summaryrefslogtreecommitdiff
path: root/indra/llmath/v2math.h
diff options
context:
space:
mode:
Diffstat (limited to 'indra/llmath/v2math.h')
-rw-r--r--indra/llmath/v2math.h140
1 files changed, 70 insertions, 70 deletions
diff --git a/indra/llmath/v2math.h b/indra/llmath/v2math.h
index a61c946304..a0ba3ec505 100644
--- a/indra/llmath/v2math.h
+++ b/indra/llmath/v2math.h
@@ -36,7 +36,7 @@ class LLQuaternion;
// Llvector2 = |x y z w|
-static const U32 LENGTHOFVECTOR2 = 2;
+static constexpr U32 LENGTHOFVECTOR2 = 2;
class LLVector2
{
@@ -82,7 +82,7 @@ class LLVector2
const LLVector2& scaleVec(const LLVector2& vec); // scales per component by vec
- bool isNull(); // Returns true if vector has a _very_small_ length
+ bool isNull() const; // Returns true if vector has a _very_small_ length
bool isExactlyZero() const { return !mV[VX] && !mV[VY]; }
F32 operator[](int idx) const { return mV[idx]; }
@@ -113,16 +113,16 @@ class LLVector2
// Non-member functions
-F32 angle_between(const LLVector2 &a, const LLVector2 &b); // Returns angle (radians) between a and b
-bool are_parallel(const LLVector2 &a, const LLVector2 &b, F32 epsilon=F_APPROXIMATELY_ZERO); // Returns true if a and b are very close to parallel
-F32 dist_vec(const LLVector2 &a, const LLVector2 &b); // Returns distance between a and b
-F32 dist_vec_squared(const LLVector2 &a, const LLVector2 &b);// Returns distance squared between a and b
-F32 dist_vec_squared2D(const LLVector2 &a, const LLVector2 &b);// Returns distance squared between a and b ignoring Z component
-LLVector2 lerp(const LLVector2 &a, const LLVector2 &b, F32 u); // Returns a vector that is a linear interpolation between a and b
+F32 angle_between(const LLVector2& a, const LLVector2& b); // Returns angle (radians) between a and b
+bool are_parallel(const LLVector2& a, const LLVector2& b, F32 epsilon = F_APPROXIMATELY_ZERO); // Returns true if a and b are very close to parallel
+F32 dist_vec(const LLVector2& a, const LLVector2& b); // Returns distance between a and b
+F32 dist_vec_squared(const LLVector2& a, const LLVector2& b);// Returns distance squared between a and b
+F32 dist_vec_squared2D(const LLVector2& a, const LLVector2& b);// Returns distance squared between a and b ignoring Z component
+LLVector2 lerp(const LLVector2& a, const LLVector2& b, F32 u); // Returns a vector that is a linear interpolation between a and b
// Constructors
-inline LLVector2::LLVector2(void)
+inline LLVector2::LLVector2()
{
mV[VX] = 0.f;
mV[VY] = 0.f;
@@ -153,27 +153,27 @@ inline LLVector2::LLVector2(const LLSD &sd)
// Clear and Assignment Functions
-inline void LLVector2::clear(void)
+inline void LLVector2::clear()
{
mV[VX] = 0.f;
mV[VY] = 0.f;
}
-inline void LLVector2::setZero(void)
+inline void LLVector2::setZero()
{
mV[VX] = 0.f;
mV[VY] = 0.f;
}
// deprecated
-inline void LLVector2::clearVec(void)
+inline void LLVector2::clearVec()
{
mV[VX] = 0.f;
mV[VY] = 0.f;
}
// deprecated
-inline void LLVector2::zeroVec(void)
+inline void LLVector2::zeroVec()
{
mV[VX] = 0.f;
mV[VY] = 0.f;
@@ -222,31 +222,31 @@ inline void LLVector2::setVec(const F32 *vec)
