summaryrefslogtreecommitdiff
path: root/indra/llmath/v4math.h
diff options
context:
space:
mode:
Diffstat (limited to 'indra/llmath/v4math.h')
-rw-r--r--indra/llmath/v4math.h385
1 files changed, 385 insertions, 0 deletions
diff --git a/indra/llmath/v4math.h b/indra/llmath/v4math.h
new file mode 100644
index 0000000000..abdc66e0b1
--- /dev/null
+++ b/indra/llmath/v4math.h
@@ -0,0 +1,385 @@
+/**
+ * @file v4math.h
+ * @brief LLVector4 class header file.
+ *
+ * Copyright (c) 2000-$CurrentYear$, Linden Research, Inc.
+ * $License$
+ */
+
+#ifndef LL_V4MATH_H
+#define LL_V4MATH_H
+
+#include "llerror.h"
+#include "llmath.h"
+#include "v3math.h"
+
+class LLMatrix3;
+class LLMatrix4;
+class LLQuaternion;
+
+// LLVector4 = |x y z w|
+
+static const U32 LENGTHOFVECTOR4 = 4;
+
+#if LL_WINDOWS
+__declspec( align(16) )
+#endif
+
+class LLVector4
+{
+ public:
+ F32 mV[LENGTHOFVECTOR4];
+ LLVector4(); // Initializes LLVector4 to (0, 0, 0, 1)
+ explicit LLVector4(const F32 *vec); // Initializes LLVector4 to (vec[0]. vec[1], vec[2], 1)
+ explicit LLVector4(const LLVector3 &vec); // Initializes LLVector4 to (vec, 1)
+ explicit LLVector4(const LLVector3 &vec, F32 w); // Initializes LLVector4 to (vec, w)
+ LLVector4(F32 x, F32 y, F32 z); // Initializes LLVector4 to (x. y, z, 1)
+ LLVector4(F32 x, F32 y, F32 z, F32 w);
+
+ LLSD getValue() const
+ {
+ LLSD ret;
+ ret[0] = mV[0];
+ ret[1] = mV[1];
+ ret[2] = mV[2];
+ ret[3] = mV[3];
+ return ret;
+ }
+
+ inline BOOL isFinite() const; // checks to see if all values of LLVector3 are finite
+
+ inline void clearVec(); // Clears LLVector4 to (0, 0, 0, 1)
+ inline void zeroVec(); // zero LLVector4 to (0, 0, 0, 0)
+ inline void setVec(F32 x, F32 y, F32 z); // Sets LLVector4 to (x, y, z, 1)
+ inline void setVec(F32 x, F32 y, F32 z, F32 w); // Sets LLVector4 to (x, y, z, w)
+ inline void setVec(const LLVector4 &vec); // Sets LLVector4 to vec
+ inline void setVec(const LLVector3 &vec, F32 w = 1.f); // Sets LLVector4 to LLVector3 vec
+ inline void setVec(const F32 *vec); // Sets LLVector4 to vec
+
+ F32 magVec() const; // Returns magnitude of LLVector4
+ F32 magVecSquared() const; // Returns magnitude squared of LLVector4
+ F32 normVec(); // Normalizes and returns the magnitude of LLVector4
+
+ // Sets all values to absolute value of their original values
+ // Returns TRUE if data changed
+ BOOL abs();
+
+ BOOL isExactlyClear() const { return (mV[VW] == 1.0f) && !mV[VX] && !mV[VY] && !mV[VZ]; }
+ BOOL isExactlyZero() const { return !mV[VW] && !mV[VX] && !mV[VY] && !mV[VZ]; }
+
+ const LLVector4& rotVec(F32 angle, const LLVector4 &vec); // Rotates about vec by angle radians
