diff options
Diffstat (limited to 'indra/llmath/v4math.h')
-rw-r--r-- | indra/llmath/v4math.h | 385 |
1 files changed, 385 insertions, 0 deletions
diff --git a/indra/llmath/v4math.h b/indra/llmath/v4math.h new file mode 100644 index 0000000000..abdc66e0b1 --- /dev/null +++ b/indra/llmath/v4math.h @@ -0,0 +1,385 @@ +/** + * @file v4math.h + * @brief LLVector4 class header file. + * + * Copyright (c) 2000-$CurrentYear$, Linden Research, Inc. + * $License$ + */ + +#ifndef LL_V4MATH_H +#define LL_V4MATH_H + +#include "llerror.h" +#include "llmath.h" +#include "v3math.h" + +class LLMatrix3; +class LLMatrix4; +class LLQuaternion; + +// LLVector4 = |x y z w| + +static const U32 LENGTHOFVECTOR4 = 4; + +#if LL_WINDOWS +__declspec( align(16) ) +#endif + +class LLVector4 +{ + public: + F32 mV[LENGTHOFVECTOR4]; + LLVector4(); // Initializes LLVector4 to (0, 0, 0, 1) + explicit LLVector4(const F32 *vec); // Initializes LLVector4 to (vec[0]. vec[1], vec[2], 1) + explicit LLVector4(const LLVector3 &vec); // Initializes LLVector4 to (vec, 1) + explicit LLVector4(const LLVector3 &vec, F32 w); // Initializes LLVector4 to (vec, w) + LLVector4(F32 x, F32 y, F32 z); // Initializes LLVector4 to (x. y, z, 1) + LLVector4(F32 x, F32 y, F32 z, F32 w); + + LLSD getValue() const + { + LLSD ret; + ret[0] = mV[0]; + ret[1] = mV[1]; + ret[2] = mV[2]; + ret[3] = mV[3]; + return ret; + } + + inline BOOL isFinite() const; // checks to see if all values of LLVector3 are finite + + inline void clearVec(); // Clears LLVector4 to (0, 0, 0, 1) + inline void zeroVec(); // zero LLVector4 to (0, 0, 0, 0) + inline void setVec(F32 x, F32 y, F32 z); // Sets LLVector4 to (x, y, z, 1) + inline void setVec(F32 x, F32 y, F32 z, F32 w); // Sets LLVector4 to (x, y, z, w) + inline void setVec(const LLVector4 &vec); // Sets LLVector4 to vec + inline void setVec(const LLVector3 &vec, F32 w = 1.f); // Sets LLVector4 to LLVector3 vec + inline void setVec(const F32 *vec); // Sets LLVector4 to vec + + F32 magVec() const; // Returns magnitude of LLVector4 + F32 magVecSquared() const; // Returns magnitude squared of LLVector4 + F32 normVec(); // Normalizes and returns the magnitude of LLVector4 + + // Sets all values to absolute value of their original values + // Returns TRUE if data changed + BOOL abs(); + + BOOL isExactlyClear() const { return (mV[VW] == 1.0f) && !mV[VX] && !mV[VY] && !mV[VZ]; } + BOOL isExactlyZero() const { return !mV[VW] && !mV[VX] && !mV[VY] && !mV[VZ]; } + + const LLVector4& rotVec(F32 angle, const LLVector4 &vec); // Rotates about vec by angle radians + const LLVector4& rotVec(F32 angle, F32 x, F32 y, F32 z); // Rotates about x,y,z by angle radians + const LLVector4& rotVec(const LLMatrix4 &mat); // Rotates by MAT4 mat + const LLVector4& rotVec(const LLQuaternion &q); // Rotates by QUAT q + + const LLVector4& scaleVec(const LLVector4& vec); // Scales component-wise by vec + + F32 operator[](int idx) const { return mV[idx]; } + F32 &operator[](int idx) { return mV[idx]; } + + friend std::ostream& operator<<(std::ostream& s, const LLVector4 &a); // Print a + friend LLVector4 operator+(const LLVector4 &a, const LLVector4 &b); // Return vector a + b + friend LLVector4 operator-(const LLVector4 &a, const LLVector4 &b); // Return vector a minus b + friend F32 operator*(const LLVector4 &a, const LLVector4 &b); // Return a dot b + friend LLVector4 operator%(const LLVector4 &a, const LLVector4 &b); // Return a cross b + friend LLVector4 operator/(const LLVector4 &a, F32 k); // Return a divided by scaler k + friend LLVector4 operator*(const LLVector4 &a, F32 k); // Return a times scaler k + friend LLVector4 operator*(F32 k, const LLVector4 &a); // Return a times scaler k + friend bool operator==(const LLVector4 &a, const LLVector4 &b); // Return a == b + friend bool operator!