// LLVector2 Magnitude and Normalization Functions
-inline F32 LLVector2::length(void) const
+inline F32 LLVector2::length() const
{
- return (F32) sqrt(mV[0]*mV[0] + mV[1]*mV[1]);
+ return sqrt(mV[VX]*mV[VX] + mV[VY]*mV[VY]);
}
-inline F32 LLVector2::lengthSquared(void) const
+inline F32 LLVector2::lengthSquared() const
{
- return mV[0]*mV[0] + mV[1]*mV[1];
+ return mV[VX]*mV[VX] + mV[VY]*mV[VY];
}
-inline F32 LLVector2::normalize(void)
+inline F32 LLVector2::normalize()
{
- F32 mag = (F32) sqrt(mV[0]*mV[0] + mV[1]*mV[1]);
+ F32 mag = sqrt(mV[VX]*mV[VX] + mV[VY]*mV[VY]);
F32 oomag;
if (mag > FP_MAG_THRESHOLD)
{
oomag = 1.f/mag;
- mV[0] *= oomag;
- mV[1] *= oomag;
+ mV[VX] *= oomag;
+ mV[VY] *= oomag;
}
else
{
- mV[0] = 0.f;
- mV[1] = 0.f;
+ mV[VX] = 0.f;
+ mV[VY] = 0.f;
mag = 0;
}
return (mag);
@@ -259,33 +259,33 @@ inline bool LLVector2::isFinite() const
}
// deprecated
-inline F32 LLVector2::magVec(void) const
+inline F32 LLVector2::magVec() const
{
- return (F32) sqrt(mV[0]*mV[0] + mV[1]*mV[1]);
+ return sqrt(mV[VX]*mV[VX] + mV[VY]*mV[VY]);
}
// deprecated
-inline F32 LLVector2::magVecSquared(void) const
+inline F32 LLVector2::magVecSquared() const
{
- return mV[0]*mV[0] + mV[1]*mV[1];
+ return mV[VX]*mV[VX] + mV[VY]*mV[VY];
}
// deprecated
-inline F32 LLVector2::normVec(void)
+inline F32 LLVector2::normVec()
{
- F32 mag = (F32) sqrt(mV[0]*mV[0] + mV[1]*mV[1]);
+ F32 mag = sqrt(mV[VX]*mV[VX] + mV[VY]*mV[VY]);
F32 oomag;
if (mag > FP_MAG_THRESHOLD)
{
oomag = 1.f/mag;
- mV[0] *= oomag;
- mV[1] *= oomag;
+ mV[VX] *= oomag;
+ mV[VY] *= oomag;
}
else
{
- mV[0] = 0.f;
- mV[1] = 0.f;
+ mV[VX] = 0.f;
+ mV[VY] = 0.f;
mag = 0;
}
return (mag);
@@ -299,7 +299,7 @@ inline const LLVector2& LLVector2::scaleVec(const LLVector2& vec)
return *this;
}
-inline bool LLVector2::isNull()
+inline bool LLVector2::isNull() const
{
if ( F_APPROXIMATELY_ZERO > mV[VX]*mV[VX] + mV[VY]*mV[VY] )
{
@@ -312,7 +312,7 @@ inline bool LLVector2::isNull()
// LLVector2 Operators
// For sorting. By convention, x is "more significant" than y.
-inline bool operator<(const LLVector2 &a, const LLVector2 &b)
+inline bool operator<(const LLVector2& a, const LLVector2& b)
{
if( a.mV[VX] == b.mV[VX] )
{
@@ -325,95 +325,95 @@ inline bool operator<(const LLVector2 &a, const LLVector2 &b)
}
-inline LLVector2 operator+(const LLVector2 &a, const LLVector2 &b)
+inline LLVector2 operator+(const LLVector2& a, const LLVector2& b)
{
LLVector2 c(a);
return c += b;
}
-inline LLVector2 operator-(const LLVector2 &a, const LLVector2 &b)
+inline LLVector2 operator-(const LLVector2& a, const LLVector2& b)
{
LLVector2 c(a);
return c -= b;
}
-inline F32 operator*(const LLVector2 &a, const LLVector2 &b)
+inline F32 operator*(const LLVector2& a, const LLVector2& b)
{
- return (a.mV[0]*b.mV[0] + a.mV[1]*b.mV[1]);
+ return (a.mV[VX]*b.mV[VX] + a.mV[VY]*b.mV[VY]);
}
-inline LLVector2 operator%(const LLVector2 &a, const LLVector2 &b)
+inline LLVector2 operator%(const LLVector2& a, const LLVector2& b)
{
- return LLVector2(a.mV[0]*b.mV[1] - b.mV[0]*a.mV[1], a.mV[1]*b.mV[0] - b.mV[1]*a.mV[0]);