+ const LLVector4& rotVec(F32 angle, F32 x, F32 y, F32 z); // Rotates about x,y,z by angle radians
+ const LLVector4& rotVec(const LLMatrix4 &mat); // Rotates by MAT4 mat
+ const LLVector4& rotVec(const LLQuaternion &q); // Rotates by QUAT q
+
+ const LLVector4& scaleVec(const LLVector4& vec); // Scales component-wise by vec
+
+ F32 operator[](int idx) const { return mV[idx]; }
+ F32 &operator[](int idx) { return mV[idx]; }
+
+ friend std::ostream& operator<<(std::ostream& s, const LLVector4 &a); // Print a
+ friend LLVector4 operator+(const LLVector4 &a, const LLVector4 &b); // Return vector a + b
+ friend LLVector4 operator-(const LLVector4 &a, const LLVector4 &b); // Return vector a minus b
+ friend F32 operator*(const LLVector4 &a, const LLVector4 &b); // Return a dot b
+ friend LLVector4 operator%(const LLVector4 &a, const LLVector4 &b); // Return a cross b
+ friend LLVector4 operator/(const LLVector4 &a, F32 k); // Return a divided by scaler k
+ friend LLVector4 operator*(const LLVector4 &a, F32 k); // Return a times scaler k
+ friend LLVector4 operator*(F32 k, const LLVector4 &a); // Return a times scaler k
+ friend bool operator==(const LLVector4 &a, const LLVector4 &b); // Return a == b
+ friend bool operator!=(const LLVector4 &a, const LLVector4 &b); // Return a != b
+
+ friend const LLVector4& operator+=(LLVector4 &a, const LLVector4 &b); // Return vector a + b
+ friend const LLVector4& operator-=(LLVector4 &a, const LLVector4 &b); // Return vector a minus b
+ friend const LLVector4& operator%=(LLVector4 &a, const LLVector4 &b); // Return a cross b
+ friend const LLVector4& operator*=(LLVector4 &a, F32 k); // Return a times scaler k
+ friend const LLVector4& operator/=(LLVector4 &a, F32 k); // Return a divided by scaler k
+
+ friend LLVector4 operator-(const LLVector4 &a); // Return vector -a
+}
+#if LL_DARWIN
+__attribute__ ((aligned (16)))
+#endif
+;
+
+
+// Non-member functions
+F32 angle_between(const LLVector4 &a, const LLVector4 &b); // Returns angle (radians) between a and b
+BOOL are_parallel(const LLVector4 &a, const LLVector4 &b, F32 epsilon=F_APPROXIMATELY_ZERO); // Returns TRUE if a and b are very close to parallel
+F32 dist_vec(const LLVector4 &a, const LLVector4 &b); // Returns distance between a and b
+F32 dist_vec_squared(const LLVector4 &a, const LLVector4 &b); // Returns distance squared between a and b
+LLVector3 vec4to3(const LLVector4 &vec);
+LLVector4 vec3to4(const LLVector3 &vec);
+LLVector4 lerp(const LLVector4 &a, const LLVector4 &b, F32 u); // Returns a vector that is a linear interpolation between a and b
+
+// Constructors
+