=(const LLVector4 &a, const LLVector4 &b); // Return a != b + + friend const LLVector4& operator+=(LLVector4 &a, const LLVector4 &b); // Return vector a + b + friend const LLVector4& operator-=(LLVector4 &a, const LLVector4 &b); // Return vector a minus b + friend const LLVector4& operator%=(LLVector4 &a, const LLVector4 &b); // Return a cross b + friend const LLVector4& operator*=(LLVector4 &a, F32 k); // Return a times scaler k + friend const LLVector4& operator/=(LLVector4 &a, F32 k); // Return a divided by scaler k + + friend LLVector4 operator-(const LLVector4 &a); // Return vector -a +} +#if LL_DARWIN +__attribute__ ((aligned (16))) +#endif +; + + +// Non-member functions +F32 angle_between(const LLVector4 &a, const LLVector4 &b); // Returns angle (radians) between a and b +BOOL are_parallel(const LLVector4 &a, const LLVector4 &b, F32 epsilon=F_APPROXIMATELY_ZERO); // Returns TRUE if a and b are very close to parallel +F32 dist_vec(const LLVector4 &a, const LLVector4 &b); // Returns distance between a and b +F32 dist_vec_squared(const LLVector4 &a, const LLVector4 &b); // Returns distance squared between a and b +LLVector3 vec4to3(const LLVector4 &vec); +LLVector4 vec3to4(const LLVector3 &vec); +LLVector4 lerp(const LLVector4 &a, const LLVector4 &b, F32 u); // Returns a vector that is a linear interpolation between a and b + +// Constructors + +inline LLVector4::LLVector4(void) +{ + mV[VX] = 0.f; + mV[VY] = 0.f; + mV[VZ] = 0.f; + mV[VW] = 1.f; +} + +inline LLVector4::LLVector4(F32 x, F32 y, F32 z) +{ + mV[VX] = x; + mV[VY] = y; + mV[VZ] = z; + mV[VW] = 1.f; +} + +inline LLVector4::LLVector4(F32 x, F32 y, F32 z, F32 w) +{ + mV[VX] = x; + mV[VY] = y; + mV[VZ] = z; + mV[VW] = w; +} + +inline LLVector4::LLVector4(const F32 *vec) +{ + mV[VX] = vec[VX]; + mV[VY] = vec[VY]; + mV[VZ] = vec[VZ]; + mV[VW] = vec[VW]; +} + +inline LLVector4::LLVector4(const LLVector3 &vec) +{ + mV[VX] = vec.mV[VX]; + mV[VY] = vec.mV[VY]; + mV[VZ] = vec.mV[VZ]; + mV[VW] = 1.f; +} + +inline LLVector4::LLVector4(const LLVector3 &vec, F32 w) +{ + mV[VX] = vec.mV[VX]; + mV[VY] = vec.mV[VY]; + mV[VZ] = vec.mV[VZ]; + mV[VW] = w; +} + + +inline BOOL LLVector4::isFinite() const +{ + return (llfinite(mV[VX]) && llfinite(mV[VY]) && llfinite(mV[VZ]) && llfinite(mV[VW])); +} + +// Clear and Assignment Functions + +inline void LLVector4::clearVec(void) +{ + mV[VX] = 0.f; + mV[VY] = 0.f; + mV[VZ] = 0.f; + mV[VW] = 1.f; +} + +inline void LLVector4::zeroVec(void) +{ + mV[VX] = 0.f; + mV[VY] = 0.f; + mV[VZ] = 0.f; + mV[VW] = 0.f; +} + +inline void LLVector4::setVec(F32 x, F32 y, F32 z) +{ + mV[VX] = x; + mV[VY] = y; + mV[VZ] = z; + mV[VW] = 1.f; +} + +inline void LLVector4::setVec(F32 x, F32 y, F32 z, F32 w) +{ + mV[VX] = x; + mV[VY] = y; + mV[VZ] = z; + mV[VW] = w; +} + +inline void LLVector4::setVec(const LLVector4 &vec) +{ + mV[VX] = vec.mV[VX]; + mV[VY] = vec.mV[VY]; + mV[VZ] = vec.mV[VZ]; + mV[VW] = vec.mV[VW]; +} + +inline void LLVector4::setVec(const LLVector3 &vec, F32 w) +{ + mV[VX] = vec.mV[VX]; + mV[VY] = vec.mV[VY]; + mV[VZ] = vec.mV[VZ]; + mV[VW] = w; +} + +inline void LLVector4::setVec(const F32 *vec) +{ + mV[VX] = vec[VX]; + mV[VY] = vec[VY]; + mV[VZ] = vec[VZ]; + mV[VW] = vec[VW]; +} + +// LLVector4 Magnitude and Normalization Functions + +inline F32 LLVector4::magVec(void) const +{ + return fsqrtf(mV[VX]*mV[VX] + mV[VY]*mV[VY] + mV[VZ]*mV[VZ]); +} + +inline F32 LLVector4::magVecSquared(void) const +{ + return mV[VX]*mV[VX] + mV[VY]*mV[VY] + mV[VZ]*mV[VZ]; +} + +// LLVector4 Operators + +inline LLVector4 operator+(const LLVector4 &a, const LLVector4 &b) +{ + LLVector4 c(a); + return c += b; +} + +inline LLVector4 operator-(const LLVector4 &a, const LLVector4 &b) +{ + LLVector4 c(a); + return c -= b; +} + +inline F32 operator*(const LLVector4 &a, const LLVector4 &b) +{ + return (a.mV[VX]*b.mV[VX] + a.mV[VY]*b.mV[VY] + a.mV[VZ]*b.mV[VZ]); +} + +inline LLVector4 operator%(const LLVector4 &a, const LLVector4 &b) +{ + return LLVector4(a.mV[VY]*b.mV[VZ] - b.mV[VY]*a.mV[VZ], a.mV[VZ]*b.mV[VX] - b.mV[VZ]*a.mV[VX], a.mV[VX]*b.mV[VY] - b.mV[VX]*a.mV[VY]); +} + +inline LLVector4 operator/(const LLVector4 &a, F32 k) +{ + F32 t = 1.f / k; + return LLVector4( a.mV[VX] * t, a.mV[VY] * t, a.mV[VZ] * t ); +} + + +inline LLVector4 operator*(const LLVector4 &a, F32 k) +{ + return LLVector4( a.mV[VX] * k, a.mV[VY] * k, a.mV[VZ] * k ); +} + +inline LLVector4 operator*(F32 k, const LLVector4 &a) +{ + return LLVector4( a.mV[VX] * k, a.mV[VY] * k, a.mV[VZ] * k ); +} + +inline bool operator==(const LLVector4 &a, const LLVector4 &b) +{ + return ( (a.mV[VX] == b.mV[VX]) + &&(a.mV[VY] == b.mV[VY]) + &&(a.mV[VZ] == b.mV[VZ])); +} + +inline bool operator!=(const LLVector4 &a, const LLVector4 &b) +{ + return ( (a.mV[VX] != b.mV[VX]) + ||(a.mV[VY] != b.mV[VY]) + ||(a.mV[VZ] != b.mV[VZ])); +} + +inline const LLVector4& operator+=(LLVector4 &a, const LLVector4 &b) +{ + a.mV[VX] += b.mV[VX]; + a.mV[VY] += b.mV[VY]; + a.mV[VZ] += b.mV[VZ]; + return a; +} + +inline const LLVector4& operator-=(LLVector4 &a, const LLVector4 &b) +{ + a.mV[VX] -= b.mV[VX]; + a.mV[VY] -= b.mV[VY]; + a.mV[VZ] -= b.mV[VZ]; + return a; +} + +inline const LLVector4& operator%=(LLVector4 &a, const LLVector4 &b) +{ + LLVector4 ret(a.mV[VY]*b.mV[VZ] - b.mV[VY]*a.mV[VZ], a.mV[VZ]*b.mV[VX] - b.mV[VZ]*a.mV[VX], a.mV[VX]*b.mV[VY] - b.mV[VX]*a.mV[VY]); + a = ret; + return a; +} + +inline const LLVector4& operator*=(LLVector4 &a, F32 k) +{ + a.mV[VX] *= k; + a.mV[VY] *= k; + a.mV[VZ] *= k; + return a; +} + +inline const LLVector4& operator/=(LLVector4 &a, F32 k) +{ + F32 t = 1.f / k; + a.mV[VX] *= t; + a.mV[VY] *= t; + a.mV[VZ] *= t; + return a; +} + +inline LLVector4 operator-(const LLVector4 &a) +{ + return LLVector4( -a.mV[VX], -a.mV[VY], -a.mV[VZ] ); +} + +inline F32 dist_vec(const LLVector4 &a, const LLVector4 &b) +{ + LLVector4 vec = a - b; + return (vec.magVec()); +} + +inline F32 dist_vec_squared(const LLVector4 &a, const LLVector4 &b) +{ + LLVector4 vec = a - b; + return (vec.magVecSquared()); +} + +inline LLVector4 lerp(const LLVector4 &a, const LLVector4 &b, F32 u) +{ + return LLVector4( + a.mV[VX] + (b.mV[VX] - a.mV[VX]) * u, + a.mV[VY] + (b.mV[VY] - a.mV[VY]) * u, + a.mV[VZ] + (b.mV[VZ] - a.mV[VZ]) * u, + a.mV[VW] + (b.mV[VW] - a.mV[VW]) * u); +} + +inline F32 LLVector4::normVec(void) +{ + F32 mag = fsqrtf(mV[VX]*mV[VX] + mV[VY]*mV[VY] + mV[VZ]*mV[VZ]); + F32 oomag; + + if (mag > FP_MAG_THRESHOLD) + { + oomag = 1.f/mag; + mV[VX] *= oomag; + mV[VY] *= oomag; + mV[VZ] *= oomag; + } + else + { + mV[0] = 0.f; + mV[1] = 0.f; + mV[2] = 0.f; + mag = 0; + } + return (mag); +} + + +#endif + |