+ return LLVector2(a.mV[VX]*b.mV[VY] - b.mV[VX]*a.mV[VY], a.mV[VY]*b.mV[VX] - b.mV[VY]*a.mV[VX]);
}
-inline LLVector2 operator/(const LLVector2 &a, F32 k)
+inline LLVector2 operator/(const LLVector2& a, F32 k)
{
F32 t = 1.f / k;
- return LLVector2( a.mV[0] * t, a.mV[1] * t );
+ return LLVector2( a.mV[VX] * t, a.mV[VY] * t );
}
-inline LLVector2 operator*(const LLVector2 &a, F32 k)
+inline LLVector2 operator*(const LLVector2& a, F32 k)
{
- return LLVector2( a.mV[0] * k, a.mV[1] * k );
+ return LLVector2( a.mV[VX] * k, a.mV[VY] * k );
}
-inline LLVector2 operator*(F32 k, const LLVector2 &a)
+inline LLVector2 operator*(F32 k, const LLVector2& a)
{
- return LLVector2( a.mV[0] * k, a.mV[1] * k );
+ return LLVector2( a.mV[VX] * k, a.mV[VY] * k );
}
-inline bool operator==(const LLVector2 &a, const LLVector2 &b)
+inline bool operator==(const LLVector2& a, const LLVector2& b)
{
- return ( (a.mV[0] == b.mV[0])
- &&(a.mV[1] == b.mV[1]));
+ return ( (a.mV[VX] == b.mV[VX])
+ &&(a.mV[VY] == b.mV[VY]));
}
-inline bool operator!=(const LLVector2 &a, const LLVector2 &b)
+inline bool operator!=(const LLVector2& a, const LLVector2& b)
{
- return ( (a.mV[0] != b.mV[0])
- ||(a.mV[1] != b.mV[1]));
+ return ( (a.mV[VX] != b.mV[VX])
+ ||(a.mV[VY] != b.mV[VY]));
}
-inline const LLVector2& operator+=(LLVector2 &a, const LLVector2 &b)
+inline const LLVector2& operator+=(LLVector2& a, const LLVector2& b)
{
- a.mV[0] += b.mV[0];
- a.mV[1] += b.mV[1];
+ a.mV[VX] += b.mV[VX];
+ a.mV[VY] += b.mV[VY];
return a;
}
-inline const LLVector2& operator-=(LLVector2 &a, const LLVector2 &b)
+inline const LLVector2& operator-=(LLVector2& a, const LLVector2& b)
{
- a.mV[0] -= b.mV[0];
- a.mV[1] -= b.mV[1];
+ a.mV[VX] -= b.mV[VX];
+ a.mV[VY] -= b.mV[VY];
return a;
}
-inline const LLVector2& operator%=(LLVector2 &a, const LLVector2 &b)
+inline const LLVector2& operator%=(LLVector2& a, const LLVector2& b)
{
- LLVector2 ret(a.mV[0]*b.mV[1] - b.mV[0]*a.mV[1], a.mV[1]*b.mV[0] - b.mV[1]*a.mV[0]);
+ LLVector2 ret(a.mV[VX]*b.mV[VY] - b.mV[VX]*a.mV[VY], a.mV[VY]*b.mV[VX] - b.mV[VY]*a.mV[VX]);
a = ret;
return a;
}
-inline const LLVector2& operator*=(LLVector2 &a, F32 k)
+inline const LLVector2& operator*=(LLVector2& a, F32 k)
{
- a.mV[0] *= k;
- a.mV[1] *= k;
+ a.mV[VX] *= k;
+ a.mV[VY] *= k;
return a;
}
-inline const LLVector2& operator/=(LLVector2 &a, F32 k)
+inline const LLVector2& operator/=(LLVector2& a, F32 k)
{
F32 t = 1.f / k;
- a.mV[0] *= t;
- a.mV[1] *= t;
+ a.mV[VX] *= t;
+ a.mV[VY] *= t;
return a;
}
-inline LLVector2 operator-(const LLVector2 &a)
+inline LLVector2 operator-(const LLVector2& a)
{
- return LLVector2( -a.mV[0], -a.mV[1] );
+ return LLVector2( -a.mV[VX], -a.mV[VY] );
}
inline void update_min_max(LLVector2& min, LLVector2& max, const LLVector2& pos)
@@ -431,7 +431,7 @@ inline void update_min_max(LLVector2& min, LLVector2& max, const LLVector2& pos)
}
}
-inline std::ostream& operator<<(std::ostream& s, const LLVector2 &a)
+inline std::ostream& operator<<(std::ostream& s, const LLVector2& a)
{
s << "{ " << a.mV[VX] << ", " << a.mV[VY] << " }";
return s;