+inline LLVector4::LLVector4(void)
+{
+ mV[VX] = 0.f;
+ mV[VY] = 0.f;
+ mV[VZ] = 0.f;
+ mV[VW] = 1.f;
+}
+
+inline LLVector4::LLVector4(F32 x, F32 y, F32 z)
+{
+ mV[VX] = x;
+ mV[VY] = y;
+ mV[VZ] = z;
+ mV[VW] = 1.f;
+}
+
+inline LLVector4::LLVector4(F32 x, F32 y, F32 z, F32 w)
+{
+ mV[VX] = x;
+ mV[VY] = y;
+ mV[VZ] = z;
+ mV[VW] = w;
+}
+
+inline LLVector4::LLVector4(const F32 *vec)
+{
+ mV[VX] = vec[VX];
+ mV[VY] = vec[VY];
+ mV[VZ] = vec[VZ];
+ mV[VW] = vec[VW];
+}
+
+inline LLVector4::LLVector4(const LLVector3 &vec)
+{
+ mV[VX] = vec.mV[VX];
+ mV[VY] = vec.mV[VY];
+ mV[VZ] = vec.mV[VZ];
+ mV[VW] = 1.f;
+}
+
+inline LLVector4::LLVector4(const LLVector3 &vec, F32 w)
+{
+ mV[VX] = vec.mV[VX];
+ mV[VY] = vec.mV[VY];
+ mV[VZ] = vec.mV[VZ];
+ mV[VW] = w;
+}
+
+
+inline BOOL LLVector4::isFinite() const
+{
+ return (llfinite(mV[VX]) && llfinite(mV[VY]) && llfinite(mV[VZ]) && llfinite(mV[VW]));
+}
+
+// Clear and Assignment Functions
+
+inline void LLVector4::clearVec(void)
+{
+ mV[VX] = 0.f;
+ mV[VY] = 0.f;
+ mV[VZ] = 0.f;
+ mV[VW] = 1.f;
+}
+
+inline void LLVector4::zeroVec(void)
+{
+ mV[VX] = 0.f;
+ mV[VY] = 0.f;
+ mV[VZ] = 0.f;
+ mV[VW] = 0.f;
+}
+
+inline void LLVector4::setVec(F32 x, F32 y, F32 z)
+{
+ mV[VX] = x;
+ mV[VY] = y;
+ mV[VZ] = z;
+ mV[VW] = 1.f;
+}
+
+inline void LLVector4::setVec(F32 x, F32 y, F32 z, F32 w)
+{
+ mV[VX] = x;
+ mV[VY] = y;
+ mV[VZ] = z;
+ mV[VW] = w;
+}
+
+inline void LLVector4::setVec(const LLVector4 &vec)
+{
+ mV[VX] = vec.mV[VX];
+ mV[VY] = vec.mV[VY];
+ mV[VZ] = vec.mV[VZ];
+ mV[VW] = vec.mV[VW];
+}
+
+inline void LLVector4::setVec(const LLVector3 &vec, F32 w)
+{
+ mV[VX] = vec.mV[VX];
+ mV[VY] = vec.mV[VY];
+ mV[VZ] = vec.mV[VZ];
+ mV[VW] = w;
+}
+
+inline void LLVector4::setVec(const F32 *vec)
+{
+ mV[VX] = vec[VX];
+ mV[VY] = vec[VY];
+ mV[VZ] = vec[VZ];
+ mV[VW] = vec[VW];
+}
+
+// LLVector4 Magnitude and Normalization Functions
+
+inline F32 LLVector4::magVec(void) const
+{
+ return fsqrtf(mV[VX]*mV[VX] + mV[VY]*mV[VY] + mV[VZ]*mV[VZ]);
+}
+
+inline F32 LLVector4::magVecSquared(void) const
+{
+ return mV[VX]*mV[VX] + mV[VY]*mV[VY] + mV[VZ]*mV[VZ];
+}
+
+// LLVector4 Operators
+
+inline LLVector4 operator+(const LLVector4 &a, const LLVector4 &b)
+{
+ LLVector4 c(a);
+ return c += b;
+}
+
+inline LLVector4 operator-(const LLVector4 &a, const LLVector4 &b)
+{
+ LLVector4 c(a);
+ return c -= b;
+}
+
+inline F32 operator*(const LLVector4 &a, const LLVector4 &b)
+{
+ return (a.mV[VX]*b.mV[VX] + a.mV[VY]*b.mV[VY] + a.mV[VZ]*b.mV[VZ]);
+}
+
+inline LLVector4 operator%(const LLVector4 &a, const LLVector4 &b)
+{
