlane according to waterSign +void waterClip(vec3 pos) +{ + // TODO: make this less branchy + if (waterSign > 0) + { + if ((dot(pos.xyz, waterPlane.xyz) + waterPlane.w) < 0.0) + { + discard; + } + } + else + { + if ((dot(pos.xyz, waterPlane.xyz) + waterPlane.w) > 0.0) + { + discard; + } + } + +} + |