+ return LLVector4(a.mV[VY]*b.mV[VZ] - b.mV[VY]*a.mV[VZ], a.mV[VZ]*b.mV[VX] - b.mV[VZ]*a.mV[VX], a.mV[VX]*b.mV[VY] - b.mV[VX]*a.mV[VY]);
+}
+
+inline LLVector4 operator/(const LLVector4 &a, F32 k)
+{
+ F32 t = 1.f / k;
+ return LLVector4( a.mV[VX] * t, a.mV[VY] * t, a.mV[VZ] * t );
+}
+
+
+inline LLVector4 operator*(const LLVector4 &a, F32 k)
+{
+ return LLVector4( a.mV[VX] * k, a.mV[VY] * k, a.mV[VZ] * k );
+}
+
+inline LLVector4 operator*(F32 k, const LLVector4 &a)
+{
+ return LLVector4( a.mV[VX] * k, a.mV[VY] * k, a.mV[VZ] * k );
+}
+
+inline bool operator==(const LLVector4 &a, const LLVector4 &b)
+{
+ return ( (a.mV[VX] == b.mV[VX])
+ &&(a.mV[VY] == b.mV[VY])
+ &&(a.mV[VZ] == b.mV[VZ]));
+}
+
+inline bool operator!=(const LLVector4 &a, const LLVector4 &b)
+{
+ return ( (a.mV[VX] != b.mV[VX])
+ ||(a.mV[VY] != b.mV[VY])
+ ||(a.mV[VZ] != b.mV[VZ]));
+}
+
+inline const LLVector4& operator+=(LLVector4 &a, const LLVector4 &b)
+{
+ a.mV[VX] += b.mV[VX];
+ a.mV[VY] += b.mV[VY];
+ a.mV[VZ] += b.mV[VZ];
+ return a;
+}
+
+inline const LLVector4& operator-=(LLVector4 &a, const LLVector4 &b)
+{
+ a.mV[VX] -= b.mV[VX];
+ a.mV[VY] -= b.mV[VY];
+ a.mV[VZ] -= b.mV[VZ];
+ return a;
+}
+
+inline const LLVector4& operator%=(LLVector4 &a, const LLVector4 &b)
+{
+ LLVector4 ret(a.mV[VY]*b.mV[VZ] - b.mV[VY]*a.mV[VZ], a.mV[VZ]*b.mV[VX] - b.mV[VZ]*a.mV[VX], a.mV[VX]*b.mV[VY] - b.mV[VX]*a.mV[VY]);
+ a = ret;
+ return a;
+}
+
+inline const LLVector4& operator*=(LLVector4 &a, F32 k)
+{
+ a.mV[VX] *= k;
+ a.mV[VY] *= k;
+ a.mV[VZ] *= k;
+ return a;
+}
+
+inline const LLVector4& operator/=(LLVector4 &a, F32 k)
+{
+ F32 t = 1.f / k;
+ a.mV[VX] *= t;
+ a.mV[VY] *= t;
+ a.mV[VZ] *= t;
+ return a;
+}
+
+inline LLVector4 operator-(const LLVector4 &a)
+{
+ return LLVector4( -a.mV[VX], -a.mV[VY], -a.mV[VZ] );
+}
+
+inline F32 dist_vec(const LLVector4 &a, const LLVector4 &b)
+{
+ LLVector4 vec = a - b;
+ return (vec.magVec());
+}
+
+inline F32 dist_vec_squared(const LLVector4 &a, const LLVector4 &b)
+{
+ LLVector4 vec = a - b;
+ return (vec.magVecSquared());
+}
+
+inline LLVector4 lerp(const LLVector4 &a, const LLVector4 &b, F32 u)
+{
+ return LLVector4(
+ a.mV[VX] + (b.mV[VX] - a.mV[VX]) * u,
+ a.mV[VY] + (b.mV[VY] - a.mV[VY]) * u,
+ a.mV[VZ] + (b.mV[VZ] - a.mV[VZ]) * u,
+ a.mV[VW] + (b.mV[VW] - a.mV[VW]) * u);
+}
+
+inline F32 LLVector4::normVec(void)
+{
+ F32 mag = fsqrtf(mV[VX]*mV[VX] + mV[VY]*mV[VY] + mV[VZ]*mV[VZ]);
+ F32 oomag;
+
+ if (mag > FP_MAG_THRESHOLD)
+ {
+ oomag = 1.f/mag;
+ mV[VX] *= oomag;
+ mV[VY] *= oomag;
+ mV[VZ] *= oomag;
+ }
+ else
+ {
+ mV[0] = 0.f;
+ mV[1] = 0.f;
+ mV[2] = 0.f;
+ mag = 0;
+ }
+ return (mag);
+}
+
+
+#